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Abstract 1 

 2 
Genome-wide association studies have established the contribution of common and low 3 

frequency variants to metabolic biomarkers in the UK Biobank (UKB); however, the role of 4 

rare variants remains to be assessed systematically. We evaluated rare coding variants for 5 

198 metabolic biomarkers, including metabolites assayed by Nightingale Health, using 6 

exome sequencing in participants from four genetically diverse ancestries in the UKB 7 

(N=412,394). Gene-level collapsing analysis – that evaluated a range of genetic 8 

architectures – identified a total of 1,303 significant relationships between genes and 9 

metabolic biomarkers (p<1x10-8), encompassing 207 distinct genes. These include 10 

associations between rare non-synonymous variants in GIGYF1 and glucose and lipid 11 

biomarkers, SYT7 and creatinine, and others, which may provide insights into novel disease 12 

biology. Comparing to a previous microarray-based genotyping study in the same cohort, we 13 

observed that 40% of gene-biomarker relationships identified in the collapsing analysis were 14 

novel. Finally, we applied Gene-SCOUT, a novel tool that utilises the gene-biomarker 15 

association statistics from the collapsing analysis to identify genes having similar biomarker 16 

fingerprints and thus expand our understanding of gene networks.  17 
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Introduction 18 

Metabolic blood biomarkers represent intermediate or end products of biochemical pathways 19 

that can be used to diagnose and monitor human disease. The application of metabolic 20 

biomarkers as intermediate traits to dissect the genetic basis of complex human diseases is 21 

well-established. Investigating the genetic underpinnings of blood biomarkers can offer novel 22 

insights into human disease mechanisms and, in turn, provide potential therapeutic targets. 23 

Large-scale genome-wide association studies (GWAS) have so far identified hundreds of 24 

genetic loci that regulate blood biomarker and metabolite levels1–11; however, difficulty in 25 

mapping these loci to causal genes and interpreting functional effects of non-coding variants 26 

have stymied the clinical impact for many of these associations12. 27 

 28 
The UK Biobank (UKB)13 is a large population-based resource of ~500,000 participants with 29 

genetic data linked to a diverse set of phenotypic measurements. Genotype data from 30 

microarrays and large population-based imputation panels have helped establish the 31 

contribution of common and low frequency variants towards blood biomarkers in the UKB14. 32 

The availability of exome sequences in the same population now allows for the exploration of 33 

rare coding variants regulating metabolic blood biomarkers. Associations for rare coding 34 

variants have demonstrably greater translational potential given their larger effect sizes15 35 

and our ability to more directly interpret their functional impact16. 36 

 37 
Using exome sequences from 412,394 unrelated participants across multiple genetic 38 

ancestries in the UKB, we present findings of variant-level and gene-level (collapsing) 39 

association tests for 198 metabolic blood biomarkers. We then introduce a novel tool, Gene-40 

SCOUT, that utilises this rich catalogue of gene-biomarker association statistics to identify 41 

genes with similar biomarker fingerprints as a given (target) gene of interest and expand our 42 

understanding of gene networks.  43 
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Results 44 

In this study, we analysed 198 metabolic blood biomarkers, including 30 clinical blood 45 

biomarkers related to glucose and lipid metabolism, renal and liver function (Table S1A), 46 

and an additional 168 Nightingale assay blood metabolite measurements related to 47 

lipoprotein�lipids, fatty acids and their compositions, and various other low-molecular weight 48 

metabolites17 (Table S1B). Most of the metabolic biomarkers pertain to lipid metabolism 49 

(77%) and correlate highly with each other (Figure 2a). Many metabolic biomarkers also 50 

demonstrate strong associations with clinical traits documented in the UKB (Figure 2b). 51 

 52 
Figure 1: A schematic of the association analyses that were conducted for the 53 
metabolic blood biomarkers using the UK Biobank exome sequences 54 
The UK Biobank exome sequences were used to conduct single variant (under 3 genetic models) and 55 
gene-level (under 10 collapsing models) association analyses for the clinical blood biomarkers (N=30) 56 
and blood metabolite measurements (N=168). The gene-level association statistics for these 57 
metabolic biomarkers were used as inputs for the gene similarity tool Gene-SCOUT. 58 

 59 
We first conducted a single variant analysis between the non-synonymous coding 60 

variants (N=2,043,019 for the European ancestry subset) and the 198 metabolic biomarkers 61 

(Figure 1). Excluding the MHC region, 19,351 significant variant-biomarker associations 62 
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(p<1x10-8) were identified in the European subset of UK Biobank, which mapped to 12,217 63 

significant relationships between genes and biomarkers (Tables S2A, S2B). Pruning 64 

variants in linkage disequilibrium (r2 threshold of 0.5) resulted in 9,738 significant gene-65 

biomarker relationships. Notably, 243 distinct PTVs accounted for 1,366 significant 66 

associations, of which 602 (44%) were attributable to rare PTVs (MAF<0.1%) with large 67 

effect sizes (>0.5 SD) (Figure 4a) (Tables S3A, S3B). We identified 28 PTVs with MAF as 68 

low as 0.001% that achieved significance in the ExWAS: these include associations relating 69 

to several well-established and biologically plausible relationships such as GOT1 and 70 

aspartate aminotransferase, CST3 and cystatin C, APOB and cholesterol biomarkers, ALPL 71 

and alkaline phosphatase (Table S3A). Among other PTV findings that may provide new 72 

insights into important biology, a rare frameshift variant (MAF=0.03%) in PLIN1 – a gene 73 

known to cause familial lipodystrophy18 – was associated with HDL-cholesterol (beta=0.40 74 

[0.27,0.53], p=1.6x10-9), and a rare splice variant (MAF=0.09%) in TNFRSF10B – loss of 75 

which has been reported to promote survival of virus-infected liver cells19 – was associated 76 

with gamma glutamlytransferase (beta=0.21 [0.14,0.28] , p=3.8x10-9) (Table S3A). 77 

78 
Figure 2: Characteristics of metabolic blood biomarkers analysed in this study  79 
The 198 metabolic blood biomarkers analysed in this study were grouped into the following 10 80 
biological classes: lipid, amino acid, liver, glucose, renal, hormone, ketone body, bone and joint, 81 
inflammatory, and immune. (a) The plot demonstrates that metabolic biomarkers belonging to the 82 
same biological class are correlated with each other. (b) Strong associations (plotted on the Y-axis) 83 
were observed between the metabolic biomarkers and 15,719 clinical traits (grouped by chapter) 84 
documented in the UKB20. 85 
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Next, we performed a gene-level collapsing analysis that tests the aggregate effect of 86 

rare functional variants in each gene. We employed 10 different models to capture a diverse 87 

range of genetic architectures (Methods). In the analysis involving individuals of European 88 

ancestry alone, we identified 1,303 significant relationships between genes and metabolic 89 

biomarkers (p<1x10-8) (Tables S4A, S4B; Figures 3a, 3b). Most (68%, 880/1,303) gene-90 

biomarker relationships detected via the collapsing analysis were captured through models 91 

that exclusively focused on PTV classes (“ptv” and “ptv5pcnt”), while the remaining 32% 92 

were attributable to models that incorporated missense variants. We detected more 93 

significant associations using our “ptv” and “ptv5pcnt” models than a prior study21 that also 94 

performed gene-level collapsing analysis using the UKB exome sequence data, albeit with a 95 

different analytical framework. For instance, associations between PTVs in 12 genes and 96 

HbA1c that we detected were not reported in the other study: this includes the glucose 97 

metabolism genes HK1 and G6PC2 (Figure S1).  We also extended our gene-level 98 

collapsing analysis to include all ancestral groups in the UKB (Methods). This detected an 99 

additional 51 significant gene-biomarker relationships (Tables S5A, S5B). For the gene-100 

biomarker relationships that were significant only in the pan-ancestry analysis, we did not 101 

observe a significant difference in the estimated effect size between the European-only and 102 

the pan-ancestry analyses (p=0.83), suggesting that increased statistical power rather than 103 

ancestry-specific effects is the more likely reason why these associations were identified in 104 

the pan-ancestry analysis. One such association detected exclusively in the pan-ancestry 105 

analysis was between recessive carriers of nonsynonymous variants in the membrane 106 

transport gene SYT7 and blood creatinine levels (number of QV carriers=5, beta=2.17 107 

[1.46,2.87], p=1.6x10-9). With 3 of the 5 carriers observed in the South Asian and African 108 

ancestry participants, the pan-ancestry analysis facilitated detection of this association, 109 

which was not study-wide significant in the European subset (number of QV carriers=2, 110 

beta=1.17 [0.06,2.28], p=0.04). Remarkably consistent with the biomarker findings, 111 

recessive carriers of SYT7 PTVs demonstrate a increased risk of glomerular disease in the 112 
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pan-ancestry analysis (OR=92.1 [12.1,713.2], p=2.6x10-5), but the clinical association on its 113 

own is not yet study-wide significant. 114 

The significant gene-level relationships from the collapsing analyses encompassed 115 

207 distinct genes, of which 32 were associated with biomarkers across different biological 116 

classes (Figure 3c). This includes GIGYF1, a tyrosine kinase receptor signalling protein, in 117 

which rare PTVs were associated with biomarkers of glucose [glucose (beta=0.59 118 

[0.42,0.76], p=7.9x10-12) and HbA1c (beta=0.73 [0.57,0.88], p=4.5x10-20)] and cholesterol 119 

metabolism [total cholesterol (beta=-0.66 [-0.82,-0.50], p=2.0x10-15), LDL-cholesterol (beta=-120 

0.61 [-0.78,-0.45], p=3.4x10-13) and apolipoprotein B (beta=-0.60 [-0.77,-0.44], p=1.3x10-12)]. 121 

Additionally, among clinical traits documented in the UKB20, significant associations were 122 

observed for rare PTVs in GIGYF1 with the risk of hypothyroidism (OR=4.2 [2.7,6.6], 123 

p=7.1x10-9) and type 2 diabetes (OR=4.0 [2.7,5.8], p=1.0x10-10). Since hypothyroidism is 124 

known to raise LDL-cholesterol levels, we subsequently tested the GIGYF1–LDL-cholesterol 125 

association adjusted for a diagnosis of hypothyroidism. The signal between GIGYF1 PTVs 126 

and LDL-cholesterol (adjusted for the effect of statins) remained significant upon adjusting 127 

for hypothyroidism (beta=-0.55 [-0.71,-0.38]; p=6.2x10-11), suggesting that the GIGYF1 locus 128 

likely influences cholesterol levels independent of solely thyroid hormone-mediated 129 

pathways. Thus, by leveraging information from over 400,000 UKB exomes, our study 130 

provides a more comprehensive picture regarding GIGYF1’s biomarker fingerprint and 131 

associated clinical traits, expanding on previously reported common7 and rare variant 132 

associations21,22 at this locus. 133 

We observed that adjusting biomarkers for medications that influence their levels can 134 

also improve detection of associations: 31/84 (37%) significant gene-biomarker relationships 135 

for apolipoprotein B, LDL-cholesterol, total cholesterol, and urate from the collapsing 136 

analysis were detected only after we adjusted their values for commonly prescribed 137 

medications (Table S4A). This includes association between putatively damaging missense 138 

variants and PTVs in HMGCR (“flexdmg” model) and LDL-cholesterol (medication-adjusted: 139 

beta=-0.19 and p=1.7x10-11; medication-unadjusted: beta=-0.15 and p=6.1x10-8), which 140 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted December 27, 2021. ; https://doi.org/10.1101/2021.12.24.21268381doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.24.21268381


 9

validates the value of medication adjustment to untangle the effects of therapeutic 141 

intervention vs natural aberration of HMGCR. Moreover, for gene-biomarker relationships 142 

that were significantly associated in both the medication-unadjusted and the medication-143 

adjusted analyses (N=52), the absolute effect sizes were observably higher in the latter 144 

(Figure S2), but the difference was not statistically significant in the current sample (Mann 145 

Whitney p=0.28). 146 

 147 
Figure 3: Significant relationships between genes and metabolic blood biomarkers 148 
identified in the collapsing analysis 149 
(a, b) Significant gene relationships (p<1x10-8) identified for select clinical biomarkers and metabolites 150 
in the collapsing analysis have been shown. The genes with the highest absolute effect sizes for each 151 
have been labelled. 152 
(c) The plot lists the 32 genes that were significantly associated (p<1x10-8) with metabolic biomarkers 153 
across two or more biological classes in the collapsing analysis. For each such gene, the 154 
corresponding biological classes have been indicated. 155 
 156 
Gene-level collapsing analysis: capturing allelic series 157 

We observed that 17% (215/1,303) of significant relationships between genes and 158 

metabolic biomarkers from the collapsing analysis did not achieve significance in the 159 

respective variant-level ExWAS (Table S6). Next, we also compared the gene-biomarker 160 

relationships that achieved significance in the collapsing analysis (Tables S4A, S7) and the 161 
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microarray-based GWAS14 (as per a less stringent significance threshold: p<1x10-7) for the 162 

32 biomarkers (28 blood and 4 urinary biomarkers) analysed in both studies. Of the 163 

significant gene-biomarker relationships identified in the collapsing analysis, 40% (142/357) 164 

were not detected in the microarray-based GWAS (Table S8). These include associations 165 

for well-known drug target genes such as HMGCR (with LDL-cholesterol) and PPARG (with 166 

HDL-cholesterol). Furthermore, the effect size estimates were significantly higher in the 167 

collapsing analysis than in microarray-based GWAS for 215 gene-biomarker relationships 168 

detected via both approaches (Mann-Whitney p=8.0x10-6) (Table S9; Figure 4b). One likely 169 

explanation for this is that by testing aggregate effects of rare putative functional variants in 170 

a gene, associations arising from collapsing analysis are enriched for larger effects (Figure 171 

4c). Collectively, these results highlight that application of a gene-based rare variant 172 

collapsing analysis to large-scale exome sequencing can increase power to capture 173 

associations that are driven by an allelic series, and thus expand our understanding of the 174 

genetic architecture of traits, especially where a lot of success has already been achieved 175 

through traditional microarray-based GWAS. 176 

SLC4A1, which encodes a chloride/bicarbonate anion exchange protein in the red cell 177 

membrane, represents one such gene for which multiple signals were detected in the gene-178 

level collapsing analysis but not in the ExWAS. We observed 32 carriers for 28 distinct 179 

SLC4A1 PTVs, of which 25 (89%) were private (i.e., observed in a single carrier) (Figure S3). 180 

Overall, SLC4A1 PTVs were significantly associated with a strong reduction in HbA1c (beta=-181 

2.2 [-2.6,-1.8], p=1.4x10
-25

) and LDL-cholesterol (beta=-1.0 [-1.4,-0.7], p=8.0x10
-9

), while also 182 

showing strong increases in total bilirubin (beta=1.7 [1.3,2.0], p=1.1x10
-22

) and direct 183 

bilirubin (beta=2.0 [1.7,2.4], p=1.8x10
-28

). Among clinical phenotypes, SLC4A1 PTVs are 184 

significantly associated with disorders of reduced red cell membrane stability such as 185 

hereditary spherocytosis and hereditary haemolytic anaemia, but not with any phenotype 186 

related to glucose or lipid metabolism (p<1x10
-5

). Similarly, in ClinVar, several missense and 187 
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loss-of-function mutations in this gene are reported as pathogenic for hereditary 188 

spherocytosis. Therefore, we further tested the SLC4A1–biomarker associations after 189 

adjusting for the diagnosis of hereditary spherocytosis or hereditary haemolytic anaemia 190 

and relevant blood cell indices, including red cell distribution width (RDW) and mean 191 

corpuscular haemoglobin 192 

 193 
Figure 4: Effects of coding variants on metabolic blood biomarkers 194 
(a) Absolute effect sizes for missense variants and PTVs significantly associated (p<1x10-8) with 195 
metabolic biomarkers in the single variant analysis (ExWAS) as a function of their minor allele 196 
frequency (in cases where a missense variant or a PTV was significantly associated with more than 197 
one biomarker, the association with the highest absolute effect size was selected). (b) The effect 198 
sizes estimated in the gene-based collapsing analysis and the Sinnott-Armstrong et al microarray-199 
based GWAS14 were compared for the gene-biomarker relationships that were significantly 200 
associated in both (N=215). For each significant gene-biomarker relationship, the collapsing model 201 
(from the collapsing analysis) and the individual variant (from the microarray-based GWAS) with the 202 
highest absolute effect sizes were selected. The effect sizes estimated in the collapsing analysis were 203 
significantly higher than that in the GWAS (Mann-Whitney p=8.0x10-6). (c) Comparing effect sizes for 204 
individual variants and aggregate of rare variants (in a gene) that were significantly associated 205 
(p<1x10-8) with LDL-cholesterol. Some examples of genes significantly associated with LDL-206 
cholesterol have been highlighted. The Y-axis has been capped at 1 SD units for visual clarity. 207 
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 208 
concentration (MCHC). The gene-based SLC4A1 PTV signals remained significant in the 209 

adjusted analyses (Table S10). Although PTVs in this gene may be independently associated 210 

with biomarkers of glucose, lipid and bilirubin metabolism, we cannot rule out the 211 

possibility of under-reporting of hereditary spherocytosis and hereditary haemolytic 212 

anaemia in the UKB that explains these observations. The SLC4A1 enigma is consistent with 213 

previous reports of other red blood cell loci that have also been significantly associated with 214 

HbA1c
23

. 215 

Gene-SCOUT: estimating gene similarity based on cohort statistics from collapsing analysis 216 

We considered the opportunity to leverage this new and rich catalogue of gene-level 217 

association statistics from the collapsing analysis to determine genes with similar biomarker 218 

fingerprints. To achieve this, we developed a gene similarity tool ‘Gene-SCOUT’24, that 219 

solely uses the gene-level collapsing analysis statistics across the studied biomarkers to 220 

identify genes with the most comparable biomarker genetic associations as a given gene of 221 

interest. No other information is used in constructing the gene similarity scores. Since this 222 

tool estimates gene similarity for an index gene by selecting features based on the 223 

significance cut-off of p<1x10-5, gene neighbours could not be determined for genes that did 224 

not achieve association p<1x10-5 with any biomarker feature. Accordingly, for our feature set 225 

comprising of 198 biomarkers, we were able to determine gene similarity for 3% 226 

(536/18,762) of human protein-coding genes. To illustrate Gene-SCOUT’s application, we 227 

selected the 24 genes that were significantly associated (p<1x10-8) with LDL-cholesterol in 228 

the collapsing analysis. We used each gene in this set as a seed gene to construct a 229 

network figure that demonstrates their respective gene neighbours (Figure 5). Using APOB 230 

as an example, we observe that genes with the most comparable biomarker fingerprint as 231 

APOB include: ABCA1, ACVR1, APOC3, ANGPTL3, ASGR1, ASXL1, BTNL9, GIGYF1, 232 

HIST2H2BE, HMGCR, NPC1L1, PCSK9, PDE3B, PKD1L3, RRBP1, SLC4A1, TM6SF2 and 233 

ZNF229. For some of these genes (e.g., ZNF229, ACVR1), the links with lipid metabolism 234 
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appear to be novel, in addition to the recently described relationships for GIGYF121,22. 235 

Inhibition of APOB, such as through mipomersen, is known to be clinically effective in 236 

reducing blood cholesterol levels. Remarkably, 5 (namely, APOC3, ANGPTL3, HMGCR, 237 

NPC1L1 and PCSK9) of the 18 genes (28%) determined to have similar cohort-level genetic 238 

associations for biomarkers as APOB are also targets of lipid-lowering drugs that are already 239 

approved or in various stages of development (https://www.fda.gov/drugs).  240 

 241 
Figure 5: Network figure demonstrating the gene neighbours i.e., genes with most 242 
similar biomarker genetic signals, as the set of genes that were significantly 243 
associated with LDL-choleserol in the collapsing analysis 244 
The 24 genes that were significantly associated (p<1x10-8) with LDL-cholesterol in the collapsing 245 
analysis were used as seed genes (green nodes) to construct a network figure demonstrating 246 
respective gene neighbours (edges). Non-seed genes are represented using blue nodes. The size of 247 
a gene node corresponds to the number of features (of total 198) that the gene is associated with at 248 
p<1x10-5. The inset demonstrates the genes with most similar biomarker signature as APOB – these 249 
include the ten closest genes for APOB as the seed gene (black edges) and other seed genes that 250 
have APOB among their ten closest genes (grey edges).  251 
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Discussion 252 

We used the 454,796 UK Biobank exome sequences to explore the contribution of private-253 

to-rare-to-common protein-coding variation for 30 clinical biomarkers and 168 metabolite 254 

measurements. By adopting variant- and gene-level analysis frameworks and assessing the 255 

full allelic frequency spectrum, we have expanded our understanding of the genetic 256 

architecture of metabolic biomarkers that have previously been studied through microarray 257 

data. The finding that 17% of gene-biomarker relationships detected in the gene-level 258 

collapsing analysis were not identified in the single variant analysis demonstrates the power 259 

of testing an aggregate effect of rare variants in a gene encompassing a range of genetic 260 

architectures. We also illustrated how adjusting biomarker values for commonly prescribed 261 

medications can improve signal detection. 262 

There are several strengths of our study that might have implications for identifying or 263 

validating drug targets. First, by virtue of focusing on coding variants, the observed 264 

associations could provide a more causal link between a gene and a blood biomarker25–28. 265 

Moreover, association signals emerging from collapsing analysis are driven by an aggregate 266 

effect of multiple rare variants (allelic series) that tend to be less impacted by local LD 267 

structure. This contrasts with associations identified in microarray-based GWAS that often 268 

map to non-coding regions of the genome or to regions of extensive LD, making it more 269 

challenging to pinpoint the underlying causal variants.  270 

Associations involving putative functional variants can also indicate the desired 271 

modulation of the target gene e.g., upregulation or downregulation of the target gene 272 

product, required to mitigate the risk of the disease related to the associated biomarker. For 273 

instance, we observed a total of 182 associations for rare (MAF<0.1%) PTVs with the 30 274 

blood biomarkers, which is >3-fold more than the 53 conditionally independent PTV 275 

associations (for the same set of blood biomarkers) reported in the microarray-based 276 

analysis14. 277 
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We also introduce a novel tool (Gene-SCOUT) that utilises all the gene-level 278 

collapsing analysis statistics across the 198 studied biomarkers to estimate a ‘similarity’ 279 

metric between genes. With the aid of specific examples, we were able to demonstrate that 280 

this approach can successfully identify genes with similar biomarker fingerprints. 281 

While there are certain advantages of using blood biomarkers to dissect the genetics 282 

of complex human diseases, including greater statistical power offered by quantitative traits 283 

and better insights into biological pathways underlying associations, further work is 284 

necessary to establish the causal relationship between genetic loci identified using 285 

biomarkers or metabolites and the related disease(s). For instance, we observed 286 

associations between certain biomarkers and variants in genes that encode them (e.g., ALB 287 

with albumin, and CST3 with cystatin C) – although such associations serve as excellent 288 

positive controls that demonstrate the robustness of our analysis framework, they may not 289 

offer novel insights into disease pathophysiology. 290 

Using the largest collection of exome sequences linked to a diverse set of circulating 291 

metabolic biomarkers, we demonstrate the value of this resource to enhance our 292 

understanding of human diseases, and potentially, provide novel therapeutic targets focused 293 

on mimicking natural human genetic discoveries. Our study also strongly supports the use of 294 

a gene-based collapsing framework to uncover gene-biomarker relationships that are driven 295 

by an aggregate effect of multiple rare, non-synonymous variants. 296 

297 
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Methods 298 

 299 
UK Biobank (UKB) Resource 300 

The UKB resource13 is a prospective cohort study of ~500,000 individuals from across the 301 

United Kingdom, aged between 40 and 69 years. The average age at recruitment for the 302 

sequenced participants was 56.5 years and 54% of the sequenced cohort are females. 303 

Participant data, obtained through questionnaires and assessment visits, include health 304 

records that are periodically updated by the UKB, self-report survey information, linkage to 305 

death and cancer registries, urine and blood biomarkers, imaging data, accelerometer data 306 

and various other phenotypic endpoints13. All study participants provided informed consent. 307 

For this study, data from the UKB resource was accessed under the application number 308 

26041. 309 

 310 
Metabolic blood biomarkers 311 

Routine clinical blood biomarkers related to glucose and lipid metabolism, renal and liver 312 

function, among others (N=30), were measured in the majority of the ~500,000 UKB 313 

participants (Table S1A). Additionally, 168 blood metabolites, including lipoprotein�lipids, 314 

fatty acids and their compositions, and various low-molecular weight metabolites, were 315 

profiled in a subset of ~120,000 UKB participants by Nightingale Health using nuclear 316 

magnetic resonance spectroscopy17 (Table S1B). Samples with a ‘quality control (QC) flag’ 317 

for the blood metabolites were excluded. In total, we analysed 198 metabolic blood 318 

measures: 30 clinical biomarkers and 168 metabolites. We applied rank-based inverse-319 

normal transformation to the measurements prior to performing association analyses. 320 

For four blood biomarkers (LDL-cholesterol, total cholesterol, apolipoprotein B and 321 

urate) we adjusted for the effect of commonly prescribed medications known to influence 322 

their levels. For LDL-cholesterol, total cholesterol and apolipoprotein B, we adjusted for the 323 

effect of statins based on their ‘statin adjustment factors’, previously estimated in the UKB as 324 

0.684, 0.749 and 0.719, respectively14. Similarly, we adjusted urate for the effect of 325 
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allopurinol based on an ‘allopurinol adjustment factor (0.810)’, calculated using an approach 326 

identical to that described for statins14. 327 

 328 
Whole-exome sequencing and bioinformatics pipeline 329 

Whole-exome sequences for 454,988 UKB participants were generated at the Regeneron 330 

Genetics Center as part of a pre-competitive data generation collaboration between AbbVie, 331 

Alnylam Pharmaceuticals, AstraZeneca, Biogen, Bristol-Myers Squibb, Pfizer, Regeneron 332 

and Takeda29. The exome sequencing procedure and the relevant QC steps have been 333 

detailed previously in Szustakowski et al (2021)29 and Wang et al (2021)20. The FASTQ 334 

sequences that were made available were first aligned, following which, single nucleotide 335 

variants (SNVs) and small indels were called using Illumina’s DRAGEN Bio-IT Platform 336 

Germline Pipeline v3.0.7 on the Amazon Web Services cloud compute platform available at 337 

AstraZeneca’s Centre for Genomics Research. SNPEff v4.330 was used to annotate the 338 

‘most damaging effect’ predicted for each protein coding variant. In addition, we used certain 339 

other bioinformatic tools such as missense tolerance ratio (MTR) scores31 to identify regions 340 

of protein coding genes under constraint for missense variants, and REVEL32 to prioritise 341 

coding variants based on their predicted deleteriousness. Further details on how these tools 342 

were applied to the UKB exome sequencing dataset have been previously described20. 343 

 344 
Selection of UKB samples for the association analyses 345 

Prior to performing the association analyses, we excluded samples from the available UKB 346 

exome sequencing dataset (N=454,796) based on the following QC measures20 (Figure S4): 347 

(i) DNA contamination: VerifyBAMID freemix (measure of DNA contamination) >4%. 348 

(ii) Coverage depth: ≥10x for <94.5% of the consensus coding sequence (CCDS release 349 

22). 350 

(iii) Relatedness: 2nd-degree relatives or closer (equivalent to kinship coefficient>0.0884), as 351 

estimated using the --kinship function in KING v2.2.233. 352 

Additionally, to perform analyses accounting for differing genetic ancestry, we 353 

assigned samples to one of the four major ancestral groups (minimum 1,000 participants): 354 
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European (N=394,695), South Asian (N=8,078), East Asian (N=2,209) and African 355 

(N=7,412).  This was done by excluding participants: (i) with predicted genetic ancestry 356 

<0.99 (for European ancestry) or <0.95 (for the remaining ancestries), as estimated using 357 

PEDDY v0.4.2; or (ii) lying outside four standard deviations for the top four principal 358 

components for each of the genetic ancestry collections. 359 

 360 
Association analysis for metabolic blood biomarkers 361 

A number of stringent variant-level QC steps, detailed previously20, were applied to select 362 

variant calls with highest confidence for association testing. Briefly, the variant-level QC 363 

criteria included coverage depth, genotype and mapping quality scores, DRAGEN variant 364 

status, read position rank sum score (RPRS), mapping quality rank sum score (MQRS), 365 

alternate allele read proportion for heterozygous calls, proportion of samples failing any of 366 

these QC criteria, and gnomAD-related filters. 367 

Association testing between the metabolic blood biomarkers and the variants in the 368 

exome sequencing dataset was conducted using two complementary analytical approaches 369 

(Figure 1): 370 

(i) Single variant exome-wide association study (ExWAS) 371 

(ii) Gene-level collapsing analysis 372 

We conducted the association analyses separately in the European ancestry 373 

participants as this comprised the single largest ancestral group in this resource and for all 374 

four ancestries combined (‘pan-ancestry’ analysis).  375 

 376 
Single variant exome-wide association study (ExWAS) 377 

In the single-variant analysis (hereafter referred to as ‘ExWAS’), variants that passed the QC 378 

steps were filtered further to include those that had a minimum of six carriers (equivalent to 379 

MAF>0.0008% in the European ancestry subset). We additionally excluded variants that had 380 

one of the following annotations as their most damaging effect as per SNPEff: 381 

3_prime_UTR, 5_prime_UTR, initiator_codon_variant, non_coding_transcript_exon_variant, 382 
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and synonymous_variant. The remaining non-synonymous coding variants (N=2,043,019 in 383 

the European ancestry subset) were used to perform the ExWAS. 384 

The ExWAS was conducted by fitting a linear regression model adjusted for age, sex 385 

and BMI (for blood metabolites only), using the tool PEACOK that was developed as a 386 

modification of the R package PHESANT34. For the pan-ancestry analysis, we additionally 387 

included the categorical ancestral group and top five ancestry principal components as 388 

covariates. For each of the 198 biomarkers, three different genetic models were evaluated in 389 

the ExWAS: (i) genotypic (AA vs AB vs BB), (ii) dominant (AA+AB vs BB), and (iii) recessive 390 

(AA vs AB+BB), where A and B denote the reference and alternative alleles, respectively. A 391 

significance cut-off of p<1x10-8 was adopted for the ExWAS35. 392 

 393 
Gene-level collapsing analysis 394 

In order to boost power to detect associations for rare variants (including private mutations) 395 

having the same direction of effect, we adopted a collapsing framework to test the aggregate 396 

effect of rare functional variants in a gene. Overall, 10 different collapsing models (9 397 

dominant and one recessive) were implemented per gene to evaluate a range of genetic 398 

architectures. Additionally, a synonymous collapsing model was used for the purpose of 399 

establishing an empirical negative control20. 400 

  As outlined in Table S11, the criteria for qualifying variants (QVs)36 for the collapsing 401 

models were based on the following parameters: type of variant (missense, non-402 

synonymous or PTV), minor allele frequency, in silico deleteriousness predictors (REVEL 403 

and MTR), and type of genetic model (dominant or recessive). The following variant 404 

annotations were used to define PTVs: exon_loss_variant, frameshift_variant, start_lost, 405 

stop_gained, stop_lost, splice_acceptor_variant, splice_donor_variant, gene_fusion, 406 

bidirectional_gene_fusion, rare_amino_acid_variant and transcript_ablation. Hemizygous 407 

genotypes for the X chromosome also qualified for the recessive model. 408 

For a given collapsing model, the effect of QVs in each gene (N=18,762) was 409 

calculated as the difference in the mean of a blood biomarker between carriers and non-410 
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carriers of the QVs, using a linear regression model in PEACOCK. Covariates used in the 411 

linear regression model were identical to that described for the ExWAS.  412 

A significance cut-off of p<1x10-8 was set for the collapsing analysis based on the 413 

observed p-value distribution for the synonymous model and an n-of-1 permutation, as 414 

described previously20. 415 

 416 
Association analysis of clinical phenotypes documented in the UKB  417 

We harmonized and union mapped the clinical phenotypes available in the UKB, as 418 

previously described20. Phenome-wide collapsing analysis for 15,719 clinical phenotypes 419 

was performed for the 11 collapsing models, as described in our previously published 420 

study20. We queried the results of this analysis for genes of interest that emerged from the 421 

analysis of the metabolic biomarkers. 422 

Additionally, we also performed an association analysis between the each of the 198 423 

metabolic biomarkers and the clinical phenotypes using a linear regression model adjusted 424 

for age and sex. 425 

 426 
Comparison of results from collapsing analyses to microarray-based genome-wide 427 

association study  428 

We explored the hypothesis that the application of a collapsing framework – that tests the 429 

aggregate effect of rare functional variants in a gene identified using exome sequencing – 430 

detected gene-biomarker relationships that were previously not identified in microarray-431 

based studies. In order to do that, we compared our findings with the results from a recent 432 

study14 that conducted single variant association analysis (GWAS) for clinical biomarkers in 433 

the UKB using microarray data, including directly genotyped coding variants. Besides the 434 

28/30 clinical blood biomarkers that we studied, seven other biomarkers (mainly, urine-435 

related) were analysed in the GWAS. These seven biomarkers comprised of four urinary 436 

biomarkers that were directly measured in the UKB and an additional three derived 437 

measurements. For the purpose of comparing findings, we additionally performed gene-level 438 

collapsing analysis for the four urinary biomarkers for which data were directly available in 439 
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the UKB (i.e. ‘sodium in urine’, ‘potassium in urine’, ‘microalbumin in urine’, and ‘creatinine 440 

(enzymatic) in urine’). To be consistent with the microarray-based GWAS, we used the 441 

statin-adjusted values for LDL-cholesterol, total cholesterol, and apolipoprotein B, and the 442 

medication-unadjusted values for the remaining biomarkers. Thereafter, for the set of 32 443 

biomarkers (28 blood and 4 urinary biomarkers) common to both studies, we compared 444 

gene-biomarker relationships that achieved significance (p<1x10-8) in the collapsing analysis 445 

with gene-biomarker relationships corresponding to the significant coding variant 446 

associations reported in the GWAS. We considered a comparatively relaxed significance 447 

threshold of p=1x10-7 for the GWAS results in order to be stringent when attributing a gene-448 

biomarker relationship as being specific to the collapsing analysis. 449 

We also hypothesised that the various variant-level “purifying” filters implemented for 450 

QV selection in the collapsing analysis can enable a more direct estimate for the effect of 451 

gene aberrations (e.g., PTVs) on biomarker levels. To investigate this hypothesis, we 452 

compared the effect sizes for gene-biomarker relationships that achieved significance in both 453 

the gene-level collapsing analysis and the microarray-based GWAS. For each such gene-454 

biomarker relationship, we selected: (i) the model with the highest absolute beta in the 455 

collapsing analysis, and (ii) the individual variant with the highest absolute beta as reported 456 

in the Sinnott-Armstrong et al GWAS14. For the latter, we adopted the absolute beta 457 

estimated in the genotypic model in our ExWAS (for the corresponding gene-biomarker 458 

relationship) as a substitute, to account for possible differences in trait transformation, 459 

association model or covariates between our study and the Sinnott-Armstrong et al GWAS. 460 

Nonetheless, the absolute betas were highly correlated between the Sinnott-Armstrong et al 461 

GWAS and our ExWAS (Spearman’s rho=0.99) (Figure S5). We then compared the 462 

absolute beta of the collapsing model [step (i)] with that of the individual variant [step (ii)]. 463 

This approach provides a means to compare the effect size of aberrations in genes on 464 

biomarker levels estimated from individual coding variants captured by microarrays with that 465 

estimated from an aggregate of rare coding variants identified using exome sequencing. 466 

 467 
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Estimating gene similarity based on association signatures from collapsing analysis 468 

We aimed to leverage the rich catalogue of gene-level association statistics from the 469 

collapsing analysis – ascertained for the set of studied metabolic biomarkers and under 470 

different QV models – to identify genes that possess similar metabolic biomarker fingerprint 471 

as a (target) gene of interest. Such a ‘gene similarity’ metric can provide opportunities to not 472 

only expand our understanding of gene networks, but also offer alternative candidates in 473 

cases of difficult-to-drug targets. Gene-SCOUT (Gene Similarity from Continuous Traits)24, 474 

the tool that we developed for this purpose, can also estimate “similarity” between genes 475 

based on any set of quantitative traits of interest. 476 

Rather than calculating similarities between genes directly, Gene-SCOUT estimates 477 

distances between genes, which it then uses as a proxy for their similarity. Based on that, 478 

the set of genes having the smallest distance from a given seed gene represent those that 479 

are most ‘similar’ to it. We applied the cosine distance method – which is commonly used in 480 

natural language processing37 – to calculate distances between genes38 based on their 481 

effects on the metabolic biomarkers (referred to as ‘features’) estimated in the collapsing 482 

analysis. In order to minimise the impact of stochastic effects on the gene similarity 483 

estimations, for a given seed gene of interest, only those features that the genes is 484 

associated with at p<1x10-5 are selected (‘feature selection’ step), guided by sensitivity 485 

analyses performed for a range of p-value thresholds24. Thus, distances from genes having 486 

p>1x10-5 for all features in common with the seed gene are not considered. 487 

The feature set used to generate the Gene-SCOUT results comprised of the 198 488 

metabolic blood biomarkers. Though there is a degree of correlation in our feature set 489 

(Figure 2a), we have demonstrated through simulations that correlation between features 490 

has minimal impact on gene similarity estimations24. 491 

To illustrate the tool’s utility, we generated a network figure showing the genes that were 492 

most similar to each of the 24 genes that were significantly associated with LDL-cholesterol 493 

in the collapsing analysis.  494 
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Ethics Reporting 495 

The protocols for UKB are overseen by The UK Biobank Ethics Advisory Committee (EAC); 496 

for more information see: https://www.ukbiobank.ac.uk/ethics/ and  497 

https://www.ukbiobank.ac.uk/wp-content/uploads/2011/05/EGF20082.pdf. 498 
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412,394 UK Biobank 
exome sequences

Single variant 
analyses

Gene-level 
collapsing analyses

• 2.04 million non-synonymous variants
• 3 genetic models: recessive, additive 

and dominant

• 18,762 genes across the exome
• 10 collapsing models: missense,

PTV and non-synonymous

Association statistics: inputs for 
gene similarity tool Gene-SCOUT

30 clinical
biomarkers

168 
metabolites

Pan-ancestry 
association 

analyses

198 metabolic blood 
biomarkers
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DNA contamination
VerifyBAMID freemix >4%

Genetic ancestry
(i) Predicted ancestry <0.99

(ii) >4 SDs for top four PCs for 
the genetic ancestry

Coverage depth
10x for <94.5% of the CCDS

Europeans
(N=394,695)

East Asians
(N=2,209)

South Asians
(N=8,078)

Africans
(N=7,412)

Relatedness
2nd-degree relatives or closer 
(kinship coefficient >0.0884 )

(N=122)

(N=32,181)

(N=5)

454,796 UK Biobank  exome sequences
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