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1 Abstract

Purpose
Predicting 30-day readmission risk is paramount to improving the quality of patient
care. Previous studies have examined clinical risk factors associated with hospital
readmissions. In this study, we compare sets of patient, provider, and community-level
variables that are available at two different points of a patient’s inpatient encounter
(first 48 hours and the full encounter) to train readmission prediction models in order
to identify and target appropriate actionable interventions that can potentially reduce
avoidable readmissions.

Methods
Using EHR data from a retrospective cohort of 2460 oncology patients, two sets of
binary classification models predicting 30-day readmission were developed; one trained
on variables that are available within the first 48 hours of admission and another trained
on data from the entire hospital encounter. A comprehensive machine learning analysis
pipeline was leveraged including preprocessing and feature transformation, feature
importance and selection, machine learning modeling, and post-analysis.

Results
Leveraging all features, the LGB (Light Gradient Boosting Machine) model produced
higher, but comparable performance: (AUROC: 0.711 and APS: 0.225) compared to
Epic (AUROC: 0.697 and APS: 0.221). Given features in the first 48-hours, the RF
(Random Forest) model produces higher AUROC (0.684), but lower AUPRC (0.18) and
APS (0.184) than the Epic model (AUROC: 0.676). In terms of the characteristics of
patients flagged by these models, both the full (LGB) and 48-hour (RF) feature models
were highly sensitive in flagging more patients than the Epic models. Both models
flagged patients with a similar distribution of race and sex; however, our LGB and
random forest models more inclusive flagging more patients among younger age groups.
The Epic models were more sensitive to identifying patients with an average lower zip
income. Our 48-hour models were powered by novel features at various levels: patient
(weight change over 365 days, depression symptoms, laboratory values, cancer type),
provider (winter discharge, hospital admission type), community (zip income, marital
status of partner).

Conclusion
We demonstrated that we could develop and validate models comparable to existing
Epic 30-day readmission models, but provide several actionable insights that could
create service interventions deployed by the case management or discharge planning
teams that may decrease readmission rates over time.
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2 Introduction
Hospital readmissions affect patient outcomes and increase healthcare utilization and
costs. Since 2012, hospitals have seen reduced Medicare payments for a subset of
excess readmissions. Medicare’s value-based purchasing program encourages hospitals
to improve communication and care coordination to better engage patients and care-
givers in discharge plans and, in turn, reduce avoidable readmissions. In 2014, the
Comprehensive Cancer Center Consortiums for Quality Improvement (C4QI) developed
a 30-day readmission measure for oncology to aid hospitals in detecting and preventing
potential readmissions among oncology patients.1 Since then, researchers and healthcare
providers alike have studied risk factors to predict preventable readmissions among
oncology patients.

2.1 Risk Factors for Predicting 30-day Readmissions
Among cancer patients, the landscape of risk factors potentially associated with 30-day
readmissions is vast and diverse. Researchers have studied the relationships between
demographics, clinical course, social determinants of health, and cancer types among
other risk factors recorded in the electronic health record (EHR) and their role in predict-
ing 30-day readmissions. Whitney et al. trained log-linear Poisson regression models to
identify risk factors associated with higher readmission rates among advanced cancer
patients. They observed significant associations with black non-Hispanic and Hispanic
patients; public insurance and no insurance; lower socioeconomic status quintiles; more
than one comorbidity; and pancreatic and non–small cell lung cancers.2 Given that age
is a critical factor in readmission risk, Chiang et al. conducted a multivariate analysis of
predictors for 30-day readmission among older adult cancer patients.3 Multivariable
analyses identified dependencies in feeding and housekeeping prior to admission as
associated with higher odds of readmission. Age less than 75, black race, potentially in-
appropriate medications, and high-risk reasons for index admission were also associated
with increased odds of readmission. Furthermore, thoracic, hematologic, and gastroin-
testinal cancers were most common among those readmitted. Burhenn et al. built upon
this work to investigate additional predictors of hospital readmission among older adults
(greater than 65 years of age) with cancer.4 Predictors that informed their conditional
logistic regression model included: patient/cancer characteristics; functional status;
fall risk; chemotherapy line; comorbidities; laboratory values; discharge parameters;
and miscellaneous information (do not resuscitate order, pain scores). They observed
that older cancer patients with two or more abnormal laboratory results (hemoglobin,
albumin, sodium, and serum glutamic oxaloacetic transaminase) at discharge were three
times more likely to be readmitted within 30 days compared to those with less than two
abnormal results.

2.2 Predicting Readmissions using Machine Learning
However, not all predictors of 30-day readmission are available at the time of discharge
planning, which often begins within the first 24-to-48 hours of admission. To study the
impact of temporally-available clinical features on readmission, Wong et al. trained

3

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 5, 2022. ; https://doi.org/10.1101/2022.01.05.21268065doi: medRxiv preprint 

https://doi.org/10.1101/2022.01.05.21268065
http://creativecommons.org/licenses/by-nc-nd/4.0/


nonparametric gradient-boosted tree models with tree-explainers based on information
available within the first 24 hours versus information available close to discharge. They
further enriched their feature set with clinical embeddings representing the most recent
50 International Classification of Disease (ICD) 9 diagnoses within the six months
preceding admission and a time point during the hospital visit and the most recent 50 ab-
normal laboratory values between admission and the time point.5 Their most predictive
model achieves an area under receiver operating characteristic curve (AUROC) of 0.78
using features available from readmission through discharge including ICD-9 billing
codes and Logical Observation Identifiers Names and Codes (LOINC) embeddings,
compared to an AUROC of 0.74 using features available within 24 hours after admission
including baseline factors and ICD-9 clinical embeddings. Among the most informative
features available within the first 24 hours include: ICD-9 embeddings; number of
admissions in the previous six months; age at admission; surgery; and, hematology.
Additional predictive power was obtained with features available at discharge including:
LOINC embeddings; length of stay; number of LOINC codes; and, number of ICD-9
codes.

Our study builds upon these works by developing predictive models that identify
actionable patient-level, provider-level, and community-level insights available to care
providers within the first 48 hours of admission which could be addressed to reduce
the risk of readmission among cancer patients. We applied a rigorous analysis pipeline
including a diversity of supervised machine learning strategies to identify the best
predictive model. Additionally, we determined the most predictive features among
several machine learning algorithms to emphasize the fidelity of insights learned about
readmission risk factors. Our four-fold short-term goals are to: 1) compare prediction
models using several machine learning algorithms to predict 30-day readmission using
risk factor information available from the full visit versus first 48 hours; 2) learn the
relative importance of risk factors across classifiers for predicting 30-day readmission;
3) compare our best models to existing EHR-based classifiers; and, 4) determine timely
and actionable interventions to reduce the likelihood readmissions.

3 Methods
This study was reviewed and approved by the University of Pennsylvania (#834695) and
the Lancaster General Hospital (LGH) Institute Review Boards (#2019-51), respectively.
The dataset was de-identified for data analysis. This study complied with the transparent
reporting of a multivariable prediction model for individual prognosis or diagnosis.6

3.1 Cohort and Dataset
The study is a retrospective analysis of cohort data where outcomes are compared
between patients that were readmitted and not readmitted within a span of 30 days after
discharge. We queried all oncology patients at the Ann B. Barshinger Cancer Institute
(ABBCI) in Lancaster, PA. Our cohort consists of 2,460 patients above the age of 18
who were active patients at ABBCI and had a cancer diagnosis documented within the
top 3 of their diagnoses list in the EHR within a 3-year time frame between July 2016
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and July 2019. Patients who were known to have moved away from the area, expired
during the 30-day readmission window, or had a readmission at a different hospital were
removed from the study. Based on a list of all hospital encounters within the selected
cohort time frame, patients who experienced a readmission within a 30-day window
after discharge were given the positive class label while the rest of the cohort were
placed in the negative class. For the positive class, the encounter immediately preceding
the readmission encounter is used as input for our model. For all patients that have both
readmission encounters and non-readmission encounters, they are randomly selected
into either class in order to avoid any bias. Lastly, the dataset was partitioned into
separate development and validation datasets for model cross-validation training and
testing evaluation followed by secondary evaluation with the single hold-out validation
data. The development set was comprised of encounters from July 2016 and June 2018;
the validation set was comprised of encounters from July 2018 through June 2019.

3.2 Predictive Variables
The variables included are selected based on literature review and oncology experts
at the ABBCI. Broadly, they can be categorized into three levels of insights: patient,
provider, and community in Table 1. Patient-level types include demographics, social
history, laboratory results, severity indicators, and cancer specific information. Provider-
level feature types include clinical course, therapeutics administered, administrative
events, and the LACE risk score index (a composite score that is the gold standard
for predicting 30-day readmissions at the point of care). Community-level feature
types include social determinants of health, living situation, and other socio-economic
indicators.

3.3 Machine Learning Analysis Pipeline
Machine learning (ML) analyses were conducted using a recently developed rigorous
ML analysis pipeline for binary classification. This pipeline was designed to compare
predictive ML modeling performance and identify feature importance consensus over
a variety of established ML modeling approaches implemented in or compatible with
scikit-learn.7 The pipeline was designed to avoid common modeling biases (e.g., sample
bias, and data leakage), and ensure sensitivity to complex associations with outcome
including epistatic feature interactions. An early version of this pipeline was previously
applied to epidemiological investigation of pancreatic cancer.8 For this paper, we
expanded this pipeline in three ways for readmission prediction: 1) added k-nearest
neighbors classification and gradient boosting for a total of 11 unique established
ML modeling algorithms, 2) uniformly applied permutation-based feature importance
estimation for all ML models, and 3) added the ability to automatically evaluate all
trained models on a held-out validation dataset. Figure 1 illustrates the components of
this ML pipeline and we outline specific elements below. The entirety of this pipeline
has been made available here: https://github.com/UrbsLab/AutoMLPipe-BC.
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Table 1: CLINICAL FEATURES and their Values. ASA = American Society of
Anesthesiologists; WBC = white blood cell; Hgb = hemoglobin; CMSHCC_DX =
Center for Medicare Medicaid Services Hierarchical Condition Category

Level Feature type Subtypes
Patient Demographics SEX_Female, SEX_Male, AGE_AtDischarge,

ETHNICITY_Latino, RACE_White, RACE_Black,
SPOKENLANGUAGE_English, SPOKENLANGUAGE_Spanish

Social history SUBSTANCEUSE_SmokelessTobacco,
SUBSTANCEUSE_Tobacco, SUBSTANCEUSE_Alcohol

Laboratory LABVALUES_FirstWBC, LABVALUES_LastWBC,
LABVALUES_FirstSodium, LABVALUES_LastSodium
LABVALUES_FirstAlbumin, LABVALUES_LastAlbumin,
LABVALUES_FirstHgb, LABVALUES_LastHgb

Severity ASA_Score, ELIXHAUSER_Score,
PRIMARYDIAGNOSIS_CMS-HCC, WEIGHT365_Change
DEPRESSION_PastDiagnosis, DEPRESSION_Symptoms,
ONFILE_AdvancedDirective, ONFILE_LIVINGWILL

Cancer-specific CANCERSTAGE_Pathological, CANCERSTAGE_Clinical,
CICD10_Lip, CICD10_Digestive, CICD10_Lung,
CICD10_Bone, CICD10_Skin, CICD10_Soft, CICD10_Breast,
CICD10_FemaleGenital, CICD10_MaleGenital,
CICD10_Urinary, CICD10_Brain, CICD10_Endocrine,
CICD10_Blood, CICD10_Unspecified, CICD10_Non-malignant,
CICD10_Count

Provider Clinical course NURSENAVIGATOR_PresentDuringEncounter,
ADMISSIONTYPE_Elective, ADMISSIONTYPE_Emergency
HOSPITALADMISSIONS365_Count

Therapeutics HASACCESSTO_Medication,
IMMUNOTHERAPY_OrderWithin90Days,
PROCEDURES_MedicalAndSurgical,
CHEMOTHERAPY_ActiveMedication

Administrations DISCHARGE_Winter, DISCHARGE_Epoch
LACE risk score LACE_Score, LENGTHOFSTAY_Days,

LACE_LengthOfStay, LACE_AcuityofAdmission,
LACE_Comorbidities, LACE_EDVisits

Community Social determinants HOME_MilesFromHospital, HASACCESSTO_Phone
HASACCESSTO_MedicalCare, HASACCESSTO_Housing,
HASACCESSTO_Foods, HASACCESSTO_Utilities,
HASACCESSTO_Transportation

Living situation LIVESWITH_Alone, LIVESWITH_AdultChildren,
LIVESWITH_DependentChildren, LIVESWITH_FacilityResident,
LIVESWITH_Friends, LIVESWITH_Grandparents,
LIVESWITH_OtherRelatives, LIVESWITH_Parents,
LIVESWITH_Siblings, LIVESWITH_SignificantOther,
LIVESWITH_Spouse, MARITALSTATUS_HasPartner

Socio-economic INCOME_MedianIncomeForZipCode,
EDUCATION_HigherEducation, INCOME_HasFinancialConerns,
INSURANCE_Medicaid, INSURANCE_Category
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Figure 1: Schematic of the rigorous ML analysis pipeline applied in this study separated
into four phases

3.3.1 Phase 1: Preprocessing and Feature Transformation

Phase 1 of the ML pipeline first automates exploratory analysis and basic data cleaning
(i.e. removing any instances that may be missing a class label, e.g., readmission outcome)
generating summary statistics and basic data visualizations. Next, the development
dataset, or raw data, is partitioned into 10 training and testing sets using stratified 10-
fold cross-validation (CV). The remaining steps of Phases 1-3 are conducted separately
within each of the 10 CV partitions. A standard scalar (from scikit-learn) is applied to
transform features to remove the mean and scale to unit variance. This is important for
certain ML algorithms to train optimally (i.e. logistic regression, K-nearest neighbors,
and artificial neural networks).9 Next, any missing data values are imputed, since they
are not allowed by most scikit-learn functions. Mode imputation is applied to categorical
features, and subsequently an iterative imputer based on Multivariate imputation by
chained equations (MICE)10 is applied to quantitative features. Notably, both the
transformation and imputation are exclusively determined by the training data, and then
similarly applied to each corresponding testing partition to avoid data leakage.

3.3.2 Phase 2: Feature Importance and Feature Selection

Phase 2 evaluates feature importance within each CV partition using mutual information
(MI) (proficient at detecting univariate associations)11, and MultiSURF (proficient at
also detecting feature interactions). Features are selected using a simple collective
feature selection approach, that only drops features identified as being uninformative(i.e.
score ≤ 1) by both MI and MultiSURF prior to modeling.12 Because feature selection
is conducted within each partition a different set of features may be passed to the next
phase; however, this is also important for avoiding bias in the final testing evaluation.
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3.3.3 Phase 3: Machine Learning Modeling

Phase 3 conducts ML modeling applying 11 established classifiers each with their own
strengths and weaknesses. Included are two simple classifiers; naive bayes13 and logistic
regression14 that recognize simple univariate associations, but not epistatic interactions.
Also included are five increasingly sophisticated tree-based classifiers including decision
tree15, random forest16, gradient boosting17, extreme gradient boosting (XGB)18, and
light gradient boosting (LGB).19 From this set of classifiers, decision trees are regarded
as yielding interpretable models while the others are not. Additionally, this pipeline
includes support vector machine (SVM), (testing linear, polynomial, and radial basis
function kernels)20, artificial neural networks (ANN) (with a maximum of three hidden
layers)21, and k-nearest neighbors classifier (k-Neighbors).22 These algorithms have
been recognized to detect complex associations, but can be computationally expensive
in large feature or instance spaces, and are often not regarded as yielding interpretable
models. The last included algorithm is ExSTraCS 2.023, an evolutionary rule-based ML
classifier that has been demonstrated to be sensitive to both epistatic and heterogeneous
associations with outcome. Rule-based ML methods like ExSTraCS are computationally
expensive but are also regarded as being able to yield interpretable models unlike other
advanced ML approaches that can yield high predictive performance but are considered
black-box models.

Modeling in Phase 3 is conducted separately within each CV training partition.
First, an automated hyperparameter optimization sweep is conducted using the Optuna
package24 by further partitioning the training data into 3-fold training/testing sets.
Throughout this study model optimization is based on balanced accuracy as the primary
evaluation metric.23 A broad range of relevant hyperparameter options and ranges for
each algorithm are hard-coded and documented within the aforementioned code on
GitHub. Exceptions include naive Bayes, which does not have any hyperparameter
options, and ExSTraCS, which is computationally expensive, but has fairly reliable
default run parameters. With best hyperparameters selected, an optimized model is then
trained from the entire training partition for each algorithm. Next, feature importance
estimates are calculated for each model using permutation importance, which is the
decrease in a model score when a single feature value is randomly shuffled.25 Then, all
models are evaluated include all standard classification metrics, e.g. balanced accuracy,
F1-score, area under the curve (AUC) of receiver operating characteristic (AUROC) and
precision-recall (AUPRC) plots, and average precision statistic (APS) for AUPRC plots.
In this study, particular emphasis was placed on the AUPRC as well as APS for final
evaluation given the class imbalance of our target data.

3.3.4 Phase 3: Post Analysis

Phase 4 post-analysis integrates and compares results over all ML algorithms and CV
partitions to facilitate interpretation and downstream validation analyses. Average CV
model performance metrics are calculated and non-parametric statistical comparisons
(i.e. Kruskal-Wallis one-way AOV and Mann-Whitney U-tests) are performed to identify
best performing algorithms, as well as demonstrate performance differences when the
pipeline is applied to different datasets, e.g., all vs. 48 hour features, and development
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vs. validation. This pipeline also generates novel composite feature importance bar plots
that summarize ML feature importance estimates across all ML algorithms. Prior to
visualization, respective feature importance scores from each algorithm are normalized
between 0-1 and weighted by the balanced accuracy of the given model, such that better
performing algorithms contribute higher feature importance in these plots. In this study,
the above pipeline was applied to train models that discern encounters that resulted in
30-day re-admissions from encounters that did not. All trained models were evaluated
using a held-out validation dataset upon which our results are focused below. All model
results are reported as the average measure across 10-fold cross validation.

3.4 Comparing Performance to EPIC Readmission Risk Model
To determine the potential impact of our classifiers to existing readmission models and
policy interventions at the ABBCI, we compared the performance of the most predictive
models for the validation set (full and 48 hour features) to the Epic Systems Corporation
(Epic) Cognitive Computing Model (set at 24% threshold; full versus 48 hours) on the
validation set using recall, precision, negative predictive value, specificity, and AUROC.
For each model (full vs 48 hour features), we report the proportion of patients flagged
by each individual model and characterize the patients based on age, sex, race, and
socioeconomic status.

4 Results
Of the 2,460 patients studied in the development set, 10.6% (n=260 patients) had a
30-day readmission. When comparing the populations based on 30-day readmission
status, we observed statistically significant differences based on age (70-79), sex, marital
status (married and life partner), and cancer types (unspecified, blood, lung, male/female
reproductive, breast, and lip). Additional characteristics between the readmission and
non-readmission cohorts can be found in Table 2.

Table 2: Characteristics between cohort populations in development set

Category Subcategory Readmission Non-readmission P-value
Population 260 (10.6%) 2200 (89.4%) <.00001
Age 18-29 5 (1.9%) 55 (2.5%) .5552

30-39 7 (2.7%) 104 (4.7%) .14156
40-49 20 (7.7%) 222 (10.1%) .2187
50-59 40 (15.3%) 417 (18.9%) .15854
60-69 68 (26.1%) 585 (26.6%) .86502
70-79 80 (30.8%) 452 (20.6%) .00016
80-89 35 (13.5%) 311 (14.1%) .79486
90+ 5 (1.9%) 52 (2.4%) .61708

Sex Female 123 (47.3%) 1159 (54.8%) .02202
Male 137 (52.7%) 1041 (45.2%) .02202
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Table 2 – continued from previous page
Category subcategory Readmission Non-readmission P-value

Race White 233 (89.6%) 1979 (90.0%) .84148
Black 16 (6.2%) 113 (5.1%) .45326
Other 8 (3.1%) 74 (3.3%) .86502
Asian 2 (0.8%) 21 (1.0%) .75656
Unknown 1 (0.4%) 13 (0.6%) .68916

Marital Married 139 (53.5%) 1351 (61.4%) .0139
Status Single 47 (18.1%) 360 (16.3%) .4593

Widowed 42 (16.1%) 289 (13.1%) .18024
Divorced 27 (10.3%) 165 (7.5%) .11184
Legally Separated 2 (0.8%) 25 (1.1%) .65994
Life Partner 1 (0.4%) 1 (0.0%) .00298
Unknown 2 (0.8%) 9 (0.4%) .35758

Social Mean zip income $57,164.52 $57,668.41
Determinants Mean miles from hospital 13.1 15

Has financial concerns 29 (11.2%) 183 (8.3%) .1141
Cancer Unspecified 49 (24.5%) 277 (19.2%) .04236

Digestive 57 (28.5%) 338 (23.5%) .07508
Blood 37 (18.5%) 182 (12.6%) .00782
Lung 36 (18.0%) 185 (12.8%) .0198
Urinary 19 (9.5%) 126 (8.8%) .70394
Male reproductive 17 (8.5%) 236 (16.4%) .0009
Breast 15 (7.5%) 238 (16.5%) .00016
Female reproductive 7 (3.5%) 79 (5.5%) .17384
Brain 5 (2.5%) 33 (2.3%) .84148
Endocrine 3 (1.5%) 20 (1.4%) .89656
Skin 3 (1.5%) 19 (1.3%) .78716
Soft Tissue 3 (1.5%) 18 (1.3%) .78716
Bone 1 (0.5%) 6 (0.4%) .81034
Non-malignant 1 (0.5%) 5 (0.3%) .5892
Lip 0 (0.0%) 22 (1.5%) .0466

Cancer 1 151 (75.5%) 1131 (78.5%) .267
Counts 2 45 (22.5%) 277 (19.2%) .20408

3+ 4 (2.0%) 32 (2.3%) .92034

4.1 Predicting 30-Day Readmissions
First, we assessed each 30-day readmission classifier’s performance in terms of area
under the curve (AUROC) and precision/recall curve (AUPRC) leveraging all features
versus features only available within the first 48 hours across development and validation
sets below. Performance between the development and validation sets were comparable
(Table 5 in Supplement). On the validation set, in Figure 2, among the classifiers
trained using all features available, the highest AUROC was achieved by LGB (0.711)
followed by Random Forest (0.707) and XGBoost (0.703). In terms of AUPRC, the
highest APS is LGB (0.225), followed by XGBoost (0.212), and Random Forest (0.206),
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shown in Figure 3. Similarly, in Figure 4, among the classifiers trained using features
available in the first 48 hours of admission, the highest AUROC was achieved by
Random Forest (0.684) followed by XGBoost (0.681) and LGB (0.669). In terms of
AUPRC, the highest APS was Random Forest (0.184) followed by XGBoost (0.182) and
LGB (0.177) shown in Figure 5. According to the Mann Whitney test of significance,
the Naive Bayes classifier was the only algorithm for which the performance between the
model using all features compared to features available in the first 48 hours statistically
was significant (AUROC p=0.032; APS p=0.0001).

Figure 2: AUROC, all features, validation
set

Figure 3: AUPRC, all features, validation set

Figure 4: AUROC, 48-hr features, valida-
tion set

Figure 5: AUPRC, 48-hr features, validation
set

4.2 Learning Feature Importance
We compared the most informative features for predicting 30-day readmission nor-
malized and weighted across all algorithms using all features (Figure 6) compared to
48-hour features (Figure 7). Among all possible features, the most informative features
include the LACE score and its individual components, laboratory values (sodium, albu-
min, hemoglobin), number of prior hospital admissions, time of discharge (epoch and
winter), medical versus surgical population, admission type (emergency), Elixhauser
score, length of stay, weight change over the past year, and cancer types of blood and
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digestive. The LACE score and last sodium and albumin values are among the most
highly weighted.

Similarities in the most important features of the 48-hour model included laboratory
values (sodium, albumin, hemoglobin), time of discharge (winter), medical versus
surgical population, admission type, weight change over the last year, and cancer
types. However, the 48-hour model also contained novel community-level features
including zip income and marital status, as well as additional cancer types (urinary,
blood, unspecified), admission type (elective), and symptoms of depression.

Figure 6: Plots of feature importance for all features
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Figure 7: Plots of feature importance for 48-hr features

We reviewed the most informative features for predicting 30-day readmission in
the first 48 hours of admission among the most predictive models including random
forest, LGB, and XGBoost. The most informative features across all models included
laboratory test outcomes (sodium, albumin, hemoglobin, and white blood cells), hospital
admission types (elective and emergency), change in weight over the past 365 days,
medical surgical procedures, and age. Consistently least informative features include
transportation services, utilities access, tobacco smoking status, and various types of
cancer (skin, bone, lip, non-malignant, endocrine, and soft tissue cancers). Cancers with
moderate informativeness include digestive, blood, and lung cancers.

4.3 Comparing Performance to Epic Readmission Risk Model
We compared our highest performing readmission risk model to the Epic model applied
to all features and those only available within the first 48 hours of the encounter in Table
3. Leveraging all features, the LGB model produced higher, but comparable AUROC
and APS compared to Epic. Given features in the first 48-hours, the random forest
model produces higher AUROC, but lower AUPRC and APS than the Epic model.

In terms of the characteristics of patients flagged by these models, both the full
(LGB) and 48-hour (random forest) feature models were highly sensitive in flagging
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Table 3: 30-day readmission classification on the validation set.
Full dataset AUROC AUPRC APS
LGB 0.711 0.221 0.225
Epic 0.697 0.221 0.221

48-hr dataset AUROC AUPRC APS
Random Forest 0.684 0.180 0.184
Epic 0.676 0.197 0.198

more patients than the Epic models. Both models flagged patients with a similar
distribution of race and sex; however, the LGB and random forest models flagged more
patients among younger age groups. The Epic models were more sensitive to identifying
patients with an average lower zip income.

Table 4: Characterization to assess diversity, equity, and inclusion among flagged
patients by classifier for full validation set. RF=Random Forest

Full 48-hour
Category Subcategory LGB EPIC RF EPIC

Age 18-29 4 (1.1%) 0 (0.0%) 3 (0.6%) 0 (0.0%)
30-39 5 (1.3%) 0 (0.0%) 8 (1.8%) 0 (0.0%)
40-49 19 (5.0%) 3 (3.6%) 18 (4.1%) 2 (3.6%)
50-59 40 (10.6%) 12 (14.5%) 54 (12.3%) 8 (14.3%)
60-69 96 (25.3%) 25 (30.1%) 111 (25.2%) 17 (30.3%)
70-79 113 (29.8%) 25 (30.1%) 128 (29.1%) 15 (26.8%)
80-89 86 (22.7%) 16 (19.3%) 104 (23.6%) 13 (23.2%)
90+ 16 (4.2%) 2 (2.4%) 14 (3.2%) 1 (1.8%)

Sex Female 195 (51.3%) 44 (53.0%) 225 (51.1%) 24 (42.9%)
Male 185 (48.7%) 39 (47.0%) 215 (48.9%) 32 (57.1%)

Race White 358 (88.1%) 70 (84.3%) 384 (87.3%) 47 (83.9%)
Black 22 (5.4%) 6 (7.2%) 27 (6.1%) 3 (5.4%)
Other 26 (6.5%) 7 (8.4%) 28 (6.6%) 6 (10.7%)

Zip income Average $58,321 $55,453 $58,787 $57,657
Patients Flagged as at risk 380 (29.5%) 83 (6.4%) 440 (34.1%) 56 (4.3%)

5 Discussion
The goals of our study were to 1) compare prediction models using several ML algo-
rithms to predict 30-day readmission among oncology patients using patient, provider,
and community-level information available from the full visit versus first 48-hours, 2)
learn the relative importance of risk factors across classifiers, and 3) determine the
implications of our best model compared to existing models in the Epic EHR.
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5.1 Predicting 30-Day Readmissions
The most predictive classifier, LGB, on the held-out validation set achieved an AUROC
of 0.711 and APS of 0.225. Restricting our model to only features available within the
first 48 hours, the best predictive classifier, a random forest, achieved an AUROC of
0.684 and APS of 0.184. Wong et al. classifiers (also gradient-boosted tree models
with tree-explainers) performed with notably higher AUROC overall (0.78) and with
features within first 24 hrs (0.74).5 We hypothesize that our gradient boosted tree models
achieved lower predictive performance due to the simplicity of the features leveraged,
e.g., omitting ICD-9 and LOINC-based embedding features capturing critical medical
history. However, we determined that the performance of our 48-hour classifier (0.685)
provides new insights into factors predictive of 30-day readmission.

5.2 Comparing Features for 30-day Readmission Risk Model
We observed several informative features predictive of readmission consistent in the
literature including laboratory test outcomes (sodium, albumin, hemoglobin),4 hospital
admission types (elective and emergency), discharge parameters,4 and age.3 Cancers
with higher feature importance over other cancers include digestive, blood, and lung
cancers.3, 4 In contrast, many of predictive features in the literature were not as infor-
mative to our prediction models including race, having an advanced directive on file,
insurance type, as well as demographics of race and sex. When comparing the features
predictive of readmission within the first 24 hours described by Wong et al.5 and 48
hour models, we observed that blood cancer/hematology, age, and medical/surgical
interventions received were common features.

5.3 Comparing Performance to Epic Readmission Risk Model
Finally, we compared our prediction models (full vs 48-hour) to the prediction model
currently used in the LGH Epic EHR. In terms of full features, our LGB model performed
with +1.4 points higher AUROC than the Epic model, but produced comparable AUPRC
and APS results. In terms of the 48-hour model, our random forest model performed
with +0.8 points higher AUROC than the Epic model, but produced slightly lower
AUPRC (-1.7 points) and APS (-1.4 points) results. Although our results are comparable
to the Epic model, our models diverged in important ways. Our 48-hour models were
powered by novel features at various levels: patient (weight change over 365 days,
depression symptoms, laboratory values, cancer type), provider (winter discharge,
hospital admission type), community (zip income, marital status of partner). Our models
provide several actionable insights to create service interventions deployed by the case
management or discharge planning teams that may decrease readmission rates over time.
For example, patients with large weight changes over the year or low albumin levels,
could indicate issues with food scarcity, nutrition, and inability to ingest or keep down
food. Providing patients with access to food programs/social workers, a nutritionist,
or medications to control nausea and vomiting could mitigate 30-day readmissions
with associated symptoms, respectively. Furthermore, patients experiencing depressive
symptoms could be provided access to psychologists or a social support plan could be
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put into place. Patients with high white blood cell counts could have further evaluation
to identify and mitigate cause as possible, including additional instruction for wound
care and preventing infections. Patients flagged with risk of readmission may benefit
from additional pre-discharge and ongoing outpatient education or be offered immediate
access to tailored post-acute home care services. For patients who do not wish to receive
post-acute care services in their homes, they could opt for frequent follow-up through
phone calls or chatbots, e.g., send daily reminders for cleaning wounds, staying hydrated
and well-fed, monitoring vital signs, and taking medications, etc.26, 27 Combinations
of clinical decision support and emerging digital health technologies may support
transitions and provide the continuous care oncology patients need to reduce their
readmission risk in the short-run. In Figure 8, we provide a prototypical representation
of readmission risk model applied to a patient encounter with potential recommended
action in Epic - figure adapted from Gallagher et al. 202028 with additional approval
from the Epic Corporation. We believe that leveraging Shapley values in clinical
decision support systems can play a critical role in supporting explainable AI that can
be readily interpreted and trusted to make informed clinical care decisions personalized
to the patient’s circumstances and clinical status.

Figure 8: Translation representation of oncology prediction model (left) applied to
current patient with potential recommended action (right).

In terms, of patients flagged by our model vs. the Epic model, both our full and
48-hour feature models were highly sensitive in flagging more patients than the Epic
models. Given the large number of patients flagged, a prioritization scheme would be
necessary to rank and identify those patients with the highest risk so as not to hinder
clinical workflows. Both models flagged patients with a similar distribution of race and
sex; however, our models flagged patients among younger age groups.

6 Limitations
Our project has several notable limitations. First, our prediction models were not
evaluated at another hospital. We plan to test the portability of our models to our
other Penn Medicine hospitals which utilize another implementation of the Epic EHR
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system. We also did not optimize the decision boundary for flagging a patient at
risk for readmission instead opting for a default 0.50. Assessing the impact of this
decision boundary could provide new opportunities to optimize the prediction model
and potentially improve upon performance in future work.

7 Conclusions
In conclusion, we developed and validated robust 30-day readmission models for an
oncology population. Our clinical findings have the potential for identifying oncology
patients at risk for readmissions and the potential for implementing interventions that
may impact patient care.
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9 Supplement

Table 5: Characteristics between Cohort Populations

Category Subcategory Development Validation P-value
Population 2460 (65.6%) 1289 (34.4%)
Age 18-29 60 (2.4%) 31 (2.4%) 1.00

30-39 111 (4.5%) 57 (4.4%) .9681
40-49 242 (9.8%) 129 (10.0%) .84148
50-59 457 (15.3%) 211 (16.4%) .37886
60-69 653 (26.5%) 346 (26.8%) .84148
70-79 532 (21.6%) 293 (22.7%) .4413
80-89 346 (14.1%) 185 (14.4%) .80258
90+ 57 (2.3%) 52 (2.8%) .77182

Sex Female 1282 (52.1%) 706 (54.8%) .11642
Male 1178 (47.9%) 583 (45.2%) .11642

Race White 2212 (89.9%) 1139 (88.4%) .1556
Black 129 (5.2%) 68 (5.3%) .9681
Other 119 (4.8%) 82 (6.4%) .52218

Marital Status Married 1490 (60.6%) 772 (59.8%) .63122
Single 407 (16.5%) 217 (16.8%) .8181
Widowed 331 (13.5%) 172 (13.3%) .86502
Divorced 192 (7.8%) 101 (7.8%) 1.0
Legally Separated 27 (1.1%) 22 (1.7%) .12356
Unknown 11 (0.4%) 4 (0.3%) .63122
Life Partner 2 (0.1%) 1 (0.1%) 1.0

Social Determinants Mean zip income $57,615.13 $57,544.38
Mean miles from hospital 14.8 9.1
Has financial concerns 212 (8.6%) 94 (7.3%) .16758

Cancer Digestive 395 (16.1%) 156 (12.1%) .00104
Mgen 253 (10.3%) 133 (10.3%) 1.0
Breast 253 (10.3%) 107 (8.3%) .04884
Lung 221 (8.9%) 100 (7.7%) .2113
Blood 219 (8.9%) 80 (6.2%) .00374
Other 370 (15.0%) 240 (18.6%) .00452
Unspecified 326 (13.3%) 124 (9.6%) .00094

Cancer Counts 1 1282 (52.1%) 617 (47.9%) .01468
2 322 (13.1%) 139 (10.8%) .04136
3+ 36 (1.4%) 15 (1.2%) .87288
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Table 6: Features Used in the Prediction Model

Variable Name Variable Type
IMMUNOTHERAPY_OrderWithin90Days binary
CHEMOTHERAPY_ActiveMedication binary
DISCHARGE_Epoch quantitative
DISCHARGE_Winter binary
SEX_Female binary
EDUCATION_HigherEducation binary
SPOKENLANGUAGE_English binary
SPOKENLANGUAGE_Spanish binary
RACE_White binary
RACE_Black binary
ETHNICITY_Latino binary
INSURANCE_Medicaid binary
MARITALSTATUS_HasPartner binary
ADMISSIONTYPE_Elective binary
ADMISSIONTYPE_Emergency binary
INCOME_MedianIncomeForZipCode quantitative_continuous
LABVALUES_FirstAlbumin quantitative_continuous
LABVALUES_LastAlbumin quantitative_continuous
LABVALUES_FIrstSodium quantitative_continuous
LABVALUES_LastSodium quantitative_continuous
LABVALUES_FirstWBC quantitative_continuous
LABVALUES_LastWBC quantitative_continuous
LACE_LengthOfStay quantitative_discrete
LACE_AcuityofAdmission quantitative_discrete
LACE_Comorbidities quantitative_discrete
LACE_EDVisits quantitative_discrete
LACE_Score quantitative_discrete
INCOME_HasFinancialConerns binary
LENGTHOFSTAY_Days binary
DEPRESSION_PastDiagnosis binary
NURSENAVIGATOR_PresentDuringEncounter binary
HASACCESSTO_Housing binary
HASACCESSTO_Utilities binary
HASACCESSTO_Medication binary
HASACCESSTO_Foods binary
HASACCESSTO_MedicalCare binary
HASACCESSTO_Transportation binary
HASACCESSTO_Phone binary
AGE_AtDischarge quantitative_discrete
COUNT_HospitalAdmissions365 quantitative_discrete
CHANGE_Weight365 quantitative_continuous
ADVANCEDDIRECTIVE_onfile binary
HOME_MilesFromHospital quantitative_continuous
INSURANCE_Category categorical_nominal
CANCERSTAGE_Clinical categorical_ordinal
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Table 6 – continued from previous page
Variable Name Variable Type

CANCERSTAGE_Pathological categorical_ordinal
PRIMARYDIAGNOSIS_CMS-HCC binary
LIVESWITH_AdultChildren binary
LIVESWITH_Alone binary
LIVESWITH_DependentChildren binary
LIVESWITH_FacilityResident binary
LIVESWITH_Friends binary
LIVESWITH_Grandparents binary
LIVESWITH_OtherRelatives binary
LIVESWITH_Parents binary
LIVESWITH_Siblings binary
LIVESWITH_SignificantOther binary
LIVESWITH_Spouse binary
ASA_Score categorical_ordinal
DEPRESSION_Symptoms binary
LIVINGWILL_Onfile binary
LABVALUES_FirstHgb quantitative_continuous
LABVALUES_LastHgb quantitative_continuous
SUBSTANCEUSE_Alcohol binary
SUBSTANCEUSE_SmokelessTobacco binary
SUBSTANCEUSE_Tobacco binary
ELIXHAUSER_Score quantitative_discrete
PROCEDURES_MedicalAndSurgical categorical_ordinal
CICD10_Lip binary
CICD10_Digestive binary
CICD10_Lung binary
CICD10_Bone binary
CICD10_Skin binary
CICD10_Soft binary
CICD10_Breast binary
CICD10_FemaleGenital binary
CICD10_MaleGenital binary
CICD10_Urinary binary
CICD10_Brain binary
CICD10_Endocrine binary
CICD10_Unspecified binary
CICD10_Blood binary
CICD10_Non-malignant binary
CICD10_Count quantitative_discrete
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10 Keywords
ABBCI: Ann B. Barshinger Cancer Institute
ACP: Advanced Care Planning
ADL: Activities of Daily Living
ANN: Artificial Neural Network
APS: Average Precision Score
AUC: Area Under the Curve
AUPRC: Area Under the Precision Recall Curve
AUROC: Area Under the Receiver Operating Characteristic Curve
BMI: Body Mass Index
CV: Cross Validation
C4QI: Comprehensive Cancer Center Consoritums for Quality Improvement
ED: Emergency Department
EHR: Electronic Health Record
ExSTraCS: Extended Supervised Tracking and Classifying System
GI: Gastrointestinal
ICD-9 & 10: International Classification of Diseases, 9th and 10th revision
LGB: Light Gradient Boosting Machine
LGH: Lancaster General Hospital
LOINC: Logical Observation Identifiers Names and Codes
LOS: Length of Stay
ML: Machine Learning
MICE: Multivariate Imputation by Chained Equations
RF: Random Forest
SVM: Support Vector Machine
XGB: XGBoost
WBC: White Blood Cell Count
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