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Abstract 

Using single-cell proteomics by mass cytometry, we investigate changes to a broad 

selection of over 10,000,000 immune cells in a cohort of moderate, severe, and critical 

Japanese COVID-19 patients and healthy controls with a particular focus on regulatory 

T-cells (Tregs). We find significant disruption within all compartments of the immune 

system and the emergence of atypical CTLA-4high CD4 T-cells and proliferating HLA-

DRlowCD38high Tregs associated with critical patients. We also observed disrupted 

regulation of humoral immunity in COVID-19, with a loss of circulating T follicular 

regulatory T cells (Tfr) and altered T follicular helper (Tfh)/Tfr and plasma cell/Tfr 

ratios, all of which are significantly lower in male patients. Shifting ratios of CXCR4 and 

CXCR5 expression in B-cells provides further evidence of an autoimmune phenotype 

and dysregulated humoral immunity. These results suggest that Tregs are central to 

the changing cellular networks of a wide range of cells in COVID-19 and that sex 

specific differences to the balance of Tfr, Tfh and plasma cells may have important 

implications for the specificity of the humoral immune response to SARS-CoV-2.  

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 6, 2022. ; https://doi.org/10.1101/2022.01.06.22268711doi: medRxiv preprint 

https://doi.org/10.1101/2022.01.06.22268711
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 
 

Main 

Since the initial outbreak in late 2019 1 the devastating SARS-CoV-2 pandemic and the 

associated COVID-19 disease have had a severe impact on the global community, 

making it essential that we understand this disease in greater detail. Susceptibility to 

infection appears to be driven by a range of factors, with risk increasing particularly 

with age and, to a lesser extent, male sex 2. Understanding the changes to the immune 

system of infected patients is imperative since both viral clearance and many acute 

symptoms are mediated by the immune system 3,4. Several previous studies have 

analyzed the immune response during COVID-19 and demonstrated significant 

dysregulation of almost every immune population 5-8. This is also true for regulatory T-

cells (Tregs), with several groups having reported some degree of disruption in their 

frequency, although a clear consensus has yet to emerge 9,10. 

Foxp3 expressing Tregs play a key role in the control of the immune system due to 

their ability to suppress the function of a wide range of cell types and prevent severe 

autoimmunity 11. Tregs are also known to dampen the resolution phase of an infection 

and have been demonstrated to have an important role in the response to various 

infectious diseases such as influenza and malaria 12,13. Of particular relevance in the 

context of viral lung infections is the role of the specialized Treg subset T follicular 

regulatory T cells (Tfr) to control plasma cell formation, the quality of the specific 

antibodies, emergence of autoreactive antibodies, B-cell memory, and protection from 

lung damage during influenza infection 14-16.  Several recent reports 17,18 have 

demonstrated that many patients with COVID-19 produce autoantibodies, which may 

have a critical role in the progress of infection due to their ability to neutralize 

protective host factors such as Interferons. In some cases, these autoantibodies are a 

pre-existing risk factor prior to infection. However, there is also clear evidence of de 

novo generation 19. These factors suggest that Tregs and Tfr may be an important 

factor in understanding both susceptibility to, and recovery from, COVID-19.  
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Considering these prior findings, we hypothesized that Tregs may have potential roles 

both in the acute anti-viral response and the development of post-infection 

autoimmunity in COVID-19. In this report, we leverage the ability of single-cell 

proteomics (mass cytometry) to resolve rare populations, such as Treg subsets, while 

also retaining a broad view of the immune system in a large patient cohort. We find 

that subsets of Tregs are key parts of the changing cellular networks related to 

severity, age, and sex of patients. Most notably, we see that patients with COVID-19 

have a reduced ratio of Tfr to both T follicular helper (Tfh) and antibody producing 

plasma cells, and that this is more severe in male patients. Our data provides cellular 

evidence of dysregulated antibody responses, which could explain previous reports of 

increased autoantibodies in male patients.  

 

Results 

COVID-19 generates atypical CTLA-4high effector and CXCR4high naïve conventional 

CD4+ T cells  

Peripheral blood mononuclear cells (PBMCs) from 40 healthy controls and 55 COVID-

19 patients (Table 1) were labelled with metal-tagged antibodies and analyzed on a 

Helios mass cytometer (Fig. 1). Self-organizing map (FlowSOM) clustering of CD45+ live 

cells showed clear resolution of most major immune subsets (Extended data Fig.1A). 

Analysis of changes to cellular frequency demonstrate that in comparison to healthy 

controls, severe COVID-19 patients had significantly increased frequencies of B-cells, 

plasma blast cells (plasma), and classical monocytes (cMono) (Extended data Fig.1B 

and 1C). In contrast, CD8 T-cells, non-classical monocytes (ncMono), conventional 

dendritic cells (cDCs), and plasmacytoid dendritic cells (pDCs) were all significantly 

reduced in a manner similar to previous reports 7,8. Moderate and critical patients’ 

immune composition were comparable to severe at this global level with the exception 

that moderate patients retained a more normal proportion of CD8 T-cells (Extended 

data Fig.1B). Follow-up samples had mostly returned to similar proportions as healthy 
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controls indicating that these cellular changes were transient. To obtain a fine 

resolution of cellular populations, we then performed subset analysis of major cell 

types: CD4 T-cells (CD4), CD8 T-cells (CD8), NK cells (NK), B and plasma cells (B-cells, 

Plasma), and myeloid cells and DCs (pDC, cDC, ncMono, cMono). Low frequencies of 

cell doublets and PBMC contaminating neutrophils were excluded from further 

analysis at this stage.  

In-depth sub-clustering of CD4 T-cells identified a range of previously described CD4 T-

cell populations that we manually annotated based on examination of Uniform 

manifold approximation and projection (UMAP) distribution and expression of markers 

used for clustering (Fig. 2A). For example, central memory (CM) cells were identified as 

CD95+CCR7+CD45RA– cells located between the naïve and effector memory areas of 

the UMAP, while granzyme B+ cytotoxic CD4 T-cells (annotated as GZMB+ CTL) were 

identified as CD95+CD57+GZMB+ (Fig. 2A). Changes to the proportions of clusters in 

COVID-19 revealed perturbations across the spectrum of naïve to effector cells (Fig. 

2B, 2C). Expansion of several groups of proliferative Ki67+ CD4 cells was seen including 

a group of less differentiated Ki67lo cells that retained TCF1 and CCR7 (annotated as 

Ki67lo) and two more terminally differentiated HLA-DR+ (HLA-DR+Ki67+) and CXCR3+ 

(Ki67+Th1) subgroups mostly lacking markers of stemness such as TCF1 20. Non-

proliferating CXCR3+ cells (Th1) were reduced in the COVID-19 patients, potentially as 

they had shifted to the Ki67+Th1 group (Fig. 2B). Interestingly, we observed that the 

Ki67+Th1 cluster was significantly higher in critical than severe patients (Fig. 2B, 2C) 

and showed extremely high levels of intracellular CTLA-4 (Fig. 2A, 2D). While CTLA-4 is 

not exclusively expressed by Tregs, in both healthy donor PBMCs and most highly 

activated environments such as tumors, effector Tregs reliably express higher levels of 

CTLA-4 than all other populations of effector CD4 and CD8 21. However, in this case the 

Ki67+Th1 cluster had significantly higher CTLA-4 expression than even effector Tregs 

(Fig. 2E). To better understand the relationship between these CTLA-4hi cells and other 

effector groups we used trajectory analysis. The COVID-19 enriched effector CD4 T-cell 

population had a separate trajectory from other effector CD4 T-cells, rather running in 
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parallel to Tregs due to their relative phenotypic similarity (Extended data Fig.2A, 2B). 

However, despite high CTLA-4, low levels of Foxp3 expression and intermediate levels 

of CD25 expression were observed in the Ki67+Th1 subgroup, both below the 

expression level of Foxp3/CD25 intermediate naïve Tregs suggesting that the Ki67+Th1 

cluster can be considered as Foxp3lo/– non-Tregs 22.  

A significant shift in clusters within phenotypically naïve CD4 cells was also observed. 

This was primarily characterized by increased expression of CXCR4, the chemokine 

receptor for CXCL12, and a resulting shift in the frequency of clusters from CXCR4lo 

naïve to CXCR4hi naïve in moderate, severe, and critical COVID-19 patients and then 

returned to CXCR4lo naïve in follow-up samples (Fig. 2B, 2C, 2D). These CXCR4hi naïve 

cells retained expression of CD45RA, CD27, CD127, TCF1 and CCR7 but close 

examination indicated slight changes to the expression of some markers (Fig. 2A), 

suggesting a later stage of development. To confirm this, we verified that the CXCR4hi 

naïve cluster had significantly reduced expression of the recent thymic emigrant 

marker CD31 (Extended data Fig.1C). Significant but low upregulation of CD95 was also 

seen (Extended data Fig.1D), suggesting a phenotypic similarity with CD95+CD45RA+ T-

stem memory (TSM) cells 23. However, since most naïve cells in COVID-19 patients gain 

this phenotype, we consider it unlikely that this is driven by antigen-specific memory 

development but rather that CXCR4 may prime naïve T-cells for trafficking to the lungs 

of COVID-19 patients 24. 

 

Disruption of Tregs in COVID-19 

Several reports on COVID-19 have demonstrated some degree of disruption in Tregs 9. 

We saw that Tregs as a proportion of CD4 were not changed in acute COVID-19 but 

appeared to be reduced at the follow-up stage (Fig. 2F). Additionally, some shift from 

naïve to effector Tregs was clear at the CD4 level (Fig. 2A, B). Tregs are a complex 

population with a range of known subtypes 25. To gain a better resolution of their sub-

phenotypes, we performed sub-clustering of Tregs (Fig. 3A). While there is no true 
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consensus of Treg subpopulations, we were able to recapitulate most described Treg 

subpopulations such as naïve, Tfr, an intermediate central memory (CM)-like 

population, CCR4+ effectors, Helios–CCR6+ cells, and several groups of highly activated 

HLA-DR or CD38 expressing Tregs 22,26-31 (Fig. 3A, 3B). A shift towards activated Treg 

subtypes was seen in patients with COVID-19 with increases in the activated CCR4+ 

(annotated as CCR4+), Helios–CCR6+ effectors, and several groups of proliferating Tregs. 

(Fig. 3C, 3D). A corresponding reduction in the proportions of naïve, Tfr and CM-like 

was observed. The proliferating Helios– cluster (Ki67+Helios–) lacked any clear 

association with COVID-19, while the Ki67+HLA-DR+ cluster was generally increased in 

all COVID-19 patient groups. However, the CD38hiHLA-DR – group of proliferating Tregs 

(Ki67+CD38+) was significantly increased in critical patients in comparison to severe or 

moderate groups (Fig. 3D, 3E), suggesting an association with the most severe forms of 

the disease. 

 

Treg subsets are central hubs in COVID-19 

We also performed re-clustering of NK, CD8, B-cells, and myeloid cells and were able 

to replicate key findings from previous literature, demonstrating the accuracy of this 

analysis. Severe COVID-19 infection led to increased proportions of activated, 

proliferating and cytotoxic CD57+CD69+ and Ki67+ NK cells while Granzyme-BloCD57– NK 

and CD56hiCD16lo NK were decreased (Extended data Fig.3A-E) 32. In CD8 T cells, naïve 

and CD161+CCR6+ mucosal associated innate T-cells (MAIT) were greatly reduced while 

several subgroups of proliferating Ki67+ effector memory like cells characterized by 

high expression of both CD38 and HLA-DR were increased (Extended data Fig.4A-E) 

33,34. Further analysis of the myeloid compartment confirmed the presence of the HLA-

DRlo atypical cMono and loss of intermediate and ncMono that several groups have 

found are associated with severe COVID-19 (Extended data Fig.5A-E) 7,8,35. The B-cell 

compartment was characterized by the large increase in plasma cells alongside the 

expansion of rare proliferating memory cells and CD11c+CXCR5– extrafollicular B-cells 

similar to those observed by Woodruff et al. 36 while non-proliferating memory B-cells 
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were generally reduced (Extended data Fig.6A-E). Since we collected information on 

many cell types, we next sought to use this information to determine the associations 

between these changing cellular populations by correlation analysis. To avoid undue 

influence from larger populations, such as cMono, we used subset frequencies within 

each level of clustering rather than as a proportion of all cells. For example, Treg: naïve 

is the proportion of the naïve Tregs as proportion of all Tregs. A large network of cells 

correlating with each other was increased in COVID-19, including groups of 

proliferating, or activated CD4, CD8, Treg, B-cells, plasma cells, NK (CD69+), and 

cMono. (Fig. 4A). We also visualized these changes as networks to enable a better 

understanding of the relationships between cells (Extended data Fig.7). Highly 

proliferating Tregs were seen to be in close correlation with plasma cells and HLA-DRlo 

cMono and the Ki67+Th1 cluster of CD4 T-cells. Cellular groups that were decreased in 

COVID-19 patients included several types of less activated Tregs (Tfr, naïve and CM-

like) in correlation with groups of DCs (pDC and cDC), CXCR4lo naïve CD4, naïve CD8, 

and CD56hiCD16lo NK cells and monocyte subgroups (intermediate, non-classical and 

HLA-DRhi cMono). Overall, these results suggest a general shift to dysfunctional and 

suppressive phenotypes characterized by loss of HLA-DR on monocytes and high levels 

of suppressive molecules such as CD38 and CTLA-4 expressed by hyperactivated CD4, 

CD8 and Tregs (Fig. 4A). While this analysis revealed broad differences between 

healthy and COVID-19 patients, it could not clearly show differences within patient 

subgroups (moderate, severe, and critical patients). To further examine this, we used 

the same approach but excluded healthy and follow-up samples and restricted 

visualization of the correlation matrix (Extended data Fig.8A) to the top 5 correlations 

with moderate and critical patients and the level of positive correlation between these 

cell types. Moderate patients were associated with several populations that were also 

correlated with healthy controls such as naïve Tregs, CD73+ memory B-cells, and HLA-

DRhi cMono (Fig. 4B). This likely reflects that the moderate patients are at an 

intermediate phenotype between healthy controls and more severe patient groups. 

Upon examination of associations with the critical patient group, we saw that 

CD38+Ki67+ Tregs appears to be a central hub around which dysfunctional HLA-
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DRloKi67lo cMono, plasma cells, CD11c+CXCR5– B-cells, and Ki67+ proliferating memory 

B-cells were organized (Fig. 4B).  

Age associated changes to Tregs and CXCR4 expression  

Since age is a major factor for susceptibility to COVID-19 2,37, we sought to examine the 

relationship between age and cellular populations. Interestingly, Helios-CCR6+ Tregs 

were expanded in older COVID-19 patients (Fig. 5A, 5B). In humans, Helios negativity 

and expression of CCR6 is characteristic of unstable Tregs capable of producing IL-17 

28,29. This suggests that while Tregs are generally highly activated in COVID-19, a 

potentially unstable subpopulation emerges in older COVID-19 patients. The CXCR4hi 

naïve T-cell subgroup was also increased with age in COVID-19 patients (Fig. 5A, 5C). 

Since we had observed increased CXCR4 expression by CD4 T cells from COVID-19 

patients, we examined its expression on other cell types. In addition to the expected 

increase in CD4 T-cells, CXCR4 was also upregulated by CD8 T cells, B cells, cDCs, 

ncMono and NK cells in severe patients, and slightly decreased on cMono (Fig. 5D, 5E). 

These changes in CXCR4 thus appeared to be highly coordinated between cell types. 

The balance between CXCR4 and CXCR5 in B-cells is believed to play a key role in 

autoimmune disorders such as Systemic lupus erythematosus (SLE) and Rheumatoid 

arthritis, demonstrated by increases in a CXCR4+CXCR5lo subset in SLE 38-40. We 

observed downregulation of CXCR5 expression by non-plasma B-cells in severe COVID-

19 patients (Fig. 5F), and a greater proportion of CXCR4+CXCR5lo B-cells, similar to 

those previously seen in SLE (Fig. 5G). These cells were distinct from the CD11c+CXCR5– 

cells that we had found by clustering analysis, which lack CXCR4 expression (Extended 

data Fig.6A). The balance of CXCR5 and CXCR4 also has an important role in Tfh 

localization within germinal centers 41, and Tfh CXCR5 was reduced in severe COVID-19 

patients while CXCR4 was increased (Fig. 5H). Tfh expression of CXCR4 in COVID-19 

patients was also positively correlated with age (Spearman rho = 0.577, p<0.001), 

while CXCR5 expression was unaffected by age (rho -0.2, p=0.13). 

Sex associated disruption of Tfr, Tfh, plasma cell ratios 
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Given the known importance of sex in susceptibility to COVID-19 2,37 we then sought to 

further dissect the associations of sex in our cohort. Since we were aware of sex bias in 

the critical patient group (Table 1), we restricted correlation analysis only to the severe 

patient group (Extended data Fig.8B) to avoid confounding effects. Female patients 

showed an overall increase in the proportion of B-cells (Fig. 6B), as also seen by 

Takahashi et al. 42. Plasma cells and Ki67+CD38+ Tregs were associated with male 

patients, while the top correlation with female sex was the proportion of circulating Tfr 

(Fig. 6A and 6B). Since a primary role of Tfr is the control of plasma cell formation 15,16 

this suggested a causative link between the inverse relationship of Tfr and plasma cells 

amongst the sexes. Upon further examination, we found that the proportion of 

circulating Tfr was reduced as a proportion of Tregs. Similarly, Plasma cells were also 

significantly reduced in females (Fig. 6B). Interestingly we also saw that healthy control 

females had an increased proportion of Tfr (p=0.007) compared to males and that 

percentages Tfr of Tregs was increased in an age-associated manner in female (rho= 

0.569, p=0.01) but not male (rho=0.274, p=0.4) healthy controls. We also observed 

significant negative correlations between Tfr and plasma cells or Tfr and CD11c+CXCR5– 

B-cells within severe patients (Extended data Fig.8B). Further division by sex 

demonstrated that the negative correlation of Tfr and plasma cells was significant in 

female but not male patients, while the Tfr/CD11c+CXCR5– B-cell negative correlation 

was significant in both sexes but stronger in females (Fig. 6C).  

While the loss of Tfr is associated with dysregulated control of antibody responses, we 

also noted a positive correlation between Tfr and Tfh proportions (Fig. 6A). Previous 

studies have demonstrated that the balance between Tfh/Tfr and plasma cell/Tfr is 

more predictive of dysregulated antibody responses than their individual proportions 

27,43. We also examined these ratios in COVID-19 more generally and found that their 

disruption is apparent in almost all moderate, severe, and critical COVID-19 patients 

(Fig. 6D). Within severe COVID-19 patients, we also found that the ratio of both Tfh/Tfr 

and plasma cell/Tfr were significantly different between male and female patients (Fig. 

6E). These findings suggest that disruption of Tfr function is a general factor in COVID-
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19 that is further exaggerated in male patients. Together with the earlier observed 

disruptions to CXCR4 and CXCR5 expression in B-cells this suggests a broader picture of 

dysregulated antibody production during COVID-19.  

In summary, analysis of this cohort of COVID-19 patients has pinpointed potentially 

crucial roles that Tregs may play in organizing multiple aspects of the immune 

response in COVID-19.  

 

DISCUSSION 

Using mass cytometry to measure broad changes to cellular phenotypes in a large 

COVID-19 patient cohort, we found a great number of changes, which recapitulated 

the findings of a number of papers, including abnormal monocytes, highly activated 

NK, and CD8 cells, acting as both confirmation of previous results and demonstration 

of the accuracy of our analysis 7,8,32-35. We also closely examined the status of Tregs 

during COVID-19. Several papers have observed changes to Treg during COVID-19 9 

variously reporting increases, decreases, or no change in Treg frequency. Alongside 

differences in patient cohorts, a possible cause of this variability is that not all studies 

use Foxp3 as part of their identification strategy and instead rely on CD127 and CD25. 

Since CD25 upregulation and CD127 downregulation are relatively common in highly 

activated non-Tregs, we would urge significant caution in reliance on surface markers 

alone to identify Tregs in the blood of patients with COVID-19. Additionally, Foxp3 

alone is not always sufficient to correctly identify Tregs 22 suggesting that a range of 

markers and higher dimensional approaches are needed to fully separate Tregs from 

non-Tregs in the context of the aggressive cellular activation seen in COVID-19. In our 

hands, we did not see a clear change in overall Treg frequency, but in agreement with 

several other studies, a shift from naïve to effector Tregs was observed 10,44. We 

confirm this broad point of a general shift in activation and extend these findings by 

providing further depth of analysis of Treg subpopulations. A wide range of markers 

have been used to define various and often overlapping definitions of effector Tregs 25. 
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Here we show that while there is a general increase in activated and proliferating Treg 

populations, the CD38hiHLA-DRloKI67+ subpopulation showed a clear stepwise increase 

in frequency between moderate, severe, and critical patients. CD38loHLA-

DRhiKI67+Tregs were also increased in all patient groups but lacked a clear association 

with severity. HLA-DRhi Tregs are a known population with high suppressive activity 31 

whereas CD38hi Tregs are a population that have been studied most often in the 

context of multiple myeloma 45,46. Furthermore, CD38hi Tregs from either myeloma 

patients or healthy donors have increased suppressive function and CD38 blocking 

antibodies are able to reduce their function 45,46. In the context of COVID-19, CD38 

expression is widely induced across CD8, CD4, Treg, and plasma cells, suggesting that 

CD38 expression across these disparate populations may either be driven by a central 

factor or interaction between these cell types. In addition to Tregs themselves, we also 

noted an expansion of CTLA-4hi proliferating T-cells, particularly in critical patients. 

CTLA-4 is usually expressed at higher levels in Tregs, where it suppresses the activity of 

T helper cells 47. CTLA-4 expression by non-Tregs has also been associated with 

exhaustion, and expression of other exhaustion associated markers such as CD38, PD1, 

Granzyme-B, ICOS and loss of TCF-1 48. This was also the case for the CTLA-4hi 

proliferating T-cells in the current cohort, suggesting some level of exhaustion; 

however, retention of CD27 and their proliferating status argues against this. Several 

groups have noted increased expression of CTLA-4 either in total or SARS-CoV2 specific 

CD4 T-cells 5,6. Here we noted disruption of usual CTLA-4 expression patterns with the 

Ki67+Th1 group expressing extremely high levels of CTLA-4 expression, above that of 

Tregs. This high expression of CTLA-4 on proliferating T cells might, in combination 

with expansion of effector Tregs, be partly responsible for the establishment of a 

dysfunctional immune environment characterized by populations such as HLA-DRlo 

monocytes.  

Several recent studies have revealed a high frequency of autoantibodies in patients 

with COVID-19 17,18,49. These may have a role both in autoimmune pathologies as well 

as in the resolution of infection, particularly where critical immune components such 
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as type-1 interferon are targeted by neutralizing autoantibodies 18,49. The Treg subset 

Tfr has been demonstrated to control autoantibody production in mice 50 and in 

humans, reduced circulating Tfr or an increased ratio of Tfh to Tfr are associated with 

autoantibodies and the frequency of plasma cells in patients 51-54. In acute COVID-19, 

we saw that Tfr were reduced, in keeping with another report 55. There is also evidence 

that this disruption is prolonged as COVID-19 convalescent patients have a decreased 

proportion of circulating Tfr and an increased proportion of activated Tfh 56. We found 

that Tfr cells were more frequent in female patients and that both the plasma cell/Tfr 

ratio and the Tfh/Tfr ratio was significantly higher in male COVID-19 patients. This may 

partly underly the finding that male patients were disproportionately over-represented 

amongst those with detectable autoantibodies 18. In the context of infection with 

respiratory viruses, murine models of influenza have demonstrated that without Tfr, 

the germinal center becomes dysregulated leading to increased proportions of antigen 

non-specific B-cells, increased export of plasma cells, and autoreactive antibodies 15,16. 

Further, loss of Tfr impairs the memory response to a shared stalk domain of influenza 

viruses 15, a finding with potentially significant implications in the context of 

reinfection with different strains of SARS-CoV2. Tfr are suppressed by high levels of IL-

2 16,26. Since plasma concentrations of IL-2 are raised in COVID-19 suggesting a role for 

IL-2 in the suppression of the Tfr proportion 44,57. Accordingly, there is significant 

evidence that Tfr have an important role in suppressing plasma cell generation, 

improving the specificity and memory of the antibody response to acute viral 

infections, and preventing autoreactive antibodies from developing in this same 

context, all of which are of direct relevance to COVID-19. The level of interaction 

between Tfr and CD11c+CXCR5– B-cells is not well established at this time; however, 

many Tfr are localized at the T-B border 58 making them well placed to prevent the 

initial T-cell dependent priming of extrafollicular responses and induction of B-cell class 

switching at this site 59,60. 

Further reinforcing this impression of dysregulated humoral immunity, we saw 

increased CXCR4 expression, a common feature of autoantibody mediated 
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autoimmune diseases, such as SLE 38-40. Increased CXCR4 on B-cells or T-cells may allow 

them to home towards extrafollicular sites and potentially disrupt light zone 

organization in germinal centers 41. Together with increased extrafollicular 

CD11c+CXCR5– B-cells, this suggests a strong influence of extrafollicular plasma cell 

generation in COVID-19 36,61 and a possible common link between some of the 

underlying mechanisms of autoantibodies in COVID-19 and SLE. The relative 

imbalances of Tfh/Tfr, plasma cell/Tfr, the development of B-cell phenotypes 

associated with SLE-like extrafollicular responses (CXCR5–CD11c+ and CXCR5loCXCR4+ B-

cells) may all contribute to the production of autoantibody responses in COVID-19 

patients and requires further investigation.  

CXCR4 upregulation in CD4 and CD8 cells in PBMCs from COVID-19 patients was also 

observed in an earlier study, although its distribution across sub-populations or other 

cell types was not reported 33. Here we find that this upregulation of CXCR4 is also 

generalized across many immune cell types of both myeloid and lymphoid origins, 

suggesting that a global factor is driving CXCR4 expression across a range of subsets in 

an antigen-independent manner. In addition to its role in extrafollicular B-cell 

responses, CXCR4 is important in the control of cellular migration to several tissues, 

most notably the lungs 24. Most immune cell types present in the bronchoalveolar 

lavage of COVID-19 patients express high levels of CXCR4 62. CXCR4+CD69+ bystander 

CD4 and CD8 T-cells are seen to increase in the lungs of patients with COVID-19 and 

lack the tissue-resident marker CD103, suggesting recent infiltration from the 

periphery 63. We speculate that the CXCR4hi naïve CD4 cells in the blood observed 

here, which lack CD69 expression, may be primed for non-antigen specific infiltration 

into the lungs and their increased frequency in older COVID-19 patients may play a role 

in their greater susceptibility to disease. Interestingly, CXCR4 expressing naïve CD4 T-

cells are also induced in a murine model of polymicrobial sepsis, and mortality is 

significantly reduced by blockade of CXCR4 in that setting 64. Furthermore, CXCR4 

signaling blocks production of IFN-I from influenza infected PBMCs, PBMCs from SLE 

patients, and PBMCs from COVID-19 patients 65-67. These findings collectively make the 
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case that dysfunctional cellular migration, inflammation, and autoantibody production 

in COVID-19 may be targetable via CXCR4. Steroids are also known to induce both 

CXCR4 expression and changes to CXCR4 signaling via Lck 68. Since a high proportion of 

COVID-19 patients, and all patients in this study, are treated with steroids, some 

consideration of the effect of these drugs on CXCR4 and the relative importance of 

CXCR4 expression to the efficacy of these drugs in the context of COVID-19 patients is 

required.  

In summation, in all cases, Treg subgroups were central parts of the top 5 most 

severity-associated (Ki67+CD38+: critical COVID-19, naïve Tregs and CM-like Treg: 

moderate COVID-19), age-associated (Helios-CCR6+: older patients) or sex-associated 

(Tfr: female patients, Ki67+CD38+:male patients) cellular populations in COVID-19 and 

occurs in close coordination with other described such as cMono dysfunction, NK cell 

activation, high proportions of plasma cells and increased extrafollicular B cells. While 

further work is required to truly separate cause from effect, the reduction of Tfr in all 

COVID-19 patients, that is further exaggerated in male patients, may underly 

dysregulated antibody production. While widespread induction of CXCR4 expression 

may also have an important role in the balance of extrafollicular antibody responses 

and trafficking of cells to the lungs.  

 

MATERIALS AND METHODS 

Study design 

PBMC samples were collected from a cohort of COVID-19 patients and healthy controls 

(Table 1). We enrolled hospitalized cases diagnosed as COVID-19 by physicians using 

clinical manifestation and PCR test results. Samples were collected from August 2020 

to May 2021 at Osaka University Hospital. Control subjects were collected at Osaka 

University Graduate School of Medicine and affiliated institutes. Due to their generally 

lower age the healthy control (HC) group was split by age groups into those above (HC 

50+) and below 50 (HC <50) years of age to allow closer comparison of COVID-19 
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patients with similarly age-matched controls. Patients with COVID-19 were grouped by 

the WHO eight-point ordinal scale for clinical improvement 69, 4 = Moderate (oxygen 

by mask or nasal prongs), 6 = Severe (intubation and mechanical ventilation), 7 = 

Critical (ventilation + additional organ support – pressors, RRT, ECMO). All participants 

provided written informed consent as approved by the ethical committees of Osaka 

University Graduate School of Medicine, and affiliated institutes. 

 

Mass cytometry antibody production.  

Indium-113 and -115, and Gadolinium-157 were obtained from Trace Sciences, 

cisplatin-195 and -196 were obtained from BuyIsotope. Indium and lanthanide 

isotopes were conjugated to antibodies with the MaxPar conjugation kit (X8 polymer), 

while Cadmium isotopes were conjugated to antibodies with the MaxPar conjugation 

kit (MCP9 polymer) according to the manufacturer’s instructions. Platinum-labelled 

antibodies were conjugated with cisplatin as previously described 70. Conjugated 

antibodies were stored in PBS-based antibody stabilizer or HRP-protector stabilizer for 

cadmium labelling (Candor Biosciences). All antibodies were titrated for optimal 

staining concentrations using control PBMCs.  

 

CD45 barcoding and cell staining  

A total of 9 separate experiments were performed. In each experiment, up to 1.5 × 106 

cells per sample were labeled with a six choose-two pattern of anti-CD45 barcodes 

(113In, 115In, 194Pt, 195Pt, 196Pt and 198Pt) to give a combination of up to 15 

barcoded samples per experiment. Samples were incubated with CD45 barcodes 

together with FC-block and anti-CXCR5 biotin (Table S1A) for 30 min at room 

temperature (RT), and then washed twice in CyFACS buffer (PBS with 0.1% BSA and 2 

mM EDTA). Barcoded cells were then pooled and washed once more with CyFACS 

buffer. Then, cells were stained with a metal-conjugated surface stain antibody 

cocktail for 45 min at RT (Table S1B). Cells were then washed twice in CyFACS buffer, 
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stained for viability with dichloro-(ethylenediamine) palladium (II) (DCED palladium, 

(Table S1C) 71 in PBS for 5 min at RT washed and then fixed and permeabilized using 

the Foxp3 Transcription Factor Staining Buffer Set according to the manufacturer’s 

protocol (eBioscience). Cells were subsequently stained with a metal-conjugated 

intracellular antibody cocktail for 45 min at 4 °C (Table S1D) and then washed twice in 

CyFACS buffer and once in PBS. Cells were then fixed overnight in 1.6% formaldehyde 

solution containing DNA Cell-ID Intercalator-103Rh (Fluidigm). While DCED palladium 

contains approximately 11% 110Pd, we find this does not adversely affect resolution of 

110Cd based CD3 staining in live cells.  

 

Mass cytometry data acquisition 

Prior to data acquisition, cells were washed once in CyFACS buffer and twice in MilliQ 

H2O. Barcoded samples were split into separate tubes of up to 2×106 cells, and 

centrifuged, the supernatant was removed, and samples were left as pellets until 

shortly before running each tube. Cells were then diluted to 1×106 cells/mL in Milli-Q 

H2O containing 15% EQ Four Element Calibration Beads (Fluidigm) and passed through 

a 35μm filter immediately before running. Cells were acquired at a rate of 200 to 300 

cells/s using a Helios mass cytometer (Fluidigm). Flow Cytometry Standard (FCS) files 

were normalized to EQ bead signals by the Fluidigm normalizer software.  

Mass cytometry data analysis 

For analysis of the mass cytometry results, gating and de-barcoding was performed 

manually using Cytobank software (Beckman Coulter). Cells were initially gated as live, 

DNA+, CD45+ singlets with normal ion cloud Gaussian parameters. Nine Batch control 

samples (using two lots of heathy PBMCs) were examined for signs of batch effect and 

then excluded from further analysis. Three severe COVID-19 samples and two healthy 

control samples with low cell recovery <10000 and a high proportion (>10%) of dead 

cells by palladium inclusion were removed from the analysis. All other samples had a 

viability of >90% prior to the removal of dead cells by gating. A maximum of 200,000 
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cells per sample was used for analysis. Following these data filtering steps, a median of 

100,943 (minimum of 18,000) cells per sample were used with a total dataset size of 

10,013,285 live CD45+ singlets (Fig. 1A).  

All dual count data channels were arcsinh-transformed (co-factor: 5) then 

compensated by the CATALYST R package preprocessing workflow (1.14.0) 72 in R 

(4.0.3). Analysis of data was primarily performed as in “CyTOF workflow: differential 

discovery in high-throughput high-dimensional cytometry datasets” version 4 73 as 

implemented in the CATALYST R package (1.14.0) with packages cowplot (v1.1.1), 

flowCore (2.2.0), diffcyt (1.10.0), scater (1.18.3), SingleCellExperiment (1.12.0), ggplot2 

(3.3.3). All cells were clustered by FlowSOM in the CATALYST R package with both x-

dim and y-dim set to 10 to provide 100 initial SOM clusters and the consensus meta-

clustering level varying from 50 to 20 in line with the expected complexity of the 

population. The initial 100 SOM clusters and meta-clustering were then examined 

manually (by expression heatmaps and UMAP or t-SNE) to find the point at which 

significant populations of interest were inappropriately merged. The meta-clustering 

level above this point was selected and used as the basis for manually merging 

populations to annotated subpopulations with clearer interpretations or dynamics. In 

all cases, initial analysis was rerun several times with new seeds to confirm that similar 

populations were being reproducibly found before proceeding to the refinement of the 

cluster numbers. For in-depth analysis of subpopulations, all cells of a particular group 

of interest (such as CD4 T-cells) from the CD45+ dataset were selected and separately 

processed by the same analysis workflow. CD8 cells were subject to a further round of 

filtering using TCRα/β and CD56 to separate them from TCRα/β– or CD56+ cells 

presumed to be gamma delta T-cells and NKT that initially clustered together with CD8 

in the first round of analysis. For each analysis of separate subpopulations (CD4, CD8, 

B-cells etc.) markers used as the basis for clustering “type markers” 73 were altered to 

select for those with a clear dynamic range of expression or biological interpretability 

and maximize signal to noise by exclusion of irrelevant markers. All “type markers” are 

displayed in expression heatmaps (Fig. 2A, 3A, S1A, S3A, S4A, S5A and S6A). Markers 
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displayed in expression heatmaps were trimmed to the 99% percentile of each marker, 

scaled and then aggregated, preserving both information about expression differences 

between markers and between clusters 73. For dimensionality reduction samples were 

down-sampled to a maximum of 1000 cells per sample. UMAP was performed with 

nearest neighbors set to 15 with the exceptions of the CD8 and NK UMAPs which were 

set to 20 and 25 respectively for clearer plotting. Markers displayed in UMAPs were 

trimmed to the 99% percentile and then scaled. Contours were added by ggplot2 

(3.3.3) and RColorBrewer (1.1-2). Differential cluster abundance analysis by edgeR was 

performed with diffcyt (v1.10.0) 74 as implemented in the CATALYST R package 

(v1.14.0). Wilcoxon matched-pairs, Mann Whitney or Kruskal-Wallis tests were 

performed in GraphPad prism (9.2). Fold change heatmaps were made in GraphPad 

prism with output from EdgeR. In all cases expression values are derived from arcsinh-

transformed (co-factor: 5) dual counts. Except when indicated all samples were used in 

all analysis to give the following n numbers. HC<50 n=24, HC50+ n=15, Moderate n=5, 

Severe n=43, Critical n=7, follow-up n=5.  

 

Trajectory analysis 

Trajectory analysis was done with PAGA tree in dynverse 75,76  with packages dynwrap 

(1.2.1), dynplot (1.0.2.9000), dynmethods (1.0.5), dynguidelines (1.0.1), and 

dynfeature (1.0.0.9000) in R (4.0.3). Prior to analysis, samples were arcsinh-

transformed (co-factor: 5), down-sampled to 500 cells per sample, and trajectory 

starting point defined to be in the recent thymic emigrant naïve CD4+ T cell area 

(CD45RAhi, CD31hi). All features except lineage markers (namely CD11b, CD3, CD4, CD8, 

CD14, CD11c, TCR α/β, CD16, CD56, CD19) were used for the trajectory analysis. 

 

Correlation analysis 

Correlation analysis was performed using package corrplot (0.84) and readxl (1.3.1) in 

R (4.0.3). Correlation analysis used pairwise spearman rank correlation. Significance 
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analysis of correlations used two-sided Spearman rank. Line graphs and Spearman 

correlation analysis in Fig. 5B, 5C and 6C were performed in GraphPad prism (9.2). 

Lines are linear correlation. 

 

Network diagrams 

Network diagrams of correlations were produced in Gephi software (0.9.2). For the 

purposes of easier visual display, the negative correlations to the central nodes (COVID 

score, age, or sex score) were converted to positive values (x*-1). Only positive 

correlations between cell types were retained. In Fig. 4B, 5A, 6A an ego network with a 

depth of one was used to display populations with a direct connection to the central 

node. The top 5 positive and negative correlations with the central node are displayed. 

Layout was performed with ForceAtlas2 77 with the following settings. Tolerance 1, 

scaling 25, gravity 1, prevent overlap ON, edge weigh influence 1. Following layout 

Edge widths were rescaled to a minimum of 0.1 and a maximum of 8 in each graph for 

display purposes.  

 

Figure arrangement 

Final figures were arranged in Adobe Illustrator (26.0.1). 
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Figures: 

 

Fig 1. Schematic diagrams of study. A) Patient cohort and mass cytometry schematic. 

B) Multilevel FlowSOM analysis schematic.  
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Fig 2. CD4 T-cell phenotypes in COVID-19. A) UMAP and expression heatmap of 

FlowSOM clusters from CD4 T-cells. The heatmap displays scaled expression of 

indicated markers. B) Frequency boxplots of proportion of CD45+ cell from indicated 

clusters. Healthy controls under 50 years of age (HC<50), healthy control of 50 or over 

(HC50+), moderate, severe, critical or follow-up COVID-19 patients. C) Comparison of 
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the fold change (log2) in cluster-frequency between the indicated group and severe 

(left), critical (middle), and moderate (right) COVID-19 patients. D) UMAP feature plots 

of selected markers. E) Expression of CTLA4 on eTregs vs. Ki67+ Th1 cells. F) Percentage 

Tregs as a proportion of total CD4 T cells. *p≤0.05, **p≤0.01, ***p≤0.001 or value 

indicated on the graph. Significance by edgeR (C), Wilcoxon matched-pairs (E) or 

Kruskal-Wallis (F). Effector Treg (eTreg), Central memory (CM), granzyme B positive 

cytotoxic lymphocyte (GZMB+ CTL). Expression values are arcsinh-transformed (co-

factor: 5) dual counts.  
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Fig 3. Treg phenotypes in COVID-19. A) UMAP and expression heatmap of FlowSOM 

clusters from sub-clustering of Treg cells. B) Scaled expression of indicated markers 

displayed on the UMAP. C) Population density of cells displayed on UMAP. D) 

Frequency boxplots of proportion of Treg cells from indicated clusters. Healthy 

controls under 50 years of age (HC<50), healthy control of 50 or over (HC50+), 
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moderate, severe, critical or follow-up COVID-19 patients. E) Comparison of the fold 

change (log2) in Treg cluster-frequency between the indicated group and severe (left), 

critical (middle), and moderate (right) COVID-19 patients. *p≤0.05, **p≤0.01, 

***p≤0.001 by edgeR. Expression values are arcsinh-transformed (co-factor: 5) dual 

counts. 
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Fig 4. Broad changes to cellular networks in COVID-19. A) Spearman correlations of 

cellular subset frequencies between indicated subsets, COVID score (1 = healthy, 2 = 

COVID-19 patient) and sex (1 = male, 2= female). B) Top 5 correlations of subset 
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frequencies with severity of infection scored as WHO ordinal scale (4 = moderate, 6= 

severe, 7 = Critical). Edge width is proportional to the Spearman correlation strength, 

node size is proportional to the number of connecting edges. Edges connecting to 

other cellular subsets are positive correlations between indicated subsets. Layout by 

ForceAtlas2 using edge weights as input. Significance *p≤0.05, **p≤0.01, ***p≤0.001 

by Spearman (A, B). Effector memory (EM), Central memory (CM), Terminal effector 

CD45RA positive (TEMRA). Expression values are arcsinh-transformed (co-factor: 5) 

dual counts. 
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Fig 5. Age correlations with cellular phenotypes in COVID-19. A) Top 5 cellular 

correlations with age in severe COVID-19 patients. Edge width is proportional to 

correlation strength. Edges connecting to other cellular subsets are positive 
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correlations between indicated subsets. Layout by ForceAtlas2 using edge weights as 

input. B) Correlation between age and Helios-CCR6+ Tregs. C) Correlation between age 

and CXCR4hi naïve CD4 cells. D) Boxplots of CXCR4 expression by indicated subsets in 

indicated patient groups. E) Spearman correlations of CXCR4 expression between 

indicated subsets and COVID-19 status (1 = healthy, 2= COVID19) and sex (1 = male, 2= 

female). F) Boxplot of CXCR5 expression by B-cells. G) Gating and boxplot summary of 

proportions of CXCR5loCXCR4+ B-cells. Data displayed in the gating-example is pooled 

from all donors of indicated groups. H) Boxplots of CXCR4 and CXCR5 expression by Tfh 

cells. Correlations in A, B, C and E Spearman rank. Significance *p≤0.05, **p≤0.01, 

***p≤0.001 or indicated on graph by Spearman (B, C, E) or Mann-Whitney test (D, F, G, 

H). Effector memory (EM). Expression values are arcsinh-transformed (co-factor: 5) 

dual counts. 
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Fig 6. Sex correlations with cellular phenotypes in COVID-19. A) Top 5 cellular 

correlations with male and female sex in severe COVID-19 patients. Edge width is 

proportional to correlation strength. Edges connecting to other cellular subsets are 
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positive correlations between indicated subsets. Layout by ForceAtlas2 using edge 

weights as input. B) Violin plots of sex specific differences of indicated cellular 

populations in severe COVID-19 patients. C) Correlation of Tfr and plasma cell 

frequencies in male and female severe COVID-19 patients. D) Tfh/Tfr ratio and plasma 

cell/Tfr ratio in indicated patient groups. E) Tfh/Tfr ratio and plasma cell/Tfr ratio in 

male and female severe COVID-19 patients. Correlations in A and C are Spearman rank. 

Significance by Mann-Whitney test (B, E), Kruskal-Wallis (E) or Spearman (C). One 

female patient with undetectable Tfr was excluded from the ratio analysis. Expression 

values are arcsinh-transformed (co-factor: 5) dual counts. 

 

Table 1: Patient characteristics 

 
Healthy 

controls <50 

Healthy 

controls 

50+ 

Moderate Severe Critical  Follow-

up 

Number 24 15 5 43 7 5 

Mean Age 33.7 54.5 56.6 67.5 64.7 72 

Minimum age 22 50 39 28 59 59 

Maximum age 47 64 78 86 73 80 

Female/Total 7/24 11/15 1/5 17/43 1/7 1/5 

Mean Days after 

onset  

N/A N/A 7.6 10.5 14 62.4 

Mean Days after 

intubation (Intubated 

at time of sampling) 

N/A N/A N/A (0/5) 2.02 

(42/43) 

3.83 (6/7) 50.75 

(2/5) 

Mean days after 

starting steroids 

N/A N/A 1.6 4.53 7.14 55.5 

Tocilizumab 

treated/Total 

N/A N/A 0/5 2/43 2/7 0/5 
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Extended data 

 

Extended data Fig.1. Alterations to frequency of CD45+ cells. A) UMAP and expression 

heatmap of FlowSOM clusters from 10,000,000 cells across 100 donors. B) Frequency 

boxplots of proportion of CD45+ cell from indicated clusters. Healthy controls under 50 

years of age (HC<50), healthy control of 50 or over (HC50+), moderate, severe, critical 

or follow-up COVID-19 patients. C) Comparison of the fold change (log2) in cluster-

frequency between the indicated group and severe (left), critical (middle), and 

moderate (right) COVID-19 patients. *p≤0.05, **p≤0.01, ***p≤0.001 by edgeR.  
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Extended data Fig.2. Trajectory analysis of CD4 T-cells in COVID-19. A) Force-Atlas2 

visualization of CD4 T-cell pseudo time (left) and identified milestones corresponding 

to specific T cell subsets (right). The middle figure indicates single cells originating from 

COVID-19 patients or healthy controls. B) Heatmap of marker expressions within 

milestones/subsets. C) CD31 expression within clusters CXCR4lo naïve and CXCR4hi 

naïve from Fig. 2A. D) CD95 expression within clusters CXCR4lo naïve and CXCR4hi naïve 

from Fig. 2A. Central memory (CM). 
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Extended data Fig.3. NK phenotypes in COVID-19. A) UMAP and expression heatmaps 

of annotated FlowSOM clusters from NK cells (cluster NK from Extended data Fig.1A). 

B) Scaled expression of indicated markers displayed on the UMAP. C) Population 

density of cells displayed on UMAP. D) Frequency boxplots of proportion of CD45+ 

from indicated clusters. Healthy controls under 50 years of age (HC<50), healthy 

control of 50 or over (HC50+), moderate, severe, critical or follow-up COVID-19 

patients. E) Comparison of the fold change (log2) in cluster-frequency between the 

indicated group and severe COVID-19 patients. *p≤0.05, **p≤0.01, **p≤0.001 by 

edgeR. 
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Extended data Fig.4. CD8 phenotypes in COVID-19. A) UMAP and expression 

heatmaps of annotated FlowSOM clusters from CD8 cells (cluster CD8 from Extended 

data Fig.1A). B) Scaled expression of indicated markers displayed on the UMAP. C) 

Population density of cells displayed on UMAP. D) Frequency boxplots of proportion of 

CD45+ cell from indicated clusters. Healthy controls under 50 years of age (HC<50), 

healthy control of 50 or over (HC50+), moderate, severe, critical or follow-up COVID-19 

patients. E) Comparison of the fold change (log2) in cluster-frequency between the 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 6, 2022. ; https://doi.org/10.1101/2022.01.06.22268711doi: medRxiv preprint 

https://doi.org/10.1101/2022.01.06.22268711
http://creativecommons.org/licenses/by-nc-nd/4.0/


42 
 

indicated group and severe COVID-19 patients. *p≤0.05, **p≤0.01, **p≤0.001 by 

edgeR. Effector memory (EM), Central memory (CM), Terminal effector CD45RA 

positive (TEMRA), Mucosal associated invariant T (MAIT).  
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Extended data Fig.5. Myeloid cell and DC phenotypes in COVID-19. A) UMAP and 

expression heatmaps of annotated FlowSOM clusters from myeloid cells and DCs 

(clusters cDC, pDC, cMono and ncMono from Extended data Fig.1A) B) Scaled 

expression of indicated markers displayed on the UMAP. C) Population density of cells 

displayed on UMAP. D) Frequency boxplots of proportion of CD45 + cell from indicated 

clusters. Healthy controls under 50 years of age (HC<50), healthy control of 50 or over 

(HC50+), moderate, severe, critical or follow-up COVID-19 patients. E) Comparison of 
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the fold change (log2) in cluster-frequency between the indicated group and severe 

COVID-19 patients. *p≤0.05, **p≤0.01, **p≤0.001 by edgeR.  
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Extended data Fig.6. B-cell and plasma cell phenotypes in COVID-19. A) UMAP and 

expression heatmaps of annotated FlowSOM clusters from B and plasma cells (clusters 

“B-cells” and “plasma cells” from Extended data Fig.1A). B) Scaled expression of 

indicated markers displayed on the UMAP. C) Population density of cells displayed on 

UMAP. D) Frequency boxplots of proportion of CD45+ cell from indicated clusters. 
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Healthy controls under 50 years of age (HC<50), healthy control of 50 or over (HC50+), 

moderate, severe, critical or follow-up COVID-19 patients. E) Comparison of the fold 

change (log2) in cluster-frequency between the indicated group and severe COVID-19 

patients. *p≤0.05, **p≤0.01, **p≤0.001 by edgeR. 

 

Extended data Fig.7. Broad changes to cellular networks in COVID-19. Spearman 

correlation network of cellular subset frequencies between indicated subsets, COVID 

score (0 = healthy, 1 = COVID-19 patient) and sex (1 = male, 2= female). Edge width is 

proportional to correlation strength, node size is proportional to the number of 

connecting edges. Edges connecting to other cellular subsets are positive correlations 

between indicated subsets. Layout by ForceAtlas2 using edge weights as input. 
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Extended data Fig.8. Cellular correlations in patient subgroups. A) Spearman 

correlations matrix of subset frequencies from moderate, severe, and critical patient 

groups with severity of infection scored as WHO ordinal scale (4 = moderate, 6= 

severe, 7 = Critical) and sex (1 = male, 2= female). B) Spearman correlations matrix of 

subset frequencies from severe COVID-19 patients with severity of infection scored as 

WHO ordinal scale (4 = moderate, 6= severe, 7 = Critical) and sex (1 = male, 2= female) 

Correlations by spearman rank (A, B, C). Significance *p≤0.05, **p≤0.01, ***p≤0.001. 
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Effector memory (EM), Central memory (CM), Terminal effector CD45RA positive 

(TEMRA).  

 

Table S1. Mass cytometry staining panels.  

Table 1A: 

Barcodes 

    

Label Target Clone (Product name) Manufacturer Titer 

113In CD45 HI30 BioLegend 100 

115In CD45 HI30 BioLegend 100 

194Pt CD45 HI30 BioLegend 100 

195Pt CD45 HI30 BioLegend 100 

196Pt CD45 HI30 BioLegend 100 

198Pt CD45 HI30 BioLegend 100 

  Fc 

receptors  

(Human TruStain FcX) BioLegend 50 

Biotin CXCR5   RF8B2 BD 25 
     

Table 1B: 

Surface stain 

    

Label Target Clone (Product name) Manufacturer Titer 

110Cd CD3 UCHT1 BioLegend 50 

111Cd CD4 RPA-T4 BioLegend 100 

112Cd CD8 RPA-T8 BioLegend 50 

114Cd CD14 M5E2 BioLegend 100 

127I Active DNA 

production 

 (Cell-ID IdU) Fluidigm 1000 

141Pr CCR6 G034E3 Fluidigm 50 

144Nd CD7 6B7 BioLegend 100 

145Nd CD56 HCD56 BioLegend 50 

147Sm CD62L DREG-56 BioLegend 200 

148Nd CD161 HP-3G10 BioLegend 100 
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149Sm CCR4 L291H4 Fluidigm 400 

151Eu ICOS C398.4A eBioscience 100 

152Sm CD69 FN50 BioLegend 100 

153Eu CD45RA HI100 BioLegend 100 

154Sm CD73 AD2 BioLegend 100 

155Gd CCR7 G043H7 BioLegend 100 

156Gd CXCR4 12G5 BioLegend 50 

157Gd CD16 3G8 BioLegend 100 

158Gd CD27 L128 Fluidigm 200 

159Tb CD19 HIB19 BioLegend 200 

160Gd CD39 A1 Fluidigm 100 

161Dy CD11c 3.9 BioLegend 100 

163Dy TCR α/β  

IP26 

BioLegend 100 

164Dy CD95 DX2 Fluidigm 100 

165Ho Biotin 1D4-C5 Fluidigm 50 

166Er PD1 EH12.2H7 BioLegend 100 

167Er CD31 WM59 BioLegend 200 

169Tm CD25 2A3 Fluidigm 100 

171Yb CD57 HCD57 BioLegend 400 

172Yb CD38 HIT2 Fluidigm 100 

173Yb TIGIT MBSA43 eBioscience 100 

174Yb HLA-DR L243 Fluidigm 200 

175Lu CXCR3 G025H7 BioLegend 100 

176Yb CD127 A019D5 Fluidigm 100 

209Bi CD11b ICRF44 Fluidigm 100 
     

Table 1C: 

Viability stain 

    

Label Target Product name Manufacturer Titer 
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104, 105,106, 

108, 110Pd 

Dead cells (Ethylenediamine) 

palladium(II)chloride 

>99.99% 

Sigma 500 (1μM) 

     

Table 1D: 

Intracellular 

stain 

    

Label Target Clone Manufacturer Titer 

142Nd Cleaved 

caspase 3 

D3E9 Fluidigm 100 

143Nd TCF1 7F11A10 BioLegend 50 

146Nd Helios 22F6 BioLegend 400 

150Nd Granzyme 

B 

CLB-GB11 Novus 100 

162Dy Foxp3 236A/E7 eBioscience 200 

168Er Ki67 Ki67 Fluidigm 200 

170Er CTLA-4 14D3 Fluidigm 50 
     

Table 1E: 

DNA stain 

    

Label Target Product name Manufacturer Titer 

103Rh DNA Cell-ID Intercalator-Rh—500 

µM 

Fluidigm 500 (1μM) 
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