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ABSTRACT 

Background: On 26 November 2021, the world health organization (WHO) designated the coronavirus 
SARS-CoV-2 B.1.1.529 a variant of concern, named Omicron (WHO, 2021a). As of December 16, 
Omicron has been detected in 89 countries (WHO, 2021b). The thread posed by Omicron is highly 
uncertain. 

Methods and findings: For the analysis of the impact of Omicron on infection pressure and 
hospitalization needs we developed an open-source stochastic SIR (Susceptible-Infectious-Removed) 
fast-model for simulating the transmission in the transition stage from the prevailing variant (most 
often Delta) to Omicron. The model is capable to predict trajectories of infection pressure and 
hospitalization needs, considering (a) uncertainties for the (Omicron) parametrization, (b) pre-existing 
vaccination and/or partial immunity status of the population, and demographic specific aspects 
regarding reference hospitalization needs, (c) effects of mitigating measures including social 
distancing and accelerated vaccination (booster) campaigns. 

Conclusions: The SIR model approach yields results in fair agreement with Omicron transmission 
characteristics observed in South Africa and prognosis results in Europe (UK and Netherlands). The 
equations underlying the SIR formulation allows to effectively explore the effect of Omicron 
parametrization on anticipated infection growth rates and hospitalization rates relative to the 
prevailing variant. The models are online available as open source on GitHub.  
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Introduction  

On 26 November 2021, the world health organization (WHO) designated the coronavirus SARS-CoV-

2 B.1.1.529, a variant of concern, named Omicron (WHO, 2021a). As of December 16, Omicron has 

been detected in 89 countries (WHO, 2021b). The thread posed by Omicron is highly uncertain. 

According to the World Health Organization the overall threat posed by Omicron largely depends on 

four key questions, including: (1) how transmissible the variant is; (2) how well vaccines and prior 

infection protect against infection, transmission, clinical disease and mortality; (3) how virulent the 

variant is compared to other variants; and (4) how populations understand these dynamics, perceive 

risk and follow control measures, including public health and social measures. 

Irrespective of these critical uncertainties, governments and health organizations are required to 

timely implement measures that are both effective, and least detrimental for society and economy. 

It is thus of importance that public health advice can be based on most recent insights in 

characteristic of the variant of concern and is tailored according population-specific characteristics. 

In this study, we established an open-source epidemiological model allowing to predict infection and 

hospitalization rates inferring parametrized viral transmission. 

The rationale behind this paper is to provide a simple yet effective and transparent predictive tool, 

based on a SIR (Susceptible-Infectious-Removed) model formulation, which can easily be used to 

anticipate the potential effects of the transition to Omicron in terms of prognosed infections and 

hospitalization needs. Furthermore, it allows to analyze the effects of social distancing and 

accelerated booster campaigns to mitigate adverse effects. Transparency and ease of access to the 

model is provided through (a) detailed description of the used SIR model, (b) open source Python 

distribution (https://github.com/TNO/TNO-COVID-Variant-SIR/), (c) analysis of common model-

derived characteristics of Omicron and their effect on Omicron’s growth rate and impact, and (d) 

illustration of its value in exemplary (synthetic) case studies. 

The paper is structured as follows: First, we introduce the model assumptions, and common 

characteristics and parametrization, and their bearings on Omicron transmission characteristics and 

case hospitalization rates. Next, we illustrate the model for a number of (synthetic) case studies in 

South Africa (Gauteng State) , the UK and the Netherlands.  These settings are considered 

representative for markedly different demographic conditions, vaccine status, natural immunity and 

capability for booster campaigns. The prime intention of these studies is to demonstrate the proper 

functioning of the model, and its capability to predict first order infection and hospitalization trends 

in line with data and other models. 

Model assumptions 

We adopt an epidemiological compartmental Susceptible-Infected-Removed (SIR) model which is as 

well as the closely related SEIR (where the E stands for exposed) model, a classic model for 

transmission which has been used extensively for COVID-19 model predictions (e.g. Van Wees et al., 

2020, Cooper et al., 2020; Yang and Shaman, 2021). The SIR model is detailed in the supplemental 

materials, and takes into account the effects of existing (double) vaccination, enhanced protection 

with boosters, and a simple mathematical formulation for the transition from the prevailing variant 

(Delta in most countries) to Omicron. 

For the transmission model we adopt similar parametrization conventions and parameter value 

ranges as proposed in Barnard et al. (2021). We compiled a range of vaccine and booster efficacies, 

and other parameters relevant for immune evasion and case hospitalization rates from recent 
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literature and reports in table 1. More general parameter ranges of relevance for the model (case 

studies) are shown in table 2. 

An alarming feature of Omicron is the extremely fast growth rate of the prevalence of Omicron to 

Delta doubling each 2-3 days in the UK (UKHSA,2021a,2021b), Denmark  (ISS,2021), Belgium and the 

Netherlands (RIVM, 2021c). 

According to WHO (2021b), Omicron is spreading rapidly in countries with high levels of population 

immunity (either through natural infection or vaccine protection) and it is becoming more and more 

clear that the rapid growth rate should be primarily attributed to immune evasion. Barnard et al. 

(2021), based on transmission model considerations in accordance with observed growth of 

prevalence of Omicron to Delta, arrived at a Basic Reproduction number for Omicron which is no 

more than 30% higher compared to Delta. Such a low ratio demonstrates immune evasion as the 

dominant mechanism for transmission, in order to explain the observed growth rates. Using Eq.6 

from the supplement, we used the listed parameter values in Table 1 to determine expected growth 

rates of Omicron relative to Delta (Figure 1) as a function of the current vaccination status, adopting 

a 20% higher reproduction number for Delta. The figure illustrates very well the clear difference in 

characteristics of growth as function of relative immunity loss in a setting largely determined by 

passed natural infections (SA) vs dominated by vaccinations (NL). In SA the growth is mainly caused 

by immunity loss from passed infections. In the EU (e.g. Netherlands) this component is less 

significant due to the vaccinations, and strongest relative growth of omicron is related to immunity 

loss from a high concentration of boosters and from passed infections. The latter effect could 

possibly explain very high growth rates in cities with young population as observed in the United 

Kingdom in London with k~0.4 (UKHSA, 2021b) and the onset of Omicron in Denmark (ISS, 2021). 

Variant Parameter Value 
SA 

Value 
UK 

Value 
NL 

Symbol Json parameter 

Delta  Vaccine efficacy infection 0.751 0.751 0.61 𝑉𝑖𝑛𝑓𝑑  ve_vac_d 

Omicron Vaccine efficacy infection 0.251 0.251 0.11 𝑉𝑖𝑛𝑓𝑜  ve_vac_o 

Delta  Booster efficacy infection na 0.91 0.91 𝐵𝑖𝑛𝑓𝑑  ve_booster_d 

Omicron  Booster efficacy infection na 0.71 0.71 𝐵𝑖𝑛𝑓𝑜  ve_booster_o 

Delta Vaccine efficacy hospitalization  0.952 0.93 0.93 𝑉ℎ𝑜𝑠𝑝𝑑 ve_vac_hosp_d 

Omicron Vaccine efficacy hospitalization 0.9757 0.9-
0.954 

0.9-
0.954 

𝑉ℎ𝑜𝑠𝑝𝑜 ve_vac_hosp_o 

Delta Booster efficacy hospitalization  na 0.952 0.952 𝐵ℎ𝑜𝑠𝑝𝑑 ve_booster_hosp_d 

Omicron Booster efficacy hospitalization na 0.95-
0.983 

0.95-
0.983 

𝐵ℎ𝑜𝑠𝑝𝑜 ve_ 
booster_hosp_o 

Omicron Relative protection of re-
infected against hospitalization 
compared to delta (1= 
complete protection)  

0.64 0.3-
0.74 

0.3-
0.74 

𝑈ℎ𝑜𝑠𝑝𝑜 ve_immune_hosp_o 

 Vaccinated fraction 0.3 0.55 0.8 𝑝𝑣(0) p_vac_start 

 Boostered fraction (at starting 
time of simulation minus  
𝑡𝑠ℎ𝑖𝑓𝑡) 

na 0.2 0.0 𝑝𝑏(0) p_booster_start 

Delta/Omicron Vaccine/booster efficacy 
transmission 

0.45 

 

𝑉𝑡𝑟𝑎𝑛𝑠 ve_trans 

Omicron Immune protection for passed 
infections 

0.336 
 

𝑈𝑖𝑛𝑓𝑜 ve_immune_o 

Table 1 parameters for the model first listed parameter. 1values for South Africa (SA) correspond to relative recent 
vaccinated (10-14 weeks Pfizer in Figure 10 of UKHSA,2021c); for the Netherlands (NL) , which is representative for 
vaccination status for continental Europe, is marked by relatively waned vaccines (25+ weeks Pfizer in  Figure 10 of 

UKHSA,2021c) and very recent Pfizer boosters (cf Figure Figure 10 of UKHSA,2021c) UK is marked . 2 Studies on (waning) 

vaccine and booster efficacy, 3data from the Netherlands. 450% hospitalization compared to Delta (UKHSA 2021c, ISS,2021), 
in SA ca 40% based on data fit (Figure 3).  5Barnard et al. (2021). 6value following Yang and Shaman, 2021b, and  in close 
correspondence to vaccine efficacy for infection.  
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Figure 1 (left) expected growth rate for Omicron in countries with immunity from past infections, through past waves, 
adopting median parameter values listed for South Africa in Table 1, and 20% increase of reproduction number of Omicron 
relative to Delta. (right) for mean parameter values listed for the Netherlands in Table 1. The susceptible fraction is varied 
to show the dominant sensitivity to immunity loss of past infections. The horizontal axis is scaled to the booster fraction 
relative to the vaccinated fraction. So, 100% means all vaccinated received a booster. 

In South African province Gauteng, infection-rates (positive tests) increased almost 100 fold from 

early November, peaking early December (https://ibz-shiny.ethz.ch/covid-19-re-international/), 

whereas the weekly reported hospitalization rates in the corresponding weeks peaked only at a 20 

fold increase in week 49 (NICD, 2021). Recent data analysis of Omicron cases in the UK, also seems 

to indicate an significant reduction in case hospitalization rates of approximately 50% relative to 

Delta (Ferguson et al., 2021a; Ferguson et al., 2021b, UKHSA, 2021c). Similarly, also most recent data 

in Denmark indicates that hospitalization rates are lower compared to Delta. Still there is uncertainty 

since the numbers of Omicron cases are relatively small, and lab analysis is not conclusive on a 

possible reduced protection of vaccines against severe illness.  
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Exemplary case studies 

The practical functioning of the SIR model is demonstrated in two exemplary case studies: in South 

Africa (Gauteng province; estimated population 15,8 million; area 18,000 km2) , the UK (estimated 

population 67.1 mln; area 242,500 km2) and the Netherlands (estimated population 17,7 million, 

area 42,000 km2). The parametrization for both model simulations is given in Tables 1 and 2. 

The model performs a number of Monte-Carlo runs, allowing to visualize and analyze the bandwidth 

of predictions as a function of uncertainty in the listed parameters (all indicated ranges are treated 

as uniformly distributed). 

The model takes into account the demographic aspects through the specification of age cohorts, the 

specification of the vaccinated fractions in these age cohorts, and their hospitalization needs in the 

non-vaccinated reference situations (prior to the advent of vaccines). The predicted infections and 

hospitalizations are in this version of the model not convolved with a gamma function which is 

required to realistically mimic delay and variability in timing of development of symptoms into illness 

and hospitalization (e.g. Van Wees et al., 2020). Furthermore, the current model neglects time 

delays in registration. These would result in a shift of approximately a week for positive cases and 

two weeks for hospitalization and would result in significantly longer tails than shown in the figures. 

The timing and strength of Omicron is determined by the input f0 and k-value respectively. Using 

equation 6 the ratio of the (basic) reproduction number of Omicron and Delta is calculated and 

subsequently used in the SIR model simulation characteristics. 

For mitigating measures two options can be implemented. Firstly, social distancing measures can be 

specified which are interpreted to result in a reduction of the reproduction number as if Omicron 

would be absent (i.e. in the Delta reference). Secondly, boosters can be administered.  
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Category Parameter description Value SA Value UK value NL Symbol Json parameter 

 Start date (2021) Nov 1 Nov 30 Dec 10 𝑡 = 0 startdate 

 Serial interval time 4.8 4.8 45 𝑡𝑠 ts 

 Number of Monte Carlo 
samples 

100 100 100  n_samples 

 Start value susceptible fraction  0.25-0.351 0.65-0.75 0.7- 0.75 𝑆(0) startsusceptible 

 Start value infected fraction 
(%) 

0.1-0.2 0.5-1.5 0.5-1.5 𝐼(0) startinfperc 

 Time shift between 
transmission (Rt(t)) and 
sample date  of positive test 
(days) 

14 14 14 𝑡𝑠ℎ𝑖𝑓𝑡 tshift 

 Reporting delay positive test 
reporting relative to sample 
date 

3 na 2   

 Average Time shift between 
sample date of  test case and  
hospitalization date 

5 5 5   

Omicron k-value 0.25-0.352 0.25-0.37 0.25-0.3 𝑘 k_voc 

Omicron R0o_R0d (eq. 6) From k-value From k-value From k-value  re0_voc 

Omicron Starting value of prevalence -2,-12 -2, -1.57 -2.5,-2 Log10(𝑓(0)) f0_voc 

Demography Cohort age limits [90, 70, 40, 30, 
20, 0] 

[90, 70, 40, 
30, 20, 0] 

[90, 75, 60, 45, 20, 
0] 

 demage 

Demography Cumulative number of people 
starting from oldest cohort 
(mln) 

[ 0,    0.75,   5,   
7.5, 10, 15.5] 

[ 0,    5.3,    
15.1,   28.2, 
51.1, 67.1] 

[ 0,    1.46,    4.51,    
8.23, 13.63, 17.7] 

 demn 

Vaccination Age cohort vaccination 
fraction (target) 

[ 0.9,   0.9,    0.85,    0.8, 0.7] 
 

 agegroups_p_vac 

Hospitalization Relative number hospitalized 
in age cohorts in period prior 
to vaccination 

[25000, 73000, 
19000, 10000, 

7000]3 

[8000, 8500, 6000, 2500, 750] 4  w_hosp_age 

Boosters Days of booster program  
(relative to starting day of 
simulation) 

na [-14, 0, 10, 
25, 50, 60] 

[-12, 0,  16, 50]  boosterdayx 

Boosters Number of people given a 
booster (mln) 

na [0,  5.5, 10.5,  
18.5, 40, 50] 

[0,  0.7, 3.1, 13.5]  boosterdayn 

Boosters Scaling of the booster 
administration speed 

na 0.9-1.1 0.9-1.1  vac_ratio 

Mitigation Days for which Effective 
reproduction number is 
specified  

[0,  10] [-2,  -1, 10, 
13] 

[0,  10, 13]  r_lockdowndayx 

Mitigation Reproduction number relative 
at days specified (for Delta- 
relative to starting day of 
simulation) 

[1,   1] [1.0,  0.85, 
0.8, 0.65] 

[0.88,  0.88, 0.88] 
With lockdown: 
[0.88,  0.88, 0.7] 

And 
[0.88,  0.88, 0.6] 

 r_lockdown 

Mitigation Scaling of the specified 
reproduction number 

1 1 1  r_lockdownscale 

Table 2 parameters for the model. 1in accordance with Yang and Shaman, 2021b, 2following Pearson et al., 2021.   3from 
NIDC (2021) cumulative data estimates.4from NICE (2021), data 6 Januari   2021. 5serial interval time used for reporting by 
RIVM (2021a). 7 based on data from GOVUK, 2021 (see Fig. 4) 
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Prediction of infection and hospitalization rates in the South African province Gauteng 

In South Africa, the Omicron variant was identified in the last weeks of November, and the variant 

originated at least prior to the start of November. The population of South Africa is marked by a 

relatively young age and only approximately 30% of the population has been vaccinated (We assume 

elderly people have been assumed with a vaccination rate of ca 90%). The Delta wave has caused 

most people to have been exposed to the virus and have buildup natural immunity to delta 

(estimated 60-65%), taking into account immune evasion of past waves (Yang and Shaman, 2021a, 

2021b) . The starting effective reproduction number has been set to 1.0, and possible time variant 

effects of social distancing measures and any possible effect of growing vaccination has been 

ignored. 

 

 
Figure 2 evolution of (weekly averaged) registered  cases and weekly hospital admissions in Gauteng due to Omicron 
becoming dominant in second half of November, marked by a sharp increase in positive cases. Data sources 
https://dsfsi.github.io/covid19za-dash/ and NIDC(2021) 

 

The results of the simulation predict both the 100 fold increase in cases as an effect of immune 

evasion, and the observed hospitalization rates which are marked by a 20 fold increase in the first 

weeks of December compared to the early November.   
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Figure 3 model of Gauteng. (top) relative growth of infections and (second from top) translation to 
corresponding hospitalization rates (neglecting temporal convolution of infection rates to hospitalization. 
(third from top) Omicron prevalence. (bottom) effective reproduction number. Please note that for the latter 
curve a timeshift should be applied of -tshift=-14 days  
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Prediction of infection and hospitalization rates in the UK 

 

In the UK Omicron has been marked by a rapid growth of Omicron (UKHSA, 2021a; Barnard et al., 

2021), being dominant from the second half of December 201 onwards (GOVUK, 2021; Figure 4). The 

population has been for over 75% fully vaccinated and almost half of the fully vaccinated received a 

booster. Consequently the UK population was rather well protected against the Delta variant and 

until the end of November the infection and hospitalization rates have been rather stable.  

With the advent of  Omicron, the UK government re-instated from end of November a number of 

measures including wearing facemasks in public transport to reduce the transmission, and also to 

accelerate the ongoing booster campaign to improve protection. 

From 10 December onwards, intensified -so called Plan B- measurements were taken, including 

wearing face coverings in public buildings, and advice to work from home. 

The number of infections kept stable for another week, but started to rise the last two weeks, and 

more recently also the hospitalization rates. 

In the model (Figure 4) the effect of social distancing measures are picking up about Christmas, and 

are likely to have a positive  but yet unknown effect. 

The chosen k-value is systematically lower than observed in individual growth curves reported at low 

prevalence rates below 10%  (UKHSA, 2021b).  This may be  attributed to geographic spreading 

effects as well a possible effects of change in transmission from predominantly higher susceptible 

groups  to higher susceptible groups (Fig. 1, right panel) 
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Figure 4 model of UK. (top) relative growth of infections (plotted with weekly average from data) and (second 
from top) translation to corresponding hospitalization rates (with data not weekly averaged). (third from top) 
Omicron prevalence. (bottom) effective reproduction number. Please note that for the latter curve a timeshift 
should be applied of -tshift=-14 days. Data are according to registration date from GOVUK (2021) 
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Prediction of infection and hospitalization rates in the Netherlands 

In the Netherlands, the hospitalization rates just have reached a peak in early December and are 

declining, at the same time Omicron is marked by community spreading at relatively large rates, with 

reported prevalence of  approximately 1% nationally reported at December 10 (RIVM, 2021b). In the 

Netherlands, about 80% of the population is fully vaccinated, the majority with two doses of Pfizer. A 

booster campaign has started end of November with 2% of the population boostered early 

December. In response to Omicron the campaign has recently been accelerated with plans to 

administer boosters to all vaccinated adults (18+) at the end of January 2022. In the model this has 

been included. 

The initial effective reproduction number is R=0.88 (RIVM, 2021c). The prognosed infection rates 

and projected hospitalization needs (Figure 5) are marked by a strong anticipated growth, due to the 

large uncertainties of the characteristics of the Omicron variant. However, with 90% confidence 

interval the hospitalization rates for the R=0.88  scenario would grow considerably higher than the 

rates observed today, despite the accelerated booster campaign. Therefore the Dutch government 

decided to impose a strong lock down effective from 19 December onward with a significant 

anticipated reduction of the effective reproduction number. 

The updated scenario for a lockdown with R=0.6 and R=0.7 accomplished in the 5 days following 

December 19 (Figure 6). 

In order to understand the role of different uncertainties and their control on the potential peak in 

hospitalization needs we did run 10,000 Monte-Carlo realizations and generated cross plot for the 

varying parameters and their effect on the peak hospitalization needs. The results have been shown 

in Figure 7. The sensitivity analysis shows that the uncertainty in the peak hospitalization  needs are  

strongly correlated with k-value (k_voc) and the interpretation of start infection rate (startinfperc), 

results in very large uncertainty. In addition, many other parameters correlate with peak 

hospitalization including the achieved speed in booster administration (vac_ratio), the starting 

prevalence of Omicron (f0).  

The models demonstrate very clearly that without additional measures the Omicron wave would 

pose a major threat to the health care system. This is perfect agreement with results from more 

sophisticated transmission models of the Dutch Health agency (RIVM, 2021b), which at the time 

publication did not yet include the effects adjustment towards lower case hospitalization rates. 

These findings also concur with model studies in the UK, which concluded the need for more 

stringent social distancing measures,as being pursued with Plan B (Barnard et al., 2021).  
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Figure 5 model of the Netherlands, for R (delta)=0.88 (same conventions as in Figure 3, data are weekly averaged, 
positive cases are according to reporting date, hospitalization registration date) 
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Figure 6 model of the Netherlands, for lockdown R=0.7 (top panels) and R=0.6 (bottom panels) 
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Figure 7 sensitivity analysis for peak hospitalization predictions for the Netherlands for R=0.7 lockdown scenario. Dots 
correspond to individual outcomes. Colors correspond to threshold levels of 25% (red, upper bound 10%), 50%(orange), and 
remainder (yellow).The variable names correspond to the names in json column of tables 1 and 2. 
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Conclusions 

We presented in this paper a simple yet effective and transparent predictive tool, which can easily 

be used to anticipate the potential effects of the transition to Omicron in terms of prognosed 

infections and hospitalization needs. Furthermore, it allows to analyze the effects of social distancing 

and accelerated booster campaigns to mitigate adverse effects. 

We presented an analysis of common model-derived characteristics of Omicron and their effect on 

Omicron’s growth rate and impact and illustrated its value in exemplary (synthetic) case studies. 

The model and the shown example case studies are available as open source Python distribution on 

GitHub (https://github.com/TNO/TNO-COVID-Variant-SIR/)  
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Supplement  

SIR model for the transition-stage from delta to omicron, including the effects of a booster 

campaign 

For the transmission model to predict the changes of infection rate over time t in days , we integrate 

over time an epidemiological compartmental model ODE formulation (t=0 corresponds to the start 

of the simulation time): 

𝑑𝑆

𝑑𝑡
= −𝛽(𝑡) 𝐼 𝑆,   𝛽(𝑡)= 𝑅𝑡(𝑡) 𝛾 /𝑆(0)  (eq.1) 

𝑑𝐼

𝑑𝑡
= 𝛽(𝑡) 𝐼 𝑆 − 𝛾 𝐼 

𝑑𝑅

𝑑𝑡
= 𝛾 𝐼 

S(t) ,I (t) ,R(t) are susceptible, infected and removed compartments (fractions) of the population, 𝛾 = 

1/𝑡𝑠.  S+I+R =1. R(0) is an estimate of the fraction of the population which has been infected and 

recovered from delta at the start of the simulation The fraction of population which have died is 

ignored. I (0) is estimated from the current infection rate multiplied by 𝑡𝑠. 

The 𝑅𝑡(𝑡) is the effective reproduction number taking into account the prevalence of the Variant of 

Concern 𝑓(𝑡), marked by subscript o for Omicron, whereas the prevalent variant is denoted d for 

delta 

𝑅𝑡(𝑡) =  ((1 − 𝑓(𝑡))𝑅𝑑(𝑡)   +  𝑓(𝑡)𝑅𝑜(𝑡)      (eq.2) 

 

𝑓(𝑡) is growing prevalence of omicron: 

𝑓(𝑡) =
𝑓0𝑒𝑘𝑡

𝑓0𝑒𝑘𝑡+(1−𝑓0)
   with  𝑓0 = 𝑓(𝑡 = 0)  (eq. 3) 

Where  k is daily growth rate of the  natural logarithm of 𝑓(𝑡), 𝑓0 is fraction of omicron at starting 

time. k can be determined from observations of growth rate of omicron 

For the prevailing delta variant we can write the expected reproduction number as 𝑅𝑑 (𝑡) in 

response to ongoing vaccination, which is the compound effect of the expected change in infection 

rate 𝐼𝑑(𝑡), and the expected change in transmission rate  𝐶𝑑(𝑡): 

𝑅𝑑 (𝑡) = 𝐶𝑑(𝑡) 𝐼𝑑(𝑡) 𝑅𝑒(𝑡)  (eq. 4) 

Where 

• If we assume the population to be perfectly mixed (this is used in the calculation) 

• 𝐼𝑑(𝑡) =   
(𝑝𝑢(𝑡)+𝑝𝑣(𝑡)(1−𝑉𝑖𝑛𝑓𝑑 ) + 𝑝𝑏(𝑡)(1−𝐵𝑖𝑛𝑓𝑑)  )

(𝑝𝑢(𝑡)+𝑝𝑣(0)(1−𝑉𝑖𝑛𝑓𝑑)  + 𝑝𝑏(0)(1−𝐵𝑖𝑛𝑓𝑑 ) )
  

• 𝐶𝑑(𝑡) =
(𝑝𝑢(𝑡)+(𝑝𝑣(𝑡)+ 𝑝𝑏(𝑡) )(1−𝑉𝑡𝑟𝑎𝑛𝑠))

𝐶𝑣
,   𝐶𝑣 = (𝑝𝑢(0) + (𝑝𝑣(0) + 𝑝𝑏(0) )(1 − 𝑉𝑡𝑟𝑎𝑛𝑠))   

Or alternatively segregated 

• 𝐼𝑑(𝑡) =   
(𝑝𝑢(𝑡)+𝑝𝑣(𝑡)(1−𝑉𝑖𝑛𝑓𝑑 ) (1−𝑉𝑡𝑟𝑎𝑛𝑠)+ 𝑝𝑏(𝑡)(1−𝐵𝑖𝑛𝑓𝑑) (1−𝑉𝑡𝑟𝑎𝑛𝑠) )

(𝑝𝑢(𝑡)+𝑝𝑣(0)(1−𝑉𝑖𝑛𝑓𝑑)(1−𝑉𝑡𝑟𝑎𝑛𝑠)  + 𝑝𝑏(0)(1−𝐵𝑖𝑛𝑓𝑑 )(1−𝑉𝑡𝑟𝑎𝑛𝑠) )
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• 𝐶𝑑(𝑡) =1  

• 𝑝𝑢(𝑡) ,𝑝𝑣(𝑡), 𝑝𝑏(𝑡) are unvaccinated, vaccinated, and boostered fractions of the population 

• 𝑉𝑖𝑛𝑓𝑑 is the average vaccine efficacy (of the (already) double vaccinated fraction of the 

population) for the delta and omicron variant.  𝐵𝑖𝑛𝑓𝑑 is the vaccine efficacy of newly 

administered  (and existing) boosters against infection for the delta. 

• 𝑉𝑡𝑟𝑎𝑛𝑠 is the vaccine efficacy for transmission and is assumed equal for both re-infected, 

vaccinated and boostered people (cf Barnard et al., 2021). 

 

For Omicron we can write: 

𝑅𝑜 (𝑡) =
𝑅0𝑜

𝑅0𝑑
 𝐶𝑜(𝑡)𝐼𝑜(𝑡)  𝑅𝑒(𝑡) (eq. 5) 

Where 

• 
𝑅0𝑜

𝑅0𝑑
  is the ratio of the basic reproduction number of omicron and delta. This ratio can be 

determined form the growth rate of omicron prevalence  

• If we assume the population to be perfectly mixed (this is used in the calculation) 

o 𝐼𝑜(𝑡) =
(𝑝𝑢(𝑡)+𝑈𝑑(1−𝑈𝑖𝑛𝑓𝑜)+ 𝑝𝑣(𝑡)(1−𝑉𝑖𝑛𝑓𝑜 ) + 𝑝𝑏(𝑡)(1−𝐵𝑖𝑛𝑓𝑜)  )

(𝑝𝑢(𝑡)+𝑝𝑣(0)(1−𝑉𝑖𝑛𝑓𝑑)  + 𝑝𝑏(0)(1−𝐵𝑖𝑛𝑓𝑑 ) )
 

o 𝐶𝑜(𝑡)  =

(𝑝𝑢(𝑡)+(𝑝𝑣(𝑡)+ 𝑝𝑏(𝑡 )+ 𝑈𝑑)(1−𝑉𝑡𝑟𝑎𝑛𝑠))

𝑝𝑢(𝑡)+𝑝𝑣(𝑡)+ 𝑝𝑏(𝑡 )+ 𝑈𝑑)

  𝐶𝑣
   , 𝑈𝑑 = 𝑅(0)(1 −  𝑈𝑖𝑛𝑓𝑜)/(1 − 𝑅(0))  

Alternatively for segregated 

o 𝐼𝑜(𝑡) =
(𝑝𝑢(𝑡)+ 𝑈𝑑(1−𝑈𝑖𝑛𝑓𝑜)(1−𝑉𝑡𝑟𝑎𝑛𝑠)+ 𝑝𝑣(𝑡)(1−𝑉𝑖𝑛𝑓𝑜 )(1−𝑉𝑡𝑟𝑎𝑛𝑠) + 𝑝𝑏(𝑡)(1−𝐵𝑖𝑛𝑓𝑜) (1−𝑉𝑡𝑟𝑎𝑛𝑠) )

(𝑝𝑢(𝑡)+𝑝𝑣(0)(1−𝑉𝑖𝑛𝑓𝑑)(1−𝑉𝑡𝑟𝑎𝑛𝑠)  + 𝑝𝑏(0)(1−𝐵𝑖𝑛𝑓𝑑 )(1−𝑉𝑡𝑟𝑎𝑛𝑠) )
 

o 𝐶𝑜(𝑡)  =1    

• 𝑉𝑖𝑛𝑓𝑜  and 𝐵𝑖𝑛𝑓𝑜 is the vaccine efficacy of newly administered  (and existing) boosters 

respectively against infection for the  omicron variant. 

• 𝑈𝑖𝑛𝑓𝑜 is the protection against immunity loss for the recovered fraction for Omicron 

 

We can write the apparent increase of the effective Reproduction number compared to the 

prevailing: 

𝑅𝑡𝑟𝑎𝑡𝑖𝑜(𝑡) =  
𝑅𝑜 (𝑡)

𝑅𝑑 (𝑡)
=

𝑅0𝑜

𝑅0𝑑
 

𝐶𝑜(𝑡) 𝐼𝑜(𝑡)

𝐶𝑑(𝑡) 𝐼𝑑(𝑡)
    (eq. 6) 

Now we can relate the observed growth rate k  (the growth rate of the natural logarithm of f(t)) of 

omicron relative  to delta to the  𝑅𝑡𝑟𝑎𝑡𝑖𝑜(𝑡)  as follows from the SIR model characteristics normalized 

to S(0)=1, which holds  

𝑅𝑡𝑟𝑎𝑡𝑖𝑜(𝑡) =
𝑒𝑘(𝑡)−1+𝛾

𝛾
 (eq. 7) 

which follows from the effect on daily growth rate on the  𝛽- 𝛾 → 𝛽 = 𝑒𝑘  -1 + 𝛾, and the related R 

value of the SIR model  R =  
𝛽

𝛾
 

This means that the observed growth rate k  at t=0 can be used to calibrate 
𝑅0𝑜

𝑅0𝑑
 given other 

parameters in (eq. 7): 
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𝑅0𝑜

𝑅0𝑑
= (

𝑒𝑘(0)−1+𝛾

𝛾
) 

𝐶𝑑(𝑡) 𝐼𝑑(𝑡)

𝐶𝑜(𝑡) 𝐼𝑜(𝑡)
 (eq. 8) 

Reported growth rates vary from k=0.35 in the UK  (UKHSA, 2021a) to lower numbers in NL (0.28), 

DK (0.30) and Belgium (0.28)  (RIVM, 2021c) For a fixed 
𝑅0𝑜

𝑅0𝑑
 , equation 8 demonstrates that observed 

growth rates are a function of the relative strength of immune evasion in the different 

compartments unvaccinated, vaccinated and boostered, and the ratio of recovered and susceptible 

fraction prior to the introduction of the variant. 

 

Hospitalization rates 

The case hospitalization rates are dependent on different age groups, and differ for Delta and the 

Omicron variant 

For each age group ( 𝑖𝑎𝑔𝑒) the case hospitalization rate 𝐶𝐻𝑅𝑖𝑎𝑔𝑒(𝑡)  is determined as follows 

𝐶𝐻𝑅𝑑𝑖𝑎𝑔𝑒
(𝑡) = (𝑝𝑢(𝑡,  𝑖𝑎𝑔𝑒) + 𝑝𝑣(𝑡,  𝑖𝑎𝑔𝑒)(1 − 𝑉ℎ𝑜𝑠𝑝𝑑) +  𝑝𝑏(𝑡,  𝑖𝑎𝑔𝑒)(1 − 𝐵ℎ𝑜𝑠𝑝𝑑) ) 𝐶𝐻𝑅𝑑0( 𝑖𝑎𝑔𝑒) 

(eq.10) 

𝐶𝐻𝑅𝑜𝑖𝑎𝑔𝑒
(𝑡) = 

(𝑝𝑢(𝑡, 𝑖𝑎𝑔𝑒)(1−𝑈ℎ𝑜𝑠𝑝𝑜)  + (𝑝𝑣(𝑡, 𝑖𝑎𝑔𝑒)+𝑈𝑑)(1−𝑉ℎ𝑜𝑠𝑝𝑜)+ 𝑝𝑏(𝑡, 𝑖𝑎𝑔𝑒)(1−𝐵ℎ𝑜𝑠𝑝𝑜) ) 

1+𝑈𝑑
 𝐶𝐻𝑅𝑑0( 𝑖𝑎𝑔𝑒) 

 

𝐶𝐻𝑅𝑖𝑎𝑔𝑒(𝑡) =  ((1 − 𝑓(𝑡))𝐶𝐻𝑅𝑑𝑖𝑎𝑔𝑒
(𝑡)    +  𝑓(𝑡)𝐶𝐻𝑅𝑜𝑖𝑎𝑔𝑒

(𝑡)  

Where 

• 𝑝𝑢(𝑡,  𝑖𝑎𝑔𝑒), 𝑝𝑣(𝑡,  𝑖𝑎𝑔𝑒), 𝑝𝑏(𝑡,  𝑖𝑎𝑔𝑒)  are relative fractions (summing to 1) of unvaccinated, 

vaccinated and boostered in the age group. 

• 𝑈ℎ𝑜𝑠𝑝𝑜 is the general reduction in hospitalization rate 

• 𝑉ℎ𝑜𝑠𝑝𝑑 , 𝑉ℎ𝑜𝑠𝑝𝑜 are vaccine (and reinfection) efficacies against hospitalization for delta and 

omicron  

• 𝐵ℎ𝑜𝑠𝑝𝑑 , 𝐵ℎ𝑜𝑠𝑝𝑜 are booster efficacies against hospitalization for delta and omicron  

• 𝐶𝐻𝑅𝑑0( 𝑖𝑎𝑔𝑒)  is reference hospitalization rates per age group for the delta situation 

 

The total hospitalization rates becomes 

𝐶𝐻𝑅(𝑡) =   ∑ 𝑤𝑖𝑎𝑔𝑒
 𝑎𝑔𝑒𝑔𝑟𝑜𝑢𝑝𝑠 𝐶𝐻𝑅𝑖𝑎𝑔𝑒(𝑡) (eq. 11) 

Where 𝑤𝑖𝑎𝑔𝑒
 is the demographic fraction of the age group in the total population. 

For the relative change in hospitalization rates it is not necessary to know the absolute 𝐶𝐻𝑅𝑑0( 𝑖𝑎𝑔𝑒) 

as its scaling drops out in the relative scaling (𝐶𝐻𝑅(𝑡)/𝐶𝐻𝑅(0)), , so we can use arbitrary indicative 

numbers (i.e. hospital intakes from different age groups collected over the past waves periods) 
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SIR model correction for realistic Incubation times, time delays in testing and registration 

In the SIR model models the infection rate follows almost instantly the transmission rate defined 

through Rt(t). However for prediction of positive cases, the model needs to take into account an 

appropriate time delay (or convolution) for delay time for transmission (the SIR approach is marked 

by a more direct transmission effect, compared to a SEIR formulation which is more realistic)  and 

incubation time as well as delay in testing and reporting of positive cases. For the total delays we 

adopt on average 𝑡𝑠ℎ𝑖𝑓𝑡 =14 days. For case registration date we add an additional reporting delay. 

For development of severe illness leading to hospitalizations we assume on average 5 days on top of 

the 14 days.  

In order to correct for these times we use the observed  f(t) function (taking the dates from 

registered cases on which f(t) is based as reference model time).  Any non-pharmaceutical  measures 

or vaccination and their effect is therefore incorporated at time 𝑡 = 𝑡 + 𝑡𝑠ℎ𝑖𝑓𝑡 in the model, in order 

to take into account the correct time delay for transmission effects. For hospitalization the same 

argument is used, so hospitalization protection is in accordance with vaccine protection at the 

incubation stage.  

COVID-19 Incubation times are lognormally distributed (i.e. Paul and Lorin, 2021 for an overview). In 

order to take these effects into account, we adopt a convolution of the predicted infections (and 

hospitalizations) with a lognormal  function with a log mean value of 1.8 and standard deviation of 

0.53. The mean value of the resulting lognormal distribution for the incubation time is 7 days. In 

order to be consistent with the 𝑡𝑠ℎ𝑖𝑓𝑡 approach, the convolution result is shifted -7 days. The 

convolution is also applied to the 1- f(t)  ) and   f(t) and to construct the observed f(t) function in 

accordance with the expected convolution effects. 
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