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Abstract

The Gompertz Function is an accurate model for epidemics from
Cholera in 1853 to Spanish Flu in 1918 and Ebola in 2014. It also describes
the acute phase of annual outbreaks of endemic influenza and in all of
these instances it has significant predictive power.

For Covid-19, we show that the Gompertz Function provides accurate
forecasts not just for cases and deaths but, independently, for hospital-
isations, intensive care admissions and other medical requirements. In
particular Gompertz Function projections of healthcare requirements have
been reliable enough to allow planning for: hospital admissions,intensive
care admissions,ventilator usage, peak loads and duration.

Analysis of data from the ‘Spanish Flu’ pandemic and the endemic
influenza cycle reveals alternating periods of Gompertz Function growth
and linear growth in cumulative cases or deaths. Linear growth means the
Reproduction Number is equal to 1 which in turn indicates endemicity.

The same pattern has been observed with Covid-19. All the initial
outbreaks ended in linear growth. Each new outbreak has been preceded by
a period of linear growth and has ended with a transition from Gompertz
Function growth to linear growth. This suggests that each of these outbreak
cycles ended with a transition to endemicity for the current dominant
strain and that the normal seasonal respiratory virus periods will continue
to see new outbreaks. It remains to be seen if widespread vaccination will
disrupt this cyclicality.

Because both Gompertz Function Growth and linear growth are ac-
curately predictable, the forecasting problem is reduced to identifying
the transition between these modes and to improving the performance in
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the early Gompertz Function growth phase where its predictive power is
lowest.

The dynamics of the Gompertz Function are determined by the Gumbel
probability distribution. This is an exceptional distribution with respect to
the geometry determined by the affine group on the line which is the key to
the role of the Gumbel distribution as an Extreme Value Theory attractor.
We show that this, together with the empirically observed asymmetry in
epidemic data, makes the Gompertz Function growth essentially inevitable
in epidemic models which agree with observations.

1 Overview and Outline

1.1 Overview
Galileo showed by experimental observations that, in the absence of friction,
projectiles follow a parabolic trajectory. Only some decades later did Newton’s
laws of motion explain why that was the case.

In the interim, the parabolic trajectory was what would now be called a
‘phenomenological model’–a mathematical formulation of a process that describes
it without explaining why, or by what mechanism, it takes place. If we can
make reasonable observations of points on the projectile’s trajectory, we can
approximate the parameters that determine the parabola. The model can then
make accurate predictions about the future on the basis of our observations of
the past.

We show that major epidemics in the past from Cholera in 1853 to Spanish
Flu in 1918 and Ebola in 2014 are all described very well by a 3-parameter
phenomenological model–the Gompertz Function.

So it is not surprising that the Covid-19 epidemic also followed the Gompertz
Function Model.

We demonstrate through numerous examples that this model has significant
short to medium term predictive power. The error between the predictions made
by the Gompertz Function fit at a given time and the subsequent out of sample
data remains small, first only for a few days and then for progressively longer
and longer periods.

Most importantly, this means that the model can be used to make increasingly
accurate forecasts of healthcare requirements as a Covid-19 outbreak (or other
epidemic) progresses. Such forecasts are essential to address the fear that
hospitals will be overwhelmed–which has been a major preoccupation almost
everywhere.

In every location for which we have obtained data, the predictions of the
Gompertz Function Model could have been used in planning for: hospital
admissions and intensive care admissions as well as such things as ventilator
requirements, timing and size of peak loads and duration of an outbreak.

The Gompertz Function Model is based on observed data and the model
parameters can be calculated very rapidly by a simple transparent process (non-
linear regression) for which there are numerous ‘off the shelf’ implementations.
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Fortunately, given how little we know about how coronaviruses are trans-
mitted, [1] using the Gompertz Function Model to forecast hospital demand
doesn’t require models of infections, cases or the proportion of cases that will
require hospitalisation. It is based simply on counting hospital and intensive
care admissions.

By analysing a multi-year record of daily influenza cases in Portugal, we have
shown the annual influenza cycle there is described to very good accuracy by
alternating periods of Gompertz Function growth and periods of linear growth
(where the Reproduction Number must be approximately equal to 1).

These cycles of Gompertz Function and linear growth provide a natural way
of separating epidemic waves (as in the ‘Spanish Flu’) and of observing the
transition from epidemic to endemic phases of disease.

Alternating Gompertz Function growth and linear growth is exactly what
has been observed in Covid-19. The initial outbreaks began with Gompertz
Function growth and then switched to linear growth. Subsequent outbreaks in
2020 followed the normal seasonal pattern of influenza [9] and other common
respiratory illnesses. As yet, none of the seasonal ‘slots’ have been missed out–so
we should be alert for repetitions of this pattern. After large scale vaccination
programs there have been some outbreaks in periods other than the normal
seasonal ones. In each case they followed the same alternating Gompertz Function
growth-linear growth regime.

This Extended Gompertz Function Model of alternating Gompertz Function
and linear growth phases provides an important mechanism for the early obser-
vation of new outbreaks and the ability to accurately forecast resulting demands
on the healthcare system: identify transition from a linear growth regime to
Gompertz Function growth, then use the Gompertz Function Model to provide
forecasts.1

For a Gompertz Function, the speed of infection peaks with 1
e or approxi-

mately 37% of the susceptible population infected and declines steadily thereafter.
This marked asymmetry with rapid growth and slow decay is observed to very
good agreement in all of our data. It is also consistent with recent generalisations
of compartmental models that remove the unrealistic assumption of a perfectly
homogeneous susceptible population.

The dynamics of the Gompertz Function are determined by the Gumbel
probability distribution.This is an exceptional distribution with respect to the
geometry determined by the affine group on the line which is the key to the
Gumbel distribution’s role as an Extreme Value Theory attractor. We show that
this, together with the empirically observed asymmetry in epidemic data, makes
Gompertz Function growth an essentially inevitable feature in epidemic models
which agree with observations.

1The rise in hospitalisations which prompted the UK Government to delay its ‘re-opening’
measures in England in June 2021 began when the linear growth that followed the winter
2020-2021 outbreak was succeeded by Gompertz Function growth from 29 May to 14 July.
Linear growth in hospitalisations resumed on 15 July and continued until the end of September.
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1.2 Outline of Contents by Section
In Section 2 we discuss the purpose and predictive power of models and review
the performance of the Gompertz Function model in a wide variety of infectious
disease outbreaks prior to 2020 and the Covid-19 epidemic.

Next we illustrate the Gompertz Function Model in the initial Covid-19
outbreaks. Our focus is on healthcare and the predictive power to make forecasts
of practical use for planning.

In Section 3 we discuss the mathematical properties of the model. We show
how these can be used to infer features of disease dynamics, including the
reproduction number and herd immunity thresholds.

In Section 4 we use a multi-year data set of Influenza cases in Portugal as a
guide to extend the epidemic model to include epidemic-endemic cycles where
Gompertz Function growth alternates with linear growth. We also show that
linear growth periods separated the waves of the ‘Spanish Flu’ in England.

Finally we demonstrate the same sequence of Gompertz Function Growth
and Linear Growth in Covid-19 outbreaks.

In Section 5 we discuss a number of important aspects of the fits of Gompertz
Functions to data.

Section 6 is a brief note on the relation between the Gompertz Function
Model and compartmental models.

In Section 7 we discuss the use of the Gompertz Function Model in planning
for new outbreaks of Covid-19 and as well as for seasonal Influenza and future
pandemics.

Appendix A provides a brief account of the geometry behind the properties
of the Gumbel probability distribution that underlies the Gompertz function
and the way Gumbel distribution’s role as an Extreme Value Theory attractor
helps to explain the ubiquity of Gompertz Functions in observations of epidemic
data.

Appendix B contains links to our Covid-19 data sources.

2 Predicting the Course of An Epidemic

2.1 Mathematical Models
The purpose of mathematical models is to allow us to see into the future. To
predict things such as the number of people who will be admitted to hospital
with Covid-19 in the next two weeks or the trajectory of a Mars lander, for
example.

The distance we can see and the accuracy of our vision may vary greatly, as
it does in these two cases, but predicting the future is the fundamental goal of
mathematical models of processes in the real world. In our case, we will focus
on making short term predictions (a week to several weeks) with a ‘reasonable’
degree of accuracy (say within 10 − 20%), which is a very different goal from
the models which are used to create scenarios outlining a wide range of possible
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futures contingent on different events or policy decisions.2
Early in 2020, people feared that the Covid-19 epidemic was growing expo-

nentially. This was a model that predicted a catastrophic future with explosive
growth in the numbers of cases and deaths.

But Michael Levitt observed [12] that cumulative cases in the Covid-19
outbreak seemed instead to be growing according to a Gompertz Function. This
is a simple 3-parameter phenomenological model for epidemic growth in which
the number of cases at time t is:

X(t, a, b,N) = Ne−e−(at+b)
, (1)

where N , a and b are parameters to be calculated3 from the reports of daily
case numbers. By contrast with exponential growth where the doubling time
is constant, in Gompertz Function growth the time required for cases to double
increases rapidly, damping the epidemic more and more as it progresses.

And this is what was subsequently seen as the Covid-19 epidemic spread.
A very asymmetric growth pattern with a rapid rise and a much slower fall off
after the peak.

This is apparent in the Covid-19 deaths reported daily in Italy in the spring
of 2020, shown in Figure 1. Because of the large degree of variability in the daily
data and to illustrate the trend in the data we have included a rolling 7-Day
average.4 This shows the high degree of asymmetry in the daily deaths which
rise much more quickly than they fall.5

The cumulative deaths for the same period6 are shown in Figure 2. Figure
3 shows how well the Gompertz Function Model fits the cumulative Covid-19
Deaths data.

The daily differences between Gompertz Function values are shown together
with the 7-Day average of daily deaths in Figure 4.

Levitt and his co-authors [13] showed subsequently that in hundreds of
countries and states worldwide the Gompertz Function Models obtained by
fitting observed data could be used to predict final case and death levels as the
epidemic continued and more data became available.

This should not have come as a surprise. It is precisely what the historical
record told us to expect, as we show in the next section.

2As Graham Medley, chairman of the UK’s SPI-M modelling group, pointed out [16]
providing scenarios is the (often misunderstood) purpose of the Covid-19 modelling presented
to the UK’s SAGE committee. Unfortunately, not all modellers are as clear about this as
Medley.

3The parameters are determined by the standard statistical process of non-linear regression
which finds the Gompertz Function of ‘best fit’ to the data.

4On day n we plot the average for days n− 3 . . . n + 3 to remove the lag.
5While it’s possible to fit an exponential to early outbreak data, the fit rapidly loses any

predictive power. Exponential growth is simply not sustainable. For example, if the exponential
growth that best fit the death data in Italy on 21 March 2020 was continued until 13 May, the
death toll would have exceeded the population of the country. By contrast, Gompertz Function
fits to this early data have much better predictive power out of sample. See Section 5.1

6Although it is less visually obvious in the cumulative deaths graph than in the daily one,
the same asymmetry is there–reflected in the fact that the concavity changes at the time when
X(t) ≈ 0.37N rather than 0.5N as it would in the symmetric case.
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Figure 1: Daily Covid-19 Deaths in Italy 28 Feb to 31 May 2020

0"

5,000"

10,000"

15,000"

20,000"

25,000"

30,000"

35,000"

21
(Fe
b(2
02
0"

28
(Fe
b(2
02
0"

06
(M
ar(
20
20
"

13
(M
ar(
20
20
"

20
(M
ar(
20
20
"

27
(M
ar(
20
20
"

03
(Ap
r(2
02
0"

10
(Ap
r(2
02
0"

17
(Ap
r(2
02
0"

24
(Ap
r(2
02
0"

01
(M
ay
(20
20
"

08
(M
ay
(20
20
"

Italy"Covid(19"Deaths"

Figure 2: Cumulative Covid-19 Deaths in Italy 28 Feb to 14 May 2020
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Figure 3: Gompertz Function fit to Cumulative Covid-19 Deaths in Italy 28 Feb
to 14 May 2020
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Figure 4: Gompertz Function Model (peak on 1 April) and 7 Day Average (peak
on 30 March) of Daily Covid-19 Deaths in Italy 28 Feb to 31 May 2020
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Figure 5: Aalborg Denmark Cholera Cases 1853

2.2 What Data Tell Us in Examples of Infectious Disease
Outbreaks Prior to 2020

In this section we show that the Gompertz Function Model is a generically good
description of epidemic data from a wide variety of epidemics over the past 170
years.

In each case we display the ‘best fit’ of a Gompertz Function Model to
the cumulative epidemic data at the end of the outbreak, where the best fit is
determined by non-linear regression using a standard Python routine.7,8

It is important to note that the quality of the Gompertz Function fits shown
in all the examples here implies that the strong asymmetry we noted in Italy’s
Covid-19 deaths data is, to a good approximation, a regular feature of epidemic
growth.

Figures 5-11 show the course of epidemic outbreaks as varied as: Cholera in
Aalborg Denmark in 1853,‘Spanish Flu’ in Prussia and San Francisco in 1918,
SARS CoV-1 in Hong Kong in 2003, Ebola in Sierra Leone in 2014 and Zika
in Antioquia, Colombia, 2016. All of them evolved according to Gompertz
Functions.

In addition, Figures fig:PortugalInfluenza17-13 show that the following exam-
7We are grateful to Prof. B.A.Shadwick for the Python program which we have used for all

of the fits produced in this paper.
8Fits are done using with time in days starting from day 0.
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Figure 6: Aalborg Denmark Cholera Deaths 1853
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Figure 7: ‘Spanish Flu’ Cases San Francisco 1918
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Figure 8: ‘Spanish Flu’ Deaths Prussia 1918

Figure 9: Hong Kong SARS Cases 2003
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Figure 10: Ebola Cases Sierra Leone 2014-2015

Figure 11: Zika Cases, Antioquia Colombia 2016
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Figure 12: Influenza Cases in Portugal from 1 Dec 2017 to 30 Apr 2018

ples of outbreaks of endemic disease: Influenza Cases in Portugal and Influenza-
Pneumonia Deaths in U.S.A., both in 2017-18,9 all evolve to follow Gompertz
Functions.

From Denmark in 1853, a time when even the bacterial origin of Cholera
was still to be discovered, through the ‘Spanish Flu’–the greatest pandemic of
modern times–to major bacterial and viral epidemics prior to Covid-19, the data
shows us that the Gompertz Function has been an accurate description of the
outcome of all of these outbreaks.

2.3 Predictive Power of the Gompertz Function Model in
Examples Prior to 2020

The agreement between the cumulative cases or deaths and the Gompertz
Function Model in all of these examples is remarkable. In itself it allows us to
make deductions about the dynamics of the outbreak, based on those of the
Gompertz Function (which we take up in Section 3).

In these examples, the final outcome is, to a very good approximation, a
Gompertz Function. But the important question for us is the extent to which
the Gompertz Function Model allows us to predict the future, that is to use
observations of the data up to the current time to make accurate predictions

9The last severe ‘flu season’ in the Northern Hemisphere
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Figure 13: Influenza-Pneumonia Deaths USA Dec 2017-May 2018

about what we will see in the next days or weeks.
To assess the predictive power of the Gompertz Function model we need to

know if the best Gompertz Function fit at time t allows us to predict numbers
for some time t+ τ into the future with a reasonable degree of accuracy. For
concreteness we’ll use an error of ±10% as our desired level of accuracy and
measure the time τ for which a fit remains within that error.

We illustrate this process in Figure14 for Cholera in Denmark in 1853, in
Figure 15 for Ebola in Sierra Leone in 2014-15 and in Figure 16 for the Portuguese
2017-18 Influenza season.

To simplify the figures, only the out of sample part of the Gompertz Function
is graphed. Error bands of ±10% around the data show how quickly a high level
of accuracy is achieved.

To judge the quality of successive predictions, we want to measure the gap
between the predicted value X(t) and the observed value Xobs(t) as a percentage
of X(t). In other words we want to judge the extent to which the observation
differed from the prediction, as a percentage of the prediction.10 We will use the
absolute value of the error to simplify the graphs. So we display the error ε in %
defined as

ε(t) = 100
∣∣∣∣Xobs(t)−X(t)

X(t)

∣∣∣∣ . (2)

10This corresponds to putting a band around the prediction rather than the data.
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Figure 14: Sequence of weekly updates of Gompertz Function fits to Danish
Cholera Cases

2.3.1 Danish Cholera Cases

The Danish Cholera epidemic evolved very rapidly. The case data begin on 6
August and by 6 October 1853, less than 9 weeks later, the epidemic was over.

The first Gompertz Function fit on 26 August, as Figure14 shows, soon
proved over-pessimistic. Its out of sample error was less than 10% for only 3 days.
Nevertheless even this early fit would have been useful. The error remained less
than 20% for 12 days.

Figure 17 shows how quickly the predictive power of subsequent fits increases.
The fit made one week later, on 2 September, was never out by more than
6%. The remainder of the weekly update fits had errors of less than 1% for the
duration of the epidemic.

2.3.2 Ebola Sierra Leone

We have WHO Situation Reports with weekly updates on Ebola cases in Sierra
Leone for 52 weeks from 21 September 2014 to 13 September 2015.

The first fit (not shown) was done with six weeks of data (i.e. with only 6
data points) on 26 October. Its out of sample error was less than 10% for only 1
week but remained below 15% for 2 weeks. Subsequent fits gained predictive
power rapidly. For the fit made two weeks later the error was less than 10% for
2 weeks and below 15% for 3 weeks

The error from the first fit shown in Figure18 (November 16 2014) with only
9 data points was never out by more than 11%. Subsequent updates to the
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Figure 15: Sample of 4-weekly updates of Gompertz Function fits to weekly
Ebola Case data, Sierra Leone 2014-15
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Figure 16: Sequence of weekly updates of Gompertz Function fits to Portuguese
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Figure 17: Evolution of the in and out of sample errors in the Gompertz Function
fits to Danish Cholera Cases.
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Figure 18: Evolution of the in and out of sample errors in the Gompertz Function
fits to Ebola Cases.
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Figure 19: Evolution of the in and out of sample errors in the Gompertz Function
fits to Portuguese Influenza Cases

Gompertz Function fits were done every 4 weeks. Their out of sample errors all
remained below 10% for the duration of the outbreak.

2.3.3 Portuguese Influenza Cases

The Portuguese Influenza Case data begins Gompertz Function growth on 1
December 2017 and continues until 30 April 2018. The out of sample error of
the 11 January fit remained below 20% for eleven days but was below 10% for
only 5 days.

For the fit made two weeks later, the out of sample error remained below
10% for more than a week. From 1 February’s fit this level was maintained for
almost 3 weeks out of sample.

These examples illustrate the predictive power that precedes the final excellent
Gompertz Function fits to the observed data. The differences in the time taken
to reduce out of sample errors to our 10% target depend on the parameters a and
b in a way that we will return to after outlining the dynamics of the Gompertz
Function.

First we examine the performance of the model in the 2020 Covid-19 epidemic
across a variety of locations.

2.4 Covid-19 Epidemic 2020
Covid-19 has produced an unprecedented volume of data from countries all over
the world.

In addition to case and death data, many locations published data on the
medical consequences of the outbreak: hospital and intensive care admissions
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for Covid-19, and/or daily updates of total hospital and intensive care patients,
numbers on ventilators etc.

Any process driven by the epidemic–such as hospitalisations–that also follows
Gompertz Function growth will be predictable.

We should expect that cumulative hospitalisations will evolve as a percentage
of cases. Likewise a certain percentage of Covid-19 patients will be admitted
to Intensive Care Units or other specialised treatment. But these percentages
cannot be known in advance and may vary over time.

The Gompertz Function Model doesn’t require that we know, estimate or
approximate these percentages in advance. As data accumulate (typically two
weeks of daily observations is enough to start) Gompertz Function fits can be
obtained and tested for their predictive power. Based on previous epidemics, we
can expect predictive power to increase quickly as time goes on.

We have used hospital and death data as our primary illustrations rather
than cases. Hospital admissions generally involve a diagnosis of illness rather
than a simple test for the presence of the virus so they should be expected to
provide a good proxy for the progress of serious cases of infection. By contrast,
case data are subject to considerable uncertainty (regardless of testing regime)
and are frequently revised retrospectively.11

These data are available in many locations with a short lag. This means that
historic data for hospitalisations and intensive care admissions will be a very
good approximation of the data and model performance we would have seen in
real time, as long as the lags are taken into account.

For the Northern Hemisphere, the locations we use to illustrate the Gompertz
Function fits are, in order of decreasing latitude, Sweden, London, Isle de France,
the Province of Ontario and Portugal. In the tropical Southern Hemisphere
we use the State of Rio de Janeiro. These are all of roughly the same order of
magnitude in population (approximately 10 to 15 million people).

For an equatorial example we use the Brazilian State of Amazonas (approxi-
mately 4 million people).

We have been able to obtain data for Hospital admissions in all of these
locations and for ICU admissions in all but London and Ontario. We have data
for the ICU admissions for England, Wales and Northern Ireland combined, and
have used that as a proxy comparison for London.

We also have daily records of the number of Covid-19 patients in Intensive
Care and in Ventilator beds for London.These data are well approximated by
the derivative Ẋ of a Gompertz Function and hence predictable. We illustrate
this in Figure 26 where we have made a fit to the cumulative.12

Across all of these examples, the Gompertz Function fits are excellent. As a
result, the predictive power was also good, exactly as illustrated in the previous
epidemics. This is particularly important for making accurate projections of
health care loads.

11For example,we recently found an example where the number of cases on a given day in
the first Quarter of 2020 was revised in the third Quarter of 2021.

12Alternatively we can fit Ẋ directly by non-linear regression with very similar results.
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Figure 20: Covid-19 Hospitalisations in Sweden from 3 Mar to 17 May 2020

Figure 21: ICU admissions for Covid-19 in Sweden from 18 Mar to 7 May 2020
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Figure 22: Covid-19 Deaths in Sweden from 17 Mar to 17 May 2020
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Figure 23: London Covid-19 Hospital Admissions, 19 Mar to 23 April 2020

20

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted December 29, 2021. ; https://doi.org/10.1101/2021.12.26.21268419doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.26.21268419


2020-03-21

2020-03-28

2020-04-04

2020-04-11

2020-04-18

2020-04-25

2020-05-02
0

2000

4000

6000

8000

Eng-W-NI ICU Admissions for Covid-19
Gompertz(t, 0.0975688, -1.15788, 9663.01)

Figure 24: ICU admissions England Wales N. Ireland 19 Mar to 30 Apr 2020
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Figure 25: London Deaths attributed to Covid-19 from 9 Mar to 21 May 2020
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Figure 26: Patient ventilator bed days in London from 2 Apr to 31 May 2020
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Figure 27: Isle de France Covid-19 Hospital Admissions, 18 Mar to 11 May 2020

22

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted December 29, 2021. ; https://doi.org/10.1101/2021.12.26.21268419doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.26.21268419


2020-03-15

2020-03-22

2020-03-29

2020-04-05

2020-04-12

2020-04-19

2020-04-26

2020-05-03

2020-05-10

2020-05-17

2020-05-24

0

1000

2000

3000

4000

5000

6000

Isle de France ICU Admissions
Gompertz(t, 0.0919994, -1.64642, 6598.32)

Figure 28: Isle de France Covid-19 ICU Admissions, 18 Mar to 21 May 2020
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Figure 29: Isle de France Covid-19 Deaths 18 Mar to 31 May 2020
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Figure 30: Hospital admissions for Covid-19 in Ontario 1 Mar to 14 Jun 2020
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Figure 31: Covid-19 Deaths in Ontario from 17 Mar to 30 Jun 2020
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Figure 32: Long Term Care Deaths Ontario from 19 May to 19 Jul 2020
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Figure 33: Covid-19 Hospitalisations in Portugal from 5 Mar to 15 May 2020.
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Figure 34: Covid-19 ICU admissions in Portugal from 14 Mar to 15 May 2020.
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Figure 35: Covid-19 Deaths in Portugal from 17 Mar to 15 May 2020.
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Figure 36: Covid-19 Hospitalisations in RJ from 15 Mar to 30 Jun 2020.
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Figure 37: Covid-19 ICU admissions in RJ from 31 Mar to 30 Jun 2020.
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Figure 38: Covid-19 Hospital Deaths in RJ from 31 Mar to 7 Jul 2020.

Figures 20 to 41 show the final Gompertz Function fits.
We note that, in the tests of predictive power we have presented, no attempt

has been made to speed up the convergence to the ultimate model parameters.
Figures 42 to 48 show examples of out of sample errors in for Gompertz Function
fits to hospital data.

These examples show that, as expected, the good fits observed in Figures
20 to 41 mean that as the epidemic progressed, the errors in the out of sample
predictions of the Gompertz Function model improved to remain below the 10%
level we specified.

This convergence is close to monotone for periods long enough to be practical
for use in planning for health infrastructure demands. Knowledge that realistic
short to medium term estimates of these demands can be made is extremely
important given the universal fear of overwhelming healthcare systems that the
Covid-19 epidemic has generated.

While the errors always converge to a level below 10%, the time this takes
varies significantly across our examples. The errors at the beginning of the
in-sample data also remain large even as they converge to very low levels out of
sample as the epidemic progresses. In order to discuss these and other regularities
and to examine the the extension of the Gompertz Function Model to subsequent
Covid-19 outbreaks, we will make use of some observations about the Gompertz
Function dynamics to which we devote the next section.
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Figure 39: Covid-19 Hospitalisations in Amazonas from 14 Mar to 31 May 2020.
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Figure 40: Covid-19 ICU admissions in Amazonas from 18 Mar to 10 Jun 2020.
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Figure 41: Covid-19 Hospital Deaths in Amazonas from 1 Apr to 14 Jun 2020.
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Figure 42: Evolution of errors in Gompertz Function fits to Swedish Hospital
Admissions.
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Figure 43: Evolution of errors in Gompertz Function fits to London Hospital
Admissions.
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Figure 44: Evolution of errors in Gompertz Function fits to Isle de France ICU
Admissions.
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Figure 45: Evolution of errors in Gompertz Function fits to Ontario Hospital
Admissions.
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Figure 46: Evolution of errors in Gompertz Function fits to Portuguese Hospital
Admissions.
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Figure 47: Evolution of errors in Gompertz Function fits to RJ Hospital Admis-
sions.
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Figure 48: Evolution of errors in Gompertz Function fits to Amazonas Hospital
Admissions.
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3 Gompertz Function Dynamics

3.1 The Gompertz Function and the Gumbel Distribution
If X(t) is the cumulative number of cases at day t and N is the final (as yet
unknown) level, then, writing X(t) = NG(t), G = X(t)

N is the fractional number
of cases at time t.

ThereforeG is a non-decreasing function whose values lie in [0, 1]–a probability
distribution.13 The distribution G(t, a, b), has (observable) scale and location
parameters a and b which vary over time but converge as the epidemic tends to
its conclusion.

For the Gompertz Function, G is the Gumbel distribution

G(t, a, b) = e−e−(at+b)
. (3)

The constant N determines the final scale of the epidemic, but the dynamical
properties of the Gompertz function are completely determined by the Gumbel
distribution.14

In addition to the daily rate of change of X, denoted by Ẋ, a critical quantity
for the impact on a population is the relative rate of change Ẋ

X –the new infections
or deaths each day as a fraction of the total population affected so far.

Since N is constant, Ẋ
X = q̇ where q = log(G(t, a, b)). It’s immediate from

the definition of the Gumbel distribution that

q = −e−(at+b), (4)

and
q̇ = ae−(at+b). (5)

It follows from the equation for q̇ that, unlike the case of exponential growth
where the relative rate of change is constant, in Gompertz Function growth the
relative rate of change of X is decreasing exponentially as time increases.

Using the first difference approximation to Ẋ
X , the derivative of log(X), we

have Ẋ
X ≈ log(X(t+ 1))− log(X(t)).

Since Ẋ
X = q̇, this means that log(log(X(t+1))− log(X(t))) ≈ log(a)−b−at,

a straight line with slope −a and intercept log(a)− b.
We can observe ai and bi from the slope and intercept of the line at time ti.
Of course in practice the plot of log(log(X(ti+1))− log(X(ti))) is only approx-

imately a straight line and the observations of the parameters will be volatile,
especially early in the epidemic. Nevertheless, it’s easy to see in epidemic data

13For example, a common ‘S-curve’ from population dynamics is the Logistic function
X(t) = NL(t) where L is the Logistic distribution L(t, a, b) = (1 + exp(−(at + b)))−1.

14As we explain in the Appendix, the Gumbel distribution is not just another ‘S-curve’ but
is exceptional from the point of view of the geometry of the affine group on the line (the
‘Location-Scale’ transformations). This geometry is what explains the Gumbel distribution’s
role as an ‘attractor’ in Extreme Value Theory and contributes to its apparent inevitability in
epidemic behaviour.
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that, as time increases, this series trends downward steadily and tends to a
straight line with negative slope.(See Figure 49)

While the Gompertz function never increases exponentially, it does grow
rapidly at first with both its velocity Ẋ and its acceleration Ẍ increasing.15The
parameters aN and a2N control these rates of growth. Note that a has units of
t−1 so that aN and a2N have the correct units for the velocity and acceleration
of X.

3.2 The Scaled, Time-shifted Version of a Gompertz Func-
tion

Suppose that the daily increments for one process Y (for example ICU admissions)
is a multiple λ of another process X (for example Hospital Admissions) but with
a shift of l days. If X is a Gompertz function then

Y (t) = λX(t+ l) = λNXG(t+ l, aX , bX). (6)

It follows that Y is a Gompertz function whose parameters are

NY = λNX , (7)

aY = aX (8)

and
bY = bX + laX . (9)

These relations hold approximately among some of the Gompertz function groups
for hospital admissions, ICU admissions and deaths presented in the previous
section. For example, although the hospital and ICU admissions data for Isle
de France both begin on the same day, Equation 9 says that ICU process lags
hospitalisations by about 4.2 days. This is also the lag between the maxima
of their Gompertz function derivatives. For this case the values of N in ICU
and Hospital admissions predict that 17% of those hospitalised will be admitted
to ICU. At the end of the data sample a comparison of ICU admissions with
Hospital admissions 4 days earlier gives a ratio of 17.8%.

3.3 Critical Times and a Natural Time Scale
The Gumbel distribution’s features produce a number of characteristic times for
Gompertz Function growth.

We denote by T1(a, b), the time at which the acceleration Ẍ reaches its peak.
It’s easy to check by finding the zeros of the third t-derivative of X, that T1 is
given by

15The Gompertz function can fit growth with arbitrarily many positive derivatives. See
Section 5 for a brief discussion of the ‘exponential growth phase’.
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T1(a, b) =
log( 2

3+
√

5
)− b

a
. (10)

At time T1, X(T1) = e−( 3+
√

5
2 )N ≈ 0.0729N .

The velocity Ẋ(T1(a, b)) = a( 3+
√

5
2 )e−( 3+

√
5

2 )N ≈ 0.191aN .

The peak acceleration Ẍ(T1(a, b)) = a2(2 +
√

5)e−( 3+
√

5
2 )N ≈ 0.309a2N .

Thus, by the time about 7.3% of the susceptible population N has been
infected, the acceleration has reached its peak of approximately 0.309a2N ,and
begins to decline quickly.

The velocity which is approximately 0.191aN at T1(a, b) continues to increase
until time T2(a, b)

T2(a, b) =
−b
a
, (11)

when Ẍ = 0.
The parameter a is the value of q̇ at T2. The dimensionless parameter b

determines the fraction of the final level N observed on day 0:

X(0)
N

= e−e−b

. (12)

At time T2, X(T2) = N
e ≈ 0.368N so the velocity Ẋ begins to decline once

about 37% of the susceptible population is infected. It is easy to verify that the
peak velocity Ẋ(T2) = aN

e ≈ 0.368aN –so between peak acceleration and peak

velocity the velocity has almost doubled: Ẋ(T2) = 2e( 1+
√

5
2 )

3+
√

5
Ẋ(T1) ≈ 1.926Ẋ(T1).

The acceleration Ẍ remains negative for all time t > T2 and reaches its
minimum at time T3(a, b) given by

T3(a, b) =
log( 2

3−
√

5
)− b

a
. (13)

At time T3, X(T3) = e−
3−
√

5
2 )N ≈ 0.683N and about 68% of the susceptible

population is infected.
The velocity Ẋ(T3) has fallen to a( 3−

√
5

2 )e−( 3−
√

5
2 )N ≈ 0.261aN or about

71% of its peak value.

A natural time scale is s(a) = log( 3+
√

5
2 )

a .
T2 is midway between T1 and T3 and s(a) is the common distance between

them. The larger the value of a the shorter the interval between the critical
times.

As an indication of how quickly Ẋ is growing in the early phase of the
epidemic, between time T1 − s(a), where X = Ne−( 3+

√
5

2 )2 ≈ 0.001N , and time
T1, Ẋ increases by a factor of more than 26.

Ẋ(T1)
Ẋ(T1 − s(a))

≈ 26.4. (14)
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Figure 49: Covid-19 Hospital Admissions in London and the Gompertz Function
Fit 8 Dec 2020 to 21 Mar 2021.

Likewise, Ẍ increases by a factor of approximately 7.3 in the same period.
But even over this period of rapid increase, the growth is never exponential.
In fact the third derivative of X decreases steadily to 0 over the interval from
T1(a, b)− s(a)

2 to T1(a, b), then remains negative until T3(a, b).
The decline in Ẋ after it reaches its peak is slower than its initial growth

producing the characteristic asymmetry seen in Figure 50.
It is not until time T3(a, b) + s(a)

2 that Ẋ drops back to about the value it

had at T1. Ẋ(T3(a, b) + s(a)
2 ) = a (

√
5−1)3

8 e−
(
√

5−1)3

8 )N ≈ 0.186aN .

3.4 Ẋ, Daily Increments and Asymmetry
The Gompertz Function Model fits the cumulative observations, so by taking
the differences X(ti+1)−X(ti) we have a model for the daily observations. The
Gompertz Function time derivative Ẋ(ti+1) is a very good approximation to
this first difference as can be seen in Figure 50.

The maximum and minimum of the acceleration are located symmetrically
around the peak of the Gompertz function velocity, but as we have seen before,
Ẋ itself is asymmetric–as Figure 50 shows. For a symmetric ‘S-curve’ peak
velocity comes at the point where X = 1

2N while for the Gompertz Function it
is X = 1

eN ≈ 0.368N .
As a result, any growth function Y for which Ẏ is symmetric will underesti-
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Figure 50: Ẋ and Daily Differences for London Hospital Admissions 8 Dec 2020
to 21 Mar 2021 show the characteristic rapid rise and slow decline in Ẋ.

mate the asymptotic level N for any epidemic following a Gompertz Function.
For example, when the curvature changes sign for a Logistic function at time T ,
X = 1

2N so we get N = 2X(T ) instead of eX(T )–an underestimate of N .16

3.5 Epidemic Duration
The natural timescale s(a) can be used to estimate the time remaining in the
epidemic if it continues to follow the Gompertz Function.17

As soon as we have stable values for the parameters a, b and N , we can
calculate the remaining time, in days, to reach any desired fraction of N . These
times are conveniently described in terms of T2 and s(a).

For example, we have already observed that X(T3) = X(T2(a, b) + s(a)) ≈
0.68N . We also have X(T2(a, b) + 2s(a)) ≈ 0.84N , X(T2(a, b) + 3s(a)) ≈ 0.95N
and X(T2(a, b) + 4s(a)) ≈ 0.99N .

16This underestimation by the Logistic function was observed in Ebola and Zika outbreaks.
See for example [18]

17The Gompertz Function approaches the ‘final value’ N asymptotically as time tends to ∞.
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3.6 The Reproduction Number and the Herd Immunity
Threshold

The effective Reproduction Number Rt for an epidemic at time t is defined as
the average number of secondary infections that are produced by each primary
infection.[5]There is generally no way to observe infections and this number must
be inferred from other quantities–such as cases–so the value of Rt is typically
subject to considerable uncertainty.

Nevertheless, we can draw some conclusions about Rt for an epidemic which
is following a Gompertz Function, at least if the growth of cases is a reasonable
proxy for the growth of infections.

For any time t > T2, the acceleration Ẍ < 0, so Ẋ(t) is strictly decreasing.
Because the derivative at time t+ 1 is almost identical to the difference X(t+
1)−X(t), the number of new cases must also be smaller at time t+ 1 than it
was at time t. Independent of the number of days τ that it takes for an infected
individual to become infectious, the number of new infections on day t+ τ is
less than on day t for all t > T2.

As a result, when the cases in an epidemic follow a Gompertz Function, for
all times t > T2, Rt is less than 1–so X(T2) is the proportion of the population
infected in order for the epidemic to begin to decline. This is the Herd Immunity
Threshold.18

The generically good fits of the Gompertz Function Model to epidemic data
makes it clear that the empirically observed Herd Immunity Threshold across
all of the outbreaks illustrated above is always close to X(T2) = 1

eN ≈ 0.368N .

4 Extending the Gompertz Function Model from
Epidemic to Endemic Disease

For an epidemic which passes the Herd Immunity Threshold and continues to
follow a Gompertz Function Model, Rt will tend to 0 and the epidemic will
simply die out (as in the case of the Danish Cholera epidemic of 1853).

But rather than dying out, the disease may become endemic with periodic
outbreaks.These may be sporadic as is the case with Ebola. Or the outbreaks
may follow an annual cycle–as they do in influenza.

In endemic disease, Rt must be very close to 1. If it were exactly 1 then the
growth in cumulative cases would be linear. Conversely, if the cumulative is
exactly linear, then the number of cases between t and t+ t1 is constant for all
values of t1 and this means that Rt = 1.

If Rt is very close to 1, there will be fluctuations in the number of daily cases
but the graph of cumulative cases from time t to t+ t1 will be nearly a straight
line whose slope is the average number of cases in that period.

So if an epidemic ends with a transition from Gompertz Function growth to
linear growth, this is an indication that the disease has become endemic.

18We are using the proportion of the population that needs to be immune in order for new
infections to decline as our definition of the Herd Immunity Threshold.[14].
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Figure 51: Transition to linear growth in London Hospital Admissions April
2020.

In our analysis of the initial Covid-19 outbreaks we saw exactly this process
repeated again and again: Gompertz Function growth ended with a transition
to linear growth. For example, Figure 51 shows the best line fit to London
Covid-19 Hospital Admissions after the Gompertz Function growth shown in
Figure 23).The linear fit has r2 = 0.997, its maximum absolute error is less than
0.6% and its average absolute error is only 0.24%. Linear growth is not just a
good approximation. It is an extremely good approximation.19

Influenza is an endemic disease which has regular outbreaks of epidemic
infection. Thus it provides a natural ‘observatory’ for the endemic-epidemic
cycle. In the next section we show that transition from Gompertz Function
growth to linear growth (twice) is precisely what happens in influenza cases in
Portugal in a regular annual pattern.

4.1 An Influenza Observatory
The Portuguese government has published daily influenza case data beginning 1
November 2016.20.The main ‘Flu Season’ runs from approximately November
to April.21 Figure 52 shows the annual cycle for Influenza Cases recorded by

19This approximation has excellent predictive power. If the linear fit to the week of data
from 21-27 April 2020 is extrapolated forward for two weeks, its average absolute percentage
error out of sample is only 0.8% and the maximum absolute percentage error is 2.7%.

20https://transparencia.sns.gov.pt/explore/dataset/atendimentos-nos-csp-gripe/
export/?disjunctive.ars&sort=dia)

21This includes the 2020-2021 season, which differs from the rest only by a very large
reduction in scale.
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Figure 52: Portuguese Influenza Cases 1 Nov 2016 to 31 May 2020.

the Portuguese National Health Service from 1 November 2016 to 31 May 2020.
Each year there is an annual winter peak followed by a dramatic reduction in
cases to a much lower level through the late spring and summer. But cases never
die out completely and in early autumn they begin to rise again.

The graph of cumulative cases (Figure 53) reveals further regularities with
consistent annual patterns. The cumulative cases through each of the annual
peaks follow Gompertz Function growth (shown in red).22

We have already shown (Figure 12) that the 2017-18 outbreak from 1 Decem-
ber 2017 until 30 April 2018 followed the Gompertz Function Model. Figures 54
to 56 show the same thing for the remaining years in Figure 53. Figure 57 shows
that even though Influenza cases have become much less prevalent, the same
Gompertz Function growth marks the main seasonal outbreak in 2020-2021.

Another important regularity which is visible in the cumulative cases is
that the periods of Gompertz Function growth end in a transition to linear
growth (just as we have already observed was the case with the initial Covid-19
outbreaks).But each of the main influenza outbreaks is also preceded by a period
of linear growth.

Figures 58 and 59 show the linear entry to and exit from the 2016-17 Gompertz
Function growth phase.The linear fits to the cumulative case graphs shown in
these entry and exit figures have r2 values of over 0.99 and very small absolute
errors between the data and the linear fit– so this is not simply ‘close’ to linear,
it is almost exactly linear.

22The data from the 2020-2021 season, which also follows Gompertz Function growth as we
show below, is invisible on the scale of this graph.
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Figure 53: Cumulative Influenza Cases 1 Nov 2016 to 31 May 2020.
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Figure 54: Portugese Influenza Cases 28 Nov 2016 to 7 Mar 2017.
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Figure 55: Portuguese Influenza Cases 28 Dec 2018 to 7 Apr 2019.

2019-12-14

2019-12-28

2020-01-11

2020-01-25

2020-02-08

2020-02-22

2020-03-07

2020-03-21

0

5000

10000

15000

20000

25000

30000

35000

40000
Portugal Influenza Cases 8 Dec 2019-21 Mar 2020

Gompertz(t, 0.0328162, -1.18588, 43682.1)

Figure 56: Portuguese Influenza Cases 8 Dec 2019 to 21 Mar 2020.
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Figure 57: Portuguese Influenza Cases 1 Jan to 21 Mar 2021.
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Figure 58: The 2016-2017 Influenza Season begins with the transition from
Linear to Gompertz Function Growth.
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Figure 59: The 2016-2017 Influenza Season ends with the transition from Gom-
pertz Function Growth to Linear Growth.

There is a further regularity in the ‘off season’ portions of the cumulative
case data.The growth in cumulative cases continues to be piecewise linear with
drops in the slope though the summer minimum. For example, in 2017 the exit
from Gompertz Function growth in April had a slope of 102 cases per day which
dropped in two stages to only 21 cases per day by August.

But the entry to the Gompertz Function growth phase in November 2017
(Figure 60) had a slope of 125 cases per day. How did the case rate increase to
this level?

Our conjecture when we observed this was that there was an intermediate
phase of rapid Gompertz Function growth whose exit is to linear growth at
the higher rate. This is consistent with the apparent universality of Gompertz
Function growth in epidemic outbreaks that we have seen all of our other
examples.

And this is precisely what we found in the Portuguese Influenza case data–not
just in 2017 but each year, including 2020.

Figures 61 and 62 show the cycle from January to December 2017 and the
detail of the piecewise linear spring and summer decline followed by a Gompertz
Function growth outbreak in September and October.

This is followed (as Figure 60 showed in closeup) by the linear transition to
the main Gompertz Growth phase in November and December 2017.

The intermediate Gompertz Function growth phase is repeated each year
at almost the same time.(See Figures 63 to 66).Table 1 shows the dates of the
Gompertz Function growth and linear growth cycles from December 2016 to
March 2021.
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Figure 60: The main outbreak of the 2017-2018 Influenza Season begins with
the transition from linear to Gompertz Function growth.
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Figure 61: The annual cycle Gompertz Growth to Linear Growth to Gompertz
Growth.
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Figure 62: Detail of the 2016-17 cycle shows declining growth in the piecewise
linear phase and a very rapid increase in September.

It is clear that, at least in Portugal, the influenza cycle has, to a very good
approximation, two modes: linear growth and Gompertz Function growth. More-
over, the Gompertz Function growth phases agree with Edgar Hope-Simpson’s
cycle in the Northern Temperate Zone [9] –so we expect to see this pattern
repeated in daily influenza cases in other countries as well.

If this conjecture is born out, it would have very important implications for
the prediction of the influenza cycle and the resulting demands on healthcare
systems which are often severely stressed in annual influenza outbreaks. During
these periods the Gompertz Function Model has good predictive power. In the
piecewise linear growth periods linear extrapolation will suffice.

The prediction problem is therefore reduced to identifying the transitions,
especially from linear to Gompertz Function growth.

We now show the same alternation in growth separated waves in the ‘Spanish
Flu’ epidemic.

4.2 Spanish Flu Waves
The worst pandemic of the last century, the ‘Spanish Flu’, was felt in waves in
various locations around the world.[6]

In England and Wales, it came in three distinct waves, the mechanisms
behind which are still uncertain.[20],[7]

Weekly records of Spanish Flu deaths from the Registry for England and
Wales23 record deaths parish by parish across England andWales. The cumulative

23We are grateful to D. Earn for providing this data.

47

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted December 29, 2021. ; https://doi.org/10.1101/2021.12.26.21268419doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.26.21268419


2017-09-02

2017-09-09

2017-09-16

2017-09-23

2017-09-30

2017-10-07

2017-10-14

2017-10-21

2017-10-28

0

1000

2000

3000

4000

Portugal Influenza Gompertz Growth 1 Sep-31-Oct 2017
Gompertz(t, 0.0441095, -1.66884, 5978.76)

Figure 63: Gompertz Growth of Influenza Cases 1 Sep to 31 Oct 2017.
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Figure 64: Gompertz Growth of Influenza Cases 15 Sep to 14 Nov 2018.
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Figure 65: Gompertz Growth of Influenza Cases 1 Sep to 16 Nov 2019.
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Figure 66: Gompertz Growth of Influenza Cases 1 Sep to 28 Nov 2020.
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Figure 67: Spanish Flu Deaths Grew Linearly from 24 Aug to 21 Sep 1918.

deaths for England and Wales combined show two periods of almost exactly
linear growth: five weeks from 24 August to 21 September 1918 between the
first and second waves and four weeks from 11 January and 1 February 1919,
between the second and third. In both cases the linear fit to the data is almost
exact with r2 over 0.99 and very small absolute errors (maximum of 0.11% in the
first and 0.05% in the second) between the cumulative deaths data and linear
fits. (See Figures 67 to 70). In the complement to the linear growth periods
we see excellent fits by Gompertz Functions. (Figures 71, 72 and 73 show the
fits to the cumulative cases from the beginning to the end of each period.) The
calculation of T2 in each wave gives peaks which agree with the report of the
Registrar for England and Wales’ description of the epidemic wave peaks [11].

The cumulative deaths over all three waves are shown in Figure 74 with the
Gompertz Function growth periods in red.

In linear growth periods, as we have already noted, the Reproduction Number
must be very close to 1–which indicates that at the end of Waves 1 and 2 the
dominant variant had become endemic. There appears to be no generally
accepted mechanism that would explain the waves observed in the Spanish
Flu,[20],[7] however the linear growth periods suggest that Waves 2 and 3 may
have been driven by variants of the original virus. This is also consistent with
increased virulence of the second wave relative to either Wave 1 or Wave 3.

In Figure 8 we illustrated the fit of the Gompertz Function to Spanish Flu
deaths in Prussia from the beginning of the outbreak until 15 December 1918.
From that date, cumulative deaths grew linearly as Figure 75 shows. The linear
fit to the data shown is almost exact, with a maximum absolute error of only
0.23% and r2 > 0.99. We conclude from this that by mid-December of 2018 the
Prussian Spanish Flu epidemic phase was over.
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Figure 68: Detail Spanish Flu Deaths 24 Aug to 21 Sep 1918.
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Figure 69: Spanish Flu Deaths Grew Linearly from 11 Jan to 1 Feb 1919.
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Figure 70: Detail Spanish Flu Deaths 11 Jan to 1 Feb 1919
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Figure 71: Spanish Flu deaths in England and Wales 29 Jun to 17 Aug 1918.
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Figure 72: Spanish Flu deaths in England and Wales 28 Sep 1918 to 4 Jan 1919.
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Figure 73: Spanish Flu deaths in England and Wales 8 Feb to 10 May 1919.
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Figure 74: Three waves of Gompertz Function growth separated by linear growth
in the ‘Spanish Flu’ Epidemic in England and Wales.
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Figure 75: Transition from Gompertz Function growth to linear growth in
cumulative Spanish Flu deaths in Prussia.
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4.3 Covid-19: Endemic Cycles
We have already noted that the initial Covid-19 outbreaks in our examples all
ended with a transition from Gompertz Function growth to linear growth.

Figure 51 showed this for Covid-19 Hospitalisations in London. After the
linear exit from Gompertz Function growth phase in London Hospitalisations,
there was piecewise linear growth with progressively lower slopes through the
summer of 2020.

But, exactly as in Hope-Simpson’s influenza cycle, in September 2020 Covid-
19 hospitalisations started rising again in Gompertz Function growth.(Figure
76)

This was followed by linear growth from 1 November to 7 December as Figure
77 illustrates.

Then the main outbreak came at the height of the annual respiratory virus
season (Figure 78). It ended with a transition to linear growth in March 2021.

Covid-19 hospitalisations, ICU admissions and deaths in London repeated
exactly the seasonal cycle of alternating Gompertz Function growth and linear
growth we observed in Portuguese influenza cases.

We have seen the same phenomenon repeated in multiple locations. We
illustrate this next for Portugal’s ICU admissions. Like London, Portugal
repeated the same pattern of linear and Gompertz function growth that we
observed in the Portuguese influenza case records. Figure 79 shows the late
summer outbreak of Gompertz Function growth followed by the main outbreak
from January to March 2021 (Figure 80). This ended, as usual, with a transition
to linear growth.

In data from Sweden, Isle de France and in Ontario, once again we find this
influenza-like alternation of linear and Gompertz Function growth in the late
summer and the autumn of 2020.

In each of these three locations there was an outbreak of Gompertz Function
growth in the usual winter period, ending as usual with a period of linear growth.

But then, unlike London and Portugal, there was a further ‘wave’ beginning
in March (late, but still within the seasonal period identified by Hope-Simpson).
The two waves were separated by linear growth–which indicates that a different
variant may have been responsible for the second one.

In Rio de Janeiro and Amazonas we have also seen the alternation of Gompertz
Function growth and linear growth. The tropical region influenza cycle is more
complicated than in the temperate zone so a comparison of the timing of Covid-19
outbreaks and the annual influenza cycle will be explored elsewhere. Figures 90-93
for hospitalisations in the State of Rio de Janeiro and deaths in Amazonas show
how well the Gompertz Function fits the second round of Covid-19 outbreaks.

Table 2 shows a sample of dates for alternating Gompertz Function and linear
growth.
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Figure 76: Gompertz Function growth London Hospitalisations 1 Sep to 31 Oct
2020.
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Figure 77: Transition from linear growth 1 Nov to 7 Dec 2020.
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Figure 78: Covid-19 Hospital Admissions in London 8 Dec 2020-21 Mar 2021.
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Figure 79: Portuguese Covid-19 ICU Admissions 8 Sep to 11 Nov 2020.
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Figure 80: Portuguese Covid-19 ICU Admissions 8 Jan to 31 Mar 2021.
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Figure 81: Sweden Covid-19 Hospital Admissions 1 Oct to 5 Nov 2020.
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Figure 82: Sweden Covid-19 Hospital Admissions 1 Dec 2020 to 7 Feb 2021.
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Figure 83: Sweden Covid-19 Hospital Admissions 3 Mar to 24 May 2021.
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Figure 84: Isle de France Covid-19 Hospital Admissions 9 Aug to 16 Oct 2020.
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Figure 85: Isle de France Hospital Admissions 11 Nov 2020 to 4 Jan 2021.
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Figure 86: Isle de France Hospital Admissions 8 Mar 2021 to 6 Jun 2021.
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Figure 87: Ontario Covid-19 Hospital Admissions 1 Sep to 28 Oct 2020.
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Figure 88: Ontario Covid-19 Hospital Admissions 28 Nov 2020 to 14 Feb 2021.
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Figure 89: Ontario Covid-19 Hospital Admissions 14 Mar to 14 Jun 2021.
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Figure 90: RJ Covid-19 Hospital Admissions 26 Dec 2020 to 29 Jan 2021.
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Figure 91: RJ Covid-19 Hospital Admissions 18 Feb to 21 Apr 2021.
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Figure 92: RJ Covid-19 Hospital Admissions 5 May to 14 Jun 2021.
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Figure 93: Amazonas Covid-19 Hospital Deaths 23 Dec 2020 to 10 Mar 2021.
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5 Notes on Gompertz Function Fits

5.1 The ‘Exponential Growth’ Phase
Early in the Covid-19 epidemic the doubling time was a matter of daily specula-
tion and concern. Then, and subsequently, the phrase ‘exponential growth’ has
been used to describe Covid-19 outbreaks by many people who clearly have only
a tenuous grasp of its meaning.

Epidemics do indeed grow rapidly, even extremely rapidly, at first. Epidemi-
ologists often make use of the idea that epidemics have an initial exponential
growth phase, but this is really an approximate feature of compartmental mod-
els24 not an empirical observation. In a study using a range of data sets from
real epidemics, Chowell et al [5] show that subexponential growth is the rule
rather than the exception in the early phase of an epidemic.

The utility of the ‘exponential growth’ approximation is that it allows mod-
ellers estimate model inputs. While there is often a reasonably good fit to
an exponential function in the early phase in epidemic data, such fits rapidly
lose any predictive power. Exponential growth is simply too explosive to be
sustainable.

Figures 94 and 95 show the Gompertz Function fit and the best exponential
function fit (using the same nonlinear regression algorithm) for Covid-19 hospi-
talisations in Portugal from 5 March to 9 April 2020. It’s (just) possible to see
from the graphs that the Gompertz Function fit is closer to the data. But in
fact the Gompertz Function fit is much better: the mean squared error of the
exponential fit is 1.8 times as large as it is for the Gompertz Function over the
sample period.

There is also a very big difference in the loss of predictive power out of
sample. Both fits produced over-estimates of future hospitalisations. On 9 April
14, 600 people had been hospitalised for Covid-19 in Portugal. By 15 May a total
of just over 50, 000 hospitalisations were recorded. The exponential fit would
have reached 1.3 million and the Gompertz Function fit 274, 000 if they were
projected out to 15 May.

But it’s not the long term predictions that matter on 9 April. We’ve already
seen that by 16 April the Gompertz Function fit (Figure 46) had absolute errors
below 10% for more than a week and below 15% for three weeks.The important
question is how useful the predictions made on 9 April would have been in the
short term. Figure 96 shows the out of sample errors for the two fits.

Remember that hospitalisation data is typically delayed by two days, so that
while the first out of sample day is 10 April, the calculations could not have been
made until 11 April. Only on 12 April is the out of sample period in the future
of the calculation. By this time the error in the exponential growth fit is already
almost -18%, compared with -12% for the Gompertz Function. By 16 April the
exponential fit error is -38% compared to -25% for the Gompertz Function.

24For example in an SIR model, if we assume that the entire population is susceptible at the
outset, so S

N
≈ 1, then the while that condition holds, I grows exponentially. But the SIR

equations also show the evolution of S will rapidly violate the condition S
N
≈ 1.
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We have seen that out of sample error levels for Gompertz Function fits drop
rapidly to 10% or less for extended periods as the epidemic progresses. But in
the early stages errors over a period of a week or more will generally exceed this
level. This is because there are two distinct phases of Gompertz function growth.

5.2 Two Phases of Gompertz Function Growth
We have shown evidence for the Extended Gompertz Function Model of alter-
nating periods of Gompertz Function Growth and linear growth. Within the
former we generally observe two phases. While there are excellent Gompertz
Function fits all through an epidemic, the Gompertz Function that fits the data
for, say, the first 3 weeks is different from the one that fits them 3 weeks later.

We illustrate this again with Portuguese Hospitalisations from the initial
Covid-19 epidemic. Figure 33 shows how well the Gompertz Function fits the
hospitalisation data from 5 Mar to 15 May 2020. But we can also see from Figure
97 that the Gompertz Function from 9 April is a much better fit to the data
from 5 March to 9 April. The mean squared error over this part of the sample
is almost four times as large for the 15 May fit as it is for the one on 9 April.
This behaviour is generic. It is the reason that there are still large in-sample
errors in the initial weeks for fits whose out of sample errors fall dramatically as
in Figures 42 to 48.

Note that this is inconsistent with the idea that early epidemic observations
can be viewed as being a ‘noisy’ version of the values from the final Gompertz
Function. The noise would have to be systematically biased to be much larger in
the initial weeks of the epidemic than it is in the later stage. There is certainly
no reason to imagine that ‘measurement error’ in the count of hospitalisations
could behave in such a way.

We will return to the question of improving the predictive power of early
stage fits and ways of using advanced statistical methods to produce accurate
bounds on early stage surge levels in a separate publication.

The division between the ‘initial phase’ and the rapid convergence phase can
be described in terms of the critical time T1 when the acceleration reaches its
peak. Each successive fit produces a different pair (ai, bi) and hence a different
value for T1i

. During the initial phase T1i
will be in the future of the calculation

date Di. The threshold for the end of the initial phase is the time from which
all T1i are in the past of date Di. In the case of the Portuguese Hospitalisations,
T1i

for the 15 May Gompertz Function fit is 29 March, the date it had converged
to by 30 April. T1i

was consistently in the past of the calculation date by 16
April–which was effectively the end of the ‘initial phase’.

Of course we can’t know how long the initial phase will last. We just know
that it will end. We know that the evolution will continue to follow the Gompertz
Function Model or switch to linear growth–as happens every year in the initial
influenza outbreak in Portugal and has happened in all of the Covid-19 outbreaks
reported above.

It is often the case in a mathematical process that we know a certain event
will occur if an iteration continues long enough–but we can’t know in advance
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how many iterations will be needed. In the meantime, we only know that we
should continue the iteration.

We should continue to update the Gompertz Function Fits and monitor their
out of sample predictive power. This can very easily be done every day.

5.3 Gompertz Function Fits in the Rapid Growth Initial
Phase

During the initial phase it is common to find that the best fit has a very large
value of the parameter N . In the Portuguese hospitalisation example on 9 April
for example, N was over 7 million (which is 70% of the population of Portugal
and not a believable long term prediction). The date of T1 given by the 9 April
fit was 29 May. A week later the 16 April fit gave a T1 of 1 April–well in the
past–and N had dropped below 82, 000.

It’s easy to see from the Gompertz Function dynamics why very large values
of N will occur in the initial phase of very rapid growth. These dynamics
are, as we’ve already discussed, completely determined by those of the Gumbel
distribution. We can think of the parameters a and b obtained in a fit of data
up to day D as defining a map from the time interval of days [0, D] to the
real line by x = φ(t) = at + b. The number of positive derivatives of the
Gompertz Function on [0, D] is the same as the number for the standard Gumbel
distribution G(x) = e−e−x

on the image interval φ([0, D]) = [b, aD + b].
Given any positive integer k, there’s a number B(k) < 0 such that whenever

x < B(k) the first k derivatives of G are positive. When epidemic data is
increasing very rapidly (say with growth like a polynomial of degree k), the
nonlinear fit routine will find a Gompertz Function such that b+ aD < B(k).
The more negative the value of B(k), the larger the value of N .

In our example, on 9 April, D = 35 and the right hand endpoint of the image
interval is a35 + b = −1.8285. In the image interval the first four derivatives are
positive and the first three are monotone increasing. Near the end of the interval
the fourth derivative peaks and starts to decrease. This dampens the Gompertz
Function fit’s growth relative to the exponential case, where derivatives of all
orders are always positive.

The Gumbel distribution’s value at -1.8285 is approximately 0.00198. In
order for the Gompertz Function value to approximate 14, 586, the number of
cases on 9 April, we need to have a value of N such that 0.00198N ≈ 14, 586 or
N ≈ 7.4 million.

5.4 Fitting to the Cumulative Rather than to Daily Data
In all of our examples we have shown fits to cumulative data. This is more
directly aligned with our focus of predicting health care demands. The relevant
issue is how many new patients will be admitted over some planning horizon
rather than how many each day within that period.

But there is also a technical issue. We could have fit the daily data with
the function Y (t) = Ng(t, a, b) where g is the probability density function of
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the Gumbel distribution. But the passage from daily data to the cumulative
is equivalent to integration and has a significant smoothing effect. It is more
efficient to first smooth the data then fit the curve and take first differences than
it is to fit the daily data and then integrate.

The linear growth phases are also far more obvious in the cumulative than
they are in the daily data.

Nevertheless, fitting the daily data to the derivative of the Gompertz function
gives very similar results because of the very close approximation of ˙X(t) to the
daily difference X(t+ 1)−X(t). Note that this is a feature of the small values
of a because a one-day grid on the interval [0, D] is equivalent to a grid of step
size a on [b, aD + b].

6 Relation to Compartmental Models
Compartmental models such as the SEIR model where the linked dynamics of
portions of a population that are susceptible (S) to an infectious disease, exposed
to it but not yet able to transmit it (E), infectious (I) and removed (R) form
the basis for much of the modelling of epidemics. The simpler SIR model (where
exposure equates to infectiousness) was introduced by Kermack and McKendrick
almost a century ago as an approximation (whose assumption of homogeneity in
the population they acknowledged was unrealistic).

Like all mathematical models, these rely on a series of assumptions which are
only approximately satisfied in reality. The hope is that they can still provide
useful insight into the real world process.

One of the most restrictive assumptions is that the populations within the
compartments are homogeneous. As Graham Medley, Chairman of the UK’s
SPI-M pandemic modelling group, points out:25

It is intriguing that, currently, most models of infectious disease
transmission dynamics assume that all hosts are identical, when we
know that they are not. For some infections, such as measles, it
is probably adequate to consider that everybody is average when
predicting the impact of immunisation. However, such models result
in policy decisions that have assuming that “everybody is equal” as
an unwritten assumption.For other infections, such as HIV, assuming
that everybody is average is known to be inadequate; the commonest
model structures assume that the population is divided into discrete
groups, where everybody within the group is average for that group.
But how should the groups be chosen, and how do they interact?

In the case of Covid-19, removing this simplifying assumption can produce
outcomes which are greatly at odds with those produced by the standard models.
In particular this can significantly lower the Herd Immunity Threshold, in either
the SIR model [17] or in the SEIR model [8].

25https://www.lshtm.ac.uk/aboutus/people/medley.graham
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In [8], Gabriela Gomes et al show this with heterogeneity introduced through
individual variation in either susceptibility or exposure in an SEIR model of
deaths where the Herd Immunity Threshold is lowered substantially.

The cumulative simulated deaths for England reported in [8] are very well
approximated by Gompertz functions. This may simply reflect the fact that they
are constructed to be in reasonable agreement with the observed deaths data. It
is also possible that heterogeneity could be ‘calibrated’ by targeting Gompertz
Function growth in the outputs.

Table 1: Portuguese Influenza Cycle 2016-2021.

Portuguese Influenza Growth Cycle
Year Gompertz Function Growth Linear Growth

2016-2017 28 Nov 16-7 Mar 17 8 Mar 17-31 Aug 17

2017-2018 1 Sep 17-31 Oct 17 1 Nov 17-30 Nov 17
1 Dec-17-30 Apr 18 1 May 18-14 Sep 18

2018-2019 15 Sep 18-14 Nov 18 15 Nov 18-27 Dec 18
28 Dec 18-21 Mar 19 22 Mar 19-31 Aug 19

2019-2020 1 Sep 19-16 Nov 19 17 Nov 18-7 Dec 19
8 Dec 19-21 Mar 20 22 Mar 20-31 Aug 20

2020-2021 1 Sep 20-31 Oct 20 1 Nov 20-31 Dec 20
1 Jan 21-21 Mar 21

End of Table

7 Using the Extended Gompertz Function Model
in Future

7.1 Ongoing Covid-19 Outbreaks
While Covid-19 outbreaks continue we can expect that the alternating pattern
of Gompertz Function growth and linear growth will be maintained. Indeed, this
is what has been observed since the end of the 2020-2021 episodes.

In England, for example, by the middle of March 2021, the Gompertz Function
growth in hospitalisations had ended. Linear growth that began then continued
until the end of May.

Then another Gompertz Function growth period began, this one ‘out of
season’.This caused the Government to delay the planned ‘reopening’ for several
weeks at tremendous economic and social cost. But by mid July the hospitalisa-
tion growth was linear once again.

In the autumn there was another seasonal Gompertz Function growth phase
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which, as in 2020 was replaced by linear growth in November. It seems likely
that another period of Gompertz Function growth should have been expected
in December. It appears to have begun in the first week of December with the
Omicron variant.

We cannot know in advance when a transition from linear growth to Gompertz
Function growth will occur. We should be ready for these at the usual respiratory
virus intervals, but it is now clear that Covid-19 can appear ‘out of season’ as
well.

To benefit most from the use of this model, it is essential to be able to detect
the transitions, especially from linear to Gompertz Function Growth.

While we know that the latter will fairly rapidly become highly predictable,
we must also deal with the initial period where the predictive power is much
lower–and we cannot know in advance how long that phase will persist.

There are many ways of approaching these problems. Ours is to use a
probabilistic approach to estimate, based on recent observed daily admissions
what future peaks will look like on average. This has proved very effective
both in detecting the onset of the Gompertz Function growth phase and in
providing useful bounds for growth of admissions until the predictive power of
the Gompertz Function fits becomes sufficient. We will discuss this approach in
a separate publication.

7.2 Preparing for the Return of Seasonal Influenza
We have shown that the Extended Gompertz Function Model describes the
Influenza cycle in Portugal and have shown indirect evidence that this is also
the case elsewhere. It is important to test this conjecture in as many other
countries as possible. If it is confirmed, the model can be an important addition
to influenza surveillance systems and alleviate the frequent crises that occur
when the main seasonal outbreaks are larger than usual.

7.3 Pandemic Preparedness
Finally, the Extended Gompertz Function Model has immediate applications to
preparation for future pandemics. When such an event occurs we should expect
cases, hospitalisations and so on to follow Gompertz Function Growth. During
these periods the Gompertz Function Model has excellent predictive power.

We should expect waves to be separated by periods of linear growth indicating
endemic status for the initial virus and the likelihood of a variant driving a
subsequent wave.

It is likely that the next epidemic (of any sort) will also begin with Gompertz
Function growth. We are hopeful that,when that happens, rather than panicked
visions of exponential growth, this model will be applied to make accurate
predictions.
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Table 2: Covid-19 Growth Cycle.

Alternating Gompertz Function and Linear Growth for Covid-19
Area and Data type Gompertz Growth Linear Growth

Sweden Hosp 3 Mar 20-17 May 20 18 May 20-30 Sep 20
1 Oct 20-5 Nov 20 6 Nov 20-30 Nov 20
1 Dec 20-7 Feb 21 8 Feb 21-18 Mar 21

19 Mar 21-24 May 21

London Hosp 19 Mar 20-23 Apr 20 24 Apr 20-31 Aug 20
1 Sep 20-31 Oct 20 1 Nov 20-7 Dec 20
8 Dec 20-21 Mar 21

Isle de France Hosp 18 Mar 20-11 May 20 12 May 20-8 Aug 20
9 Aug 20-16 Oct 20 17 Oct 20-10 Nov 20
11 Nov 20-4 Jan 21 5 Jan 21-7 Mar 21
8 Mar 21-6 Jun 21

Ontario Hosp 1 Mar 20-14 Jun 20 15 Jun 20-1 Sep 20
2 Sep 20-31 Oct 20 1 Nov 20-27 Nov 20
28 Nov 20-14 Feb 21 15 Feb 21-13 Mar 21
14 Mar 21-14 Jun 21

Portugal ICU 14 Mar 20-15 May 20 16 May 20-7 Sep 20
8 Sep 20-11 Nov 20 12 Nov 20-7 Jan 21
8 Jan 21-31 Mar 21

RJ Hosp 15 Mar 20-30 Jun 20 1 Jul 20-25 Dec 20
26 Dec 20-29 Jan 21 30 Jan 21-17 Feb 21
18 Feb 21-21 Apr 21 22 Apr 21-4 May 21
5 May 21-14 Jun 21

Amazonas Deaths 1 Apr 20 -14 Jun 20 15 Jun 20-22 Dec 20
23 Dec 20-10 Mar 21

End of Table

A The Geometry Behind the Gompertz Func-
tion

This appendix provides a quick sketch of the geometry behind the Gumbel
distribution and the Gompertz Function. An introduction to this topic is
contained in [4] where we described a new solution to the problem of characterising
the domains of attraction of the Gumbel distribution and the other Extreme
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Figure 94: ‘Exponential Growth’ in Portuguese Covid-19 Hospitalisations.
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Figure 95: Gompertz Function Growth in Portuguese Covid-19 Hospitalisations.
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Figure 96: Out of sample errors Gompertz Function and Exponential fits.
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Figure 97: Gompertz Function Fits from 9 Apr and 15 May shown from 5 Mar
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Value Distributions.
The ‘location-scale’ parameters in univariate probability distributions arise

from the action of the affine group t → at + b. As Elie Cartan taught us [2],
group actions produce geometry and geometry produces differential invariants
such as curvature. The Gumbel distribution is part of an exceptional maximally
symmetric constant ‘curvature’ family, the Extreme Value Theory attractors and
is the one with zero curvature.

Cartan’s methods [19] show that for a smooth univariate probability distri-
bution F the equivalence class of F under the affine group is determined by the
functional relation between the invariant J(q) = q̈

q̇2 and q = log(F ).
If we denote that function by h so that the relation is J(q) = h(q), then we

may also view the equivalence class as determined by the second order ordinary

q̈ = q̇2h(q), (15)

and identify the location scale parameters of F as the initial conditions for this
differential equation.

For each F this equation is the Euler-Lagrange equation (equivalently
Hamilton’s equations) for the variational problem of minimising the integral of
E(q, q̇) = q̇2e−2

R
h(q)dq.

E is the conserved quantity that Noether’s theorem associates to the time
translation symmetry subgroup of the affine group so we can think of it as an
‘energy’.

The 1-parameter family of distributions with h(q) = 1+c
q corresponds to the

Extreme Value distributions. The Gumbel distribution is given by c = 0, the
values c < 0 give the Weibull distributions and c > 0 the Fréchet distributions. If
we parametrise these with ξ = 1

c then as |c| → ∞ both the Weibull and Fréchet
families tend to the Gumbel distribution.

Only for the Extreme Value distributions is there a second symmetry of the
differential equation. It is obtained by simultaneously scaling t and q by the same
factor. (This is not a Noether symmetry so there is no associated conservation
law.)

This maximally symmetric case is diffeomorphic to the affine group itself,
identifying the differential system for equation (15) with the Maurer Cartan
structure equations for the affine group.[3]

A distribution F on the interval [A,B] (where either of A or B may be infinite)
is in the domain of attraction of an Extreme Value distribution corresponding
to the constant c if and only if its invariant hF tends to 1+c

q as t→ B.
The Gumbel distribution’s domain of attraction is the thin-tailed distributions–

the distributions defined on intervals of the form [A,∞] which have finite moments
of all orders (such as the normal, Laplace or logistic distributions). So if F is
any thin-tailed distribution the defining equation for the equivalence class of F
must approach that of the Gumbel distribution as the percentile level tends to
100%.

This means that any probability distribution F in the Gumbel domain of
attraction will have a good fit by a Gumbel distribution beyond some quantile
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Q and hence a good fit by the Gompertz Function to a model Y = NF (t, a, b)
above the value of t corresponding to Q.

In a preliminary investigation we have seen that the quality of any fit to
epidemic data seems to indicate that, for practical purposes, Q ≈ 0.5. So the
portion of the epidemic curve that occurs after about half of the susceptible
population N is affected will be essentially indistinguishable from a Gompertz
Function. If we add to this the empirical observation that the daily peak comes
at approximately 0.37N , the epidemic curve is bound to resemble a Gompertz
function very closely over its entirety.

The long evolutionary path to a stable equilibrium between virus and host
seems to have led to the emergence of the Gompertz function as a stable
equilibrium for epidemic evolution.

The Gumbel energy is q̇2

q2 , the square of the relative velocity so it would be
interesting to see if there are known biological processes that minimise this.The
‘simpler’ Lagrangian with energy q̇2 yields an exponential distribution (the c = −1
case of the Weibull family) for F . This could also be a stable equilibrium but
presumably one with no people and no human viruses.

There is an intriguing bit of evidence for the idea that viruses themselves are
following a Gompertz Function in an example of observations of bacteriophage
viruses (A. G. McKendrick 1939). McKendrick’s model produces a good fit but
a Gompertz density fits the data with only about one tenth of the mean squared
error of the McKendrick model.

B Covid-19 Data Sources
The Covid-19 data presented in our analysis were taken from:

Sweden: https://www.socialstyrelsen.se
London: https://coronavirus.data.gov.uk
Isle de France: https://www.data.gouv.fr
Ontario: https://covid-19.ontario.ca
Portugal: https://github.com/dssg-pt/covid19pt-data
Amazonas and Rio de Janeiro: https://datasus.saude.gov.br/
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