
Infectious disease dynamics and restrictions on social gathering size

Christopher Boyer1,*, Eva Rumpler1,*, Stephen Kissler*, and Marc Lipsitch*

*Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA,

USA.

Draft Version: December 31, 2021

Abstract

Social gatherings can be an important locus of transmission for many pathogens includ-

ing SARS-CoV-2. During an outbreak, restricting the size of these gatherings is one of several

non-pharmaceutical interventions available to policy-makers to reduce transmission. Often these

restrictions take the form of prohibitions on gatherings above a certain size. While it is generally

agreed that such restrictions reduce contacts, the specific size threshold separating “allowed”

from “prohibited” gatherings often does not have a clear scientific basis, which leads to dramatic

differences in guidance across location and time. Building on the observation that gathering

size distributions are often heavy-tailed, we develop a theoretical model of transmission during

gatherings and their contribution to general disease dynamics. We find that a key, but often

overlooked, determinant of the optimal threshold is the distribution of gathering sizes. Using

data on pre-pandemic contact patterns from several sources as well as empirical estimates of

transmission parameters for SARS-CoV-2, we apply our model to better understand relationship

between restriction threshold and reduction in cases. We find that, under reasonable transmis-

sion parameter ranges, restrictions may have to be set quite low to have any demonstrable effect

on cases due to relative frequency of smaller gatherings. We compare our conceptual model with

observed changes in reported contacts during lockdown in March of 2020.
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1 Introduction

Social gatherings in which people meet and interact provide a conducive environment for the spread

of pathogens. During an outbreak, restricting the size of such gatherings is one of several nonphar-

maceutical interventions (NPIs) available to policymakers. An advantage of these restrictions is

that they are simple to articulate and easy for the public to understand and, in some circumstances,

for authorities to enforce. Indeed, during the COVID-19 outbreak, gathering size restrictions were

among the most commonly used NPIs globally [1]. Some have claimed that these restrictions were

among the most effective at reducing transmission [2–5]; however, given the rapid and often hap-

hazard nature of their rollout and the methodological challenges of proper indentification, estimates

of the causal effects of specific NPIs may be severely biased [6].

Theory and intuition suggest that, when properly followed, gathering size restrictions should

lower transmission by limiting the number of contacts between individuals and thus reducing the

opportunity for the pathogen to spread. Yet, it’s often unclear precisely how low restrictions should

be set to achieve a certain disease control target, be it a stable number of cases or the elimination

of the pathogen from the population. Indeed, evidence suggests, policymakers have taken a variety

of approaches in practice to set gathering size thresholds, which may reflect different goals or local

disease dynamics, but also might reflect ambiguity in the optimal strategy. As a case in point,

in the UK the government first banned gatherings above 500 in March 2020 before initiating a

lockdown on March 23. Then after restrictions eased in the late summer a ban on gatherings above

30 was declared, but then this was famously revised down to the “rule of six” in September to

prevent gatherings with more than six people. In this paper, we use epidemiological theory to

better understand the relationship between gathering size and general disease dynamics. We also

attempt to enumerate the necessary elements to quantify or predict the impact of a given threshold

on the incidence of new cases.

We emphasize restrictions on gathering sizes for several reasons. Firstly, we note that a signifi-

cant proportion of the superspreading events in the literature, including some of the most spectac-

ular accounts, have occurred during social gatherings. Given the outsized role these events seem

to play at the start of outbreaks, some have hypothesized that control and/or suppression of an

emerging pathogen could largely be achieved via targeted reduction in mass gatherings. Secondly,
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several retrospective reports comparing confirmed COVID-19 cases and test-negative controls [7,

8] have found an association between attending family and friends gatherings and infection with

SARS-CoV-2, suggesting that gatherings may be important source of new cases. Thirdly, social

gathering restrictions seem to be among the first and most frequent measures to be implemented,

which perhaps can be explained by a perception that social gatherings have less social value than

other gatherings that occur in venues such a schools and hospitals. Finally, while both the United

States and European Centers for Disease Control recommend limiting the size and duration of

gatherings [9, 10], the specific timing of when to implement restrictions and the numeric threshold

separating “allowable” from “prohibited” gatherings generally do not have a clear scientific basis.

This can lead to dramatic differences in guidance across location and time. For instance, while

most countries implemented limitations in the spring of 2020, the intensity and duration of these

restrictions varied extensively from country to country [11] with maximum gathering sizes permit-

ted ranging from 2 to 5000 and subject to frequent and somewhat erratic changes as the epidemic

progressed.

2 Theory

As in the standard compartmental model, we consider the epidemic spread of a pathogen in a

population which can be divided into three disjoint sets of individuals: susceptible and not yet

infected (S), infected and infectious (I), or recovered, no longer infectious, and immune (R). As

time passes, individuals in the population come into contact with one another and the pathogen

spreads through contacts between susceptible and infectious individuals. Gathering size restric-

tions limit the number of contacts that individuals have, but apply only to a subset of contacts

that occur during social gatherings. Therefore, we categorize all contacts between individuals as

either occurring during “gatherings”, i.e. non-household settings that are presumably affected by

gathering size restrictions, or at home or other settings not affected by gathering size restrictions,

and we focus on the former as the source of the contribution of gatherings to disease dynamics.

At each time point, individuals attend M gatherings of size K, where K is a random variable

defined by some distribution f(k). To simplify matters here we include the possibility that an

individual does not attend a gathering in f(k) through defining it as a gathering size of 1 so that
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the same distribution applies to everyone . We assume for now that policies target the expected

number of new infections that can be attributed to gatherings, E(Xt), which, using the law of total

probability, can be written as:

E(Xt) =
∑
k

E(Xt | K = k)f(k) (1)

where E(Xt | K = k) is the expected incidence of new infections at a given gathering size of K = k.

This expression suggests that we could write the expected rate under an idealized restriction, that

is a restriction that is strictly enforced such that no one attends a gathering with k > kmax as:

E(Xkmax
t ) =

kmax∑
k=1

E(Xt | K = k)fkmax(k) (2)

where the sum is now over the restricted range of gathering sizes and fkmax(k) is the distribution

of gathering sizes after the restriction has been applied recognizing that it could differ from simply

a truncated f(k) as people may respond to the restriction in different ways. Therefore, in order

to estimate the potential impact of a gathering size restriction, we need two essential inputs: (1)

the distribution of gathering sizes and (2) the relationship between gathering size and expected

number of infections. Then, given a range of kmax values, policymakers could ideally target a

specific reduction in new cases X∗t , and select k∗ = max(kmax) such that Xt < X∗t , pserhaps

weighing them against the cost of imposing the restriction.

Starting with the second input, as we show in section A.1 of the Appendix, the expected number

of incident cases Xt that occur at a gathering of size K = k is :

E(Xt | K = k) = kps(1− (1− τ)kpi) (3)

where τ is the probability of transmission given contact, and ps and pi are the population propor-

tions of susceptible and infectious individuals respectively. We assume susceptible, infectious, and

recovered individuals attend gatherings at rates roughly equivalent to their population proportions

and that everyone who attends a gathering comes into contact with all other attendees. Figure 1a

plots this expression for example values of τ , pi, and ps. As intuition might suggest, it shows that,
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Figure 1: Plots of necessary components of effect of gathering size restriction.

for a single gathering, larger gatherings produce more secondary infections than smaller gatherings

and that this relationship is nonlinear as larger gatherings both increase the number of potential

contacts and as well as the expected number of infectious individuals in attendance. Indeed, as

shown in section A.2 of the Appendix, for small values of τ and pi that are typical of an infectious

disease outbreak, i.e. |τkpi| � 1, we can use a Binomial approximation to simplify this to:

E(Xt | K = k) ≈ k2pspiτ (4)

which is quadratic in the size of the gathering.

As for the other input, the distribution of gathering sizes, empirical studies suggest that human

contact distributions may be subexponential, or even scale-free or heavy-tailed, with considerable

probability mass in the extreme tail of the distribution [12–15]. This observation applies equally

to distributions of gathering size, i.e. f(k), as most gatherings are small, but gatherings of tens

or hundreds of thousands of individuals are possible. Several generative models of human social

interaction have been proposed to explain this phenomena based on random walks [16] or attracting

sites [12]. Figure 1b shows a few common examples of heavy-tailed distributions. In the extreme

case, the limit or asymptotic behavior of these distributions can be characterized by a discrete

power law of the form

f(k) =
k−α

ζ(kmin, α)
, ∀k ≥ kmin (5)
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where ζ(kmin, α) =
∑∞

n=0 (n+ kmin)−α is generalized zeta function and kmin is the threshold for

power-law behavior. This has important implications as moments of power law distributions may

not be finite under some parameterizations as the extreme mass in the tail leads to infinite sums or

integrals. For instance, it is well known that the number of finite moments of power-law distributions

is determined by the value of α, when α < 3 the distribution has finite mean but infinite variance

and when α < 2 the distribution has no finite moments. Many observed phenomena exhibit power-

law behavior with 2 ≤ α ≤ 3 [17].

Assuming that, in the range of kmax restrictions considered, a power law is a good approximation

for the distribution of gathering sizes, and combining this with the results in equation 3 and 4, the

expected rate of new infections under restriction simplifies to:

E(Xkmax
t ) =

kmax∑
k=1

kps(1− (1− τ)kpi)
k−α

ζ(kmin, α)

≈ pspiτ

ζ(kmin, α)

kmax∑
k=1

k2−α

(6)

Viewing the
∑kmax

k=1 k2−α as a weighted sum denoting the contribution of gatherings of size between

1 and kmax to the rate of new infections yields the following insight: when α < 2 the contributions

are increasing suggesting that larger gatherings contribute more to the rate of new infections than

smaller gatherings and by extension there are diminishing returns to imposing lower restrictions;

while, on the other hand, when α ≥ 2 contributions are flat or decreasing suggesting that smaller

gatherings contribute more to the rate of new infections than larger gatherings and by extension

there are increasing returns to imposing lower restrictions.

In Figure 2 we plot an example of the relative rate of incident cases under a restriction which

prohibits gatherings above size kmax for power law distributions of gathering size with different α

values. Here, we see that when α is 2 or below, restrictions of larger gatherings quickly leads to a

large reduction in cases; however, as α increases vastly more stringent restrictions are required to

achieve meaningful reductions. This suggests that the empirical distribution of gathering sizes and

the tail-behavior specifically, i.e. the frequency of very large gatherings relative to small ones, are

important parameters in determining the optimal threshold for gathering size restrictions.
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Figure 2: Relative rate of incident cases under restriction which prohibits gatherings above size
kmax for different power law distributions; shown on both a linear (a) and a log (b) scale.

Notes: Here we fix transmission parameters to following values pi = 0.01, ps = 0.99, τ = 0.08 and assume power law
behavior starts at kmin = 1. We truncate the power law above gatherings of size 500 both to make the sum tractable
and given that gathering sizes must at minimum be less than population size. Panel (a) shows the relative rate of
incident cases calculated using equation 6 and comparing restrictions with kmax-level thresholds to unrestricted rate
(e.g. a value of 0.5 implies a 50% fewer per capita incident cases at time t relative to unrestricted rate). Panel (b)
shows the same thing but on the log scale.
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3 Application

In the previous section, we showed the distribution of gathering sizes, and the tail-behavior more

specifically, is an important determinant of the degree to which smaller or larger gatherings con-

tribute to epidemic dynamics. In this section, we use observational data on the size of human

gatherings from multiple sources to estimate the empirical power law behavior of gathering size

distributions. We use data collected both during “normal” times and during the COVID-19 pan-

demic as a reference for f(k) an fkmax(k) respectively. We estimate the effect of gathering size

restrictions during the COVID-19 pandemic using the results from the previous section and empir-

ical estimates of transmission parameters.

Our data on gathering size distributions in the pre-pandemic period are from two primary

sources: the BBC Pandemic study [18] and the Copenhagen Networks study of university sources

[19]. Both are described in more detail elsewhere. Briefly, the BBC Pandemic study is a citi-

zen science project in which UK citizens self-reported daily contacts using a mobile app in 2018.

We extracted the number of contacts made in a day by setting (home, work/school or other) for

over 38,000 participants [20]. In the Copenhagen Networks study, the movement and contacts

among approximately 1000 university students were intensively tracked and measured via Blue-

tooth, telecommunication networks, online social media contacts and geolocation over a 5 month

period in 2014. In the supplement to the original study the authors report the distribution of

23,231 gatherings observed during the study period. A gathering was defined as groups of indi-

viduals in close physical proximity that persists for at least 20 minutes. We extracted the raw

data for the probability of observing gatherings of different sizes (Supplementary Figure S9a) using

WebPlotDigitizer, an online tool that allows the extraction of numerical data from graphs [21].
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Table 1: Descriptive statistics for empirical distributions of gathering size.

Data source N mean variance min max q90 q99

BBC Pandemic

Home 38,117 2.9 1.8 1 10 4 7

Work / school 38,131 7.0 117.7 1 235 16 51

Other 38,122 4.8 40.4 1 201 11 28

Total 38,117 4.9 56.1 1 235 11 35

Copenhagen Networks 23,231 9.4 225.9 3 315 15 56

Table 1 provides the descriptive statistics for the empirical distributions of gathering sizes

extracted from both sources. In all cases except for household sizes the variance is much greater

than the mean which is indicative of overdispersion or a “heavy tail”. The maximum gathering sizes

outside the household were between 200 and 300. The 90th and 99th empirical quantiles similarly

suggest extreme skewness.

Figure 3 plots the full distribution of gathering sizes from both sources using a log-log scale.

In all contexts the majority of individuals have very few contacts. For work/school and social

gatherings, a very long tail of individuals have very large number of encounters (up to 234 daily

contacts at work). We plot both the empirical mass function and the complementary cumulative

distribution function (CCDF), also often referred to as Zipf plot, noting that the second is generally

preferred for distinguishing power-law type behavior. Typically, a CCDF plot from a power law

should be linear on a log-log scale. Here we see that most contexts exhibit approximately linear

behavior over significant range; however at the extreme right there may be some nonlinearity

which may suggest the presence of an upper bound (for instance the gathering size cannot exceed

population size). Interestingly, the distributions of gathering size reported in the Copenhagen

Networks study and number of contacts reported in the BBC Pandemic study are similar in range

and shape, despite having been measured using completely different methodologies.

Next, we find the best fitting power law for the observed distributions using maximum likelihood.

Using the poweRlaw [22] package in R, we estimate α as well as kmin representing the size beyond

which the distribution exhibits power law behavior. For the latter, we use the approach of Clauset
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Figure 3: Distribution of gathering sizes from Sekara et al and the BBC Pandemic study by setting.

Notes: Empirical distribution of gathering size from the Sekara et al. study as well as the BBC
Pandemic study by setting (home, work/school, other and total). Panel (a) is a log-log plot of
the empirical probability that each size is observed. Panel (b) is the empirical complementary
cumulative distribution function, i.e. the probability of observing size greater than or equal
to k, and is often preferred for understanding tail behavior.
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Figure 4: Estimates of power law parameters for Sekara et al. and the BBC Pandemic study by
setting

Notes: Plot is complementary cumulative distribution function versus gathering size with lines
showing fitted power law distribution. Estimates for α and kmin obtained using maximum
likelihood for discrete power law using the poweRlaw package in R.

et al. [17] and estimate it by finding the value which minimizes the Kolmogorov-Smirnov statistic.

We estimate the standard errors for both using the bootstrap.

Figure 4 shows the resulting power law fits for each of the data sources. The α values estimated

range from 2.41 to 6.01, with all settings other than households between 2 and 4. The estimate

for the Copenhagen Network study in particular is consistent with infinite second moments (i.e.

infinite variance). However, visual inspection suggests that a single power law might not fit well

in the extreme tail, with most settings exhibiting considerably lower observed frequencies than

suggested by the best-fitting power law. This may be partially due to low cell counts or sampling

variability in these extreme quantiles, or as discussed previously may be reflective of the fact that

the true distribution is truncated with an upper bound on gathering size.
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Next, we attempt to estimate the effect of a hypothetical gathering size restriction by replicating

the analysis shown in Figure 2 but substituting the empirical gathering size distributions. This

would represent an idealized intervention in which everyone followed the restriction by not attending

a gathering over the threshold, but their other gathering-seeking behavior is otherwise unaffected.

Figure 5 shows the results for the distributions in each of the data sources. Here we see that,

to achieve reduction in cases of 50% or more, restrictions must be set below 30 in most settings.

Compared with the results in Figure 2, however, we see that the empirical distributions suggest

a larger impact of restrictions on medium to large size gatherings, likely because the empirical

distributions have slightly less mass in the extreme tail than would be suggested by a true power

law.

Finally, while taking the pre-restriction (and pre-outbreak) distribution such as in the analysis

above can help one plan for extreme scenarios, it is clear that humans react to restrictions in

complex ways that may not mirror the ideal discussed above. Therefore, we also extracted data

from the COMIX study [23], which was designed as a deliberate follow on to the BBC Pandemic

during the COVID-19 pandemic. In this study, a representative sample of 1,240 adults in the UK

were asked about their contact patterns in the first week of the government-imposed ‘lockdown’

in March 2020. As before, we extracted the number of contacts made in a day by setting (home,

work/school, or other). This additional data provides insight into the distribution of contacts under

strong social distancing measures.

Figure 6 shows the full distribution of gathering sizes on a log-log scale comparing COMIX

to the pre-pandemic “normal” recorded in the BBC Pandemic study. Although sample sizes were

considerably lower in COMIX, several interesting patterns emerge. First, the distribution of house-

hold contacts under lockdown is almost identical to its pre-pandemic baseline, which is reassuring

given household composition is largely unaffected by lockdown. Next, gatherings at work/school

and other settings appear “clipped” relative to their pre-pandemic baseline and there now appears

to be a preference for lower gathering sizes with a few outliers. This seems consistent with most

people complying with order and a few who can’t (for instance because their occupation is among

those deemed “essential”) or who refuse.
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Figure 5: Relative rate of incident cases under restriction which prohibits gatherings above size
kmax for different power law distributions; shown on both a linear (a) and a log (b) scale.

Notes: Again we fix transmission parameters to following values pi = 0.01, ps = 0.99, τ = 0.08 but use draws from
empirical distributions in Figure 3. Panel (a) shows the relative rate of incident cases calculated using equation 6
and comparing restrictions with kmax-level thresholds to unrestricted rate (e.g. a value of 0.5 implies a 50% fewer
per capita incident cases at time t relative to unrestricted rate). Panel (b) shows the same thing but on the log scale.

12

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 7, 2022. ; https://doi.org/10.1101/2022.01.07.21268585doi: medRxiv preprint 

https://doi.org/10.1101/2022.01.07.21268585
http://creativecommons.org/licenses/by-nc-nd/4.0/


Other Total

Home Work/school

1 10 100 1 10 100

1 10 100 1 10 100

10−4

10−3

10−2

10−1

100

10−5

10−4

10−3

10−2

10−1

10−3

10−2.5

10−2

10−1.5

10−1

10−0.5

10−4

10−3

10−2

10−1

Size of gatherings (k)

Pr
(K

 =
 k

)

Figure 6: Distribution of gathering sizes before/during UK lockdown from the COMIX study

Notes: Empirical distribution of gathering sizs by setting (home, work/school, other and total)
during UK lockdown in March of 2020 are shown in color as measured in the COMIX study.
For comparison, the corresponding distributions as measured pre-pandemic in the original
BBC Pandemic study are shown in gray for each setting.
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4 Discussion

As the COVID-19 pandemic has demonstrated, non-pharmaceutical interventions are an essential

tool to limit the spread of infectious diseases, both in the absence of vaccines or effective ther-

apeutics, and when facing surges that test capacity of health systems or the emergence of new

variants. We have shown that, when considering limitations on gathering size, decision-makers

should consider the distribution of gathering sizes in addition to local conditions when determining

the optimal threshold. While a lot of attention has focused on large gatherings, we show that small

gatherings, due to their frequency, can be important contributors to transmission dynamics. Using

empirical data from previous studies, we find that gathering size distributions are in fact “heavy-

tailed” but that meaningful reduction in new cases only occurs once restrictions are set quite low.

In theory this conclusion should also apply to future emerging variants of COVID-19 as well as

future epidemics other than COVID-19. Our conclusion aligns with that of Brooks-Pollock et al.

[24] who have showed that large gatherings of 50+ individuals have relatively small epidemiological

impact while small and medium-sized groups of 10 to 50 individuals contribute most to COVID-19

epidemics.

Our work highlights the fact that more detailed data on human gathering sizes dynamics are

needed, as datasets on this facet of social dynamics are extremely rare. This should include data on

gathering size and duration across contexts and seasons as well as how distributions change during

the course of an outbreak. These data would allow for more tailored restrictions and potentially

more effective interventions. They would also contribute to better understanding of micro-dynamics

of transmission during an outbreak and better parameterization of infectious disease models. Con-

tinuously tracked, remotely sensed data from cell phones, with appropriate anonymization and

protection of individuals, may be one avenue for collecting this information on a large scale.

Our model relies on multiple simplifying assumptions. Recognizing that violations are not equal

and from the point of view of the policymaker the cautious approach is often the most prudent,

where possible we have made effort to make conservative assumptions. First, by using a single

probability we ignore many important heterogeneities in transmission risk (e.g indoor vs outdoor,

use of face coverings, duration, ventilation, etc). However, this would only substantively affect

our conclusions if heterogeneity varies with gathering size. For instance, if larger gatherings are
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more likely to be outdoor and people perceive them to be more dangerous and therefore adhere

more strictly to masking and social distancing guidance then it’s possible that the per contact

transmission risk may decrease with size of gathering, making restrictions on large gatherings even

less effective relative to smaller ones. In this case, it would still be possible to apply the model

presented, but specifying the transmission risk for each gathering size, which in practice may be

hard to empirically validate.

Second, we assume that the probability of transmission is constant across gathering sizes, which

may not be reasonable for very large gatherings (except perhaps in the case of an airborne pathogen

in an unventilated and crowded indoor space). Here our model clearly represents a worst case

scenario where all individuals have contacts with all other attendees. It thus likely overestimates

the contribution of large gatherings to the overall number of new infections.

Third, we assume that susceptible, infected and recovered individuals are exchangeable, mix

randomly, exhibit the same behaviour and attend gatherings at the same proportion as their propor-

tion in the underlying population distribution. This may not be the case if, for instance, infectious

people self-isolate upon developing symptoms or if there exists significant subsets of susceptibles

who avoid gatherings and significant recovereds who believe they are immune and therefore go to

gatherings at rates above their population fraction. Again these heterogeneities in behavior will

mostly affect our conclusions if they vary with size of the gathering. In particular, they may lead

to substantially different conclusions if behavioral dynamics tend to favor transmission at larger

gatherings, such as if a core

Similarly, in estimating effect of a certain threshold, we assume that individuals respond to

gathering size restrictions uniformly, with perfect compliance and that they do not adapt their

social behaviours independently of the regulation, based on, for instance, their knowledge of local

epidemic dynamics. This is obviously not true in practice, but most plausible deviations would tend

to make our estimates an upper bound on the effect of restrictions above a certain size. However, if

announcing any restriction is a sufficient signal that many opt to avoid any gatherings at all, that

may lead to a large reduction in cases even at a relatively large threshold. This may be more likely

at the start of an outbreak when people are still attempting to ascertain the seriousness of the risk.

Lastly, we assume all new infections to be equivalent, not considering heterogeneity in the

impact of secondary infections. This assumption again may not be reasonable at the beginning of
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an epidemic when local transmission is not established and we might expect infections at larger

gatherings to seed downstream cases in more diverse parts of the population/community. In this

case although larger gatherings are less frequent they act as central nodes in the contact graph

through which infection reaches sub-communities.

Our work is also subject to several limitations due to the data sources that we used. The three

data sources (BBC Pandemic, COMIX and Sekara et al.) had different aims, study designs and

limitations. We assume they all provide good estimates of frequency of gathering sizes. In using

the BBC Pandemic and COMIX study we approximate the size of gatherings by assuming that all

daily contacts in a given context all took place in one gathering. The COMIX study was conducted

during the first week of lockdown in March 2020 in the UK and may not be representative of

restrictions in other locations or times. Sekara et al. studied university students in Copenhagen,

a specific population that may not be representative of other populations. In the case of the BBC

Pandemic and COMIX data, a particular threat to our main conclusions might be measurement

error that correlates with gathering size, for instance if people get worse at recalling or recording

the size of larger gatherings we may underestimate their frequency and therefore their contribution

to transmission dynamics. This is a major advantage of the Sekara data which were remotely

recorded by cellphone and gps devices.
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A Appendix

A.1 Derivation of relationship between expected cases and gathering size

Assuming fixed transmission probability τ for contacts between susceptibles and infectious indi-

viduals, the number of secondary cases generated by a single infectious individual with Ks = ks

susceptible contacts is binomially distributed, i.e.

Xit | Ks = ks ∼ Binomial(ks, τ). (7)

If susceptibles, infectious, and recovered individuals attend gatherings at rates equivalent to their

population proportions then attendance at a gathering of size K = k can be represented by a

multinomial sampling model of the form

(Ks,Ki,Kr)
′ | K = k ∼ Multinomial(k, (ps, pi, pr)

′) (8)

where ps = S(t)
N , pi = I(t)

N , and pr = R(t)
N . Under the model, the expected number of susceptibles

is kps, the expected number of infectious is kpi, and the expected number of recovereds is kpr. To

calculate the expected number of secondary cases, note that, on average, only the Ks susceptibles

are at risk of infection and they are exposed to Ki infectious individuals. Then the probability that

the Ks susceptibles “escape”, i.e. that they are not infected by any of the Ki infectious individuals,

is (1 − τ)Ki and thus, by extension, the probability that they are infected by at least one of the

Ki infectious individuals in attendance is 1− (1− τ)Ki . Therefore, the total number of secondary

cases at a gathering of size K = k is

(Ks,Ki,Kr)
′ | K = k ∼ Multinomial(k, (ps, pi, pr)

′)

Xt | Ks = ks,Ki = ki ∼ Binomial(ks, 1− (1− τ)ki)

(9)

and taking iterated expectations, the expected number of secondary cases given a gathering of size

K = k is simply

E(Xt | K = k) = kps(1− (1− τ)kpi). (10)

For a more intuitive way to think about this equation, notice that kps is the expected number
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of susceptibles and kpi is the expected number of infectious individuals; the expression kps(1− (1−

τ)kpi) is then just the expected number of susceptibles times the probability of being infected by

any of the infectious individuals who attend, where the latter is equivalent to the one minus the

“escape” probability, i.e. the probability that no susceptible is infected by any of the infectious

individuals expected to attend.

A.2 Binomial Approximation

More specifically, when |τkpi| � 1 a Binomial approximation gives

(1− τ)kpi ≈ 1− kpiτ

and thus

kps(1− (1− τ)kpi) ≈ kps(1− (1− kpiτ)) ≈ k2pspiτ
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