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1 Methods

1.1 Data

1.1.1 Microbial data

Details of sample collection, sequencing, and processing are described in1,2. All data are
publicly available and were downloaded on 21 July 2020. Briefly, 16S and ITS ribosomal
RNA (rRNA) amplicon sequencing were used to profile the bacterial and fungal communities
present in dust on the indoor and outdoor door sills of homes across the United States. Be-
cause they are typically rarely cleaned, the microbial communities on door sills represent a
time-integrated sample of the airborne microbial community at a location. For each home, be-
tween 2012-2013, a paired indoor and outdoor sample was collected from each home, allowing
a comparison of indoor and outdoor microbial communities. Additional details of sampling
collection and processing are Although both bacterial and fungal data were collected, here we
focus on the latter; preliminary analyses indicated weaker associations between COVID-19
and bacteria. Each sample was rarefied to 10,000 sequences; samples with fewer than this
number of sequences were omitted, yielding paired indoor-outdoor samples from 1,135 homes
across the United States.

1.1.2 Raw COVID-19 data

The daily numbers of COVID-19 cases and deaths for each United States county were down-
loaded from the Johns Hopkins Data COVID-19 data repository3 on 16 February 2021. The
numbers of PCR SARS-CoV-2 tests administered daily in each state in the United States
were obtained from the COVID Tracking Project4 on 16 February 2021.

1.1.3 Estimation of COVID-19 infection fatality ratios

To estimate COVID-19 infection fatality rates in United States counties, two challenges must
be overcome. First, because many individuals with SARS-CoV-2 infections are asymptomatic
or were not tested, the total number of infections is a latent variable that must be estimated.
And second, complicating the latter challenge, the number of tests administered in each
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United States county was not systematically recorded, although it was recorded in aggregate
across each state. We developed a inferential framework to overcome these challenges, which
is detailed in reference5. This framework yielded high-quality estimates of the COVID-19
infection fatality ratio (“IFR”) in each county for the period beginning 1 March 2020 and
ending 31 October 2020. Using this framework, we also calculated IFR estimates for one-
month windows beginning on the first day of each month between March 2020 and ending in
January 2021.

1.1.4 Demographic and environmental data

To understand the association between of SARS-CoV-2 IFR on fungal beta-diversity, we
jointly considered the association of SARS-CoV-2 IFR with 754 other climate, demographic,
housing, or COVID-19 policy-related variables (“features”) within each United States county.
The climate-related features included twelve climate measurements (e.g., average tempera-
ture), with monthly breakdowns and 41 static measurements (lacking time-resolution) for a
total of 185 features extracted from an extensive literature review6,7,8,9,10,11,12,13. The com-
piled data are described in detail in https://github.com/jladau/Covid19FungiSupplementaryTables.
These climate features included global static measures, such as elevation and percent forest
cover, as well as seasonal monthly measures, such as maximum temperature and poten-
tial evapotranspiration. The 439 demographic-related features included the percentage of
individuals in each county for each age group, sex, race, and Hispanic origin; for exam-
ple, the percentage of Hispanic, white (not in combination with another race) population
of females ages 0 to 19 for a given county14. The 117 housing-related features captured
information relating to the housing units within each county, including data on the struc-
tures themselves, as well as the tenants within the homes15. The COVID-19 policy-related
features included eleven features that captured the percentage of days in the pandemic
(between 1 March 2020 and 30 October 2020) that each county had a policy in place,
such as a social distancing mandate and the closing of non-essential businesses16. This
set of features also included two features that capture mask usage, both the chance that
a single individual is wearing a mask and an estimate of the number of people wearing
a mask in a given county17. For a complete list of features see ’feature-descriptions.xlsx’
(https://github.com/jladau/Covid19FungiSupplementaryTables).

1.2 Analyses

1.2.1 Overall associations between fungal beta-diversity and COVID-19 mortal-
ity

For analyses of diversity, unless specified otherwise, to quantify beta-diversity, the Bray-
Curtis dissimilarity of the fungal communities between the inside and outside of each home
was calculated. Because the SARS-CoV-2 IFR estimates were at the county grain, dissim-
ilarities from homes within the same counties were averaged to prevent pseudo-replication,
non-independence, and under- or over-representation of counties where fewer or more homes
were sampled. Overall, this procedure resulted in microbial data for 494 counties across the
United States.
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Because fungal beta-diversity was expected to be sufficient but not necessary for reducing
COVID-19 mortality (i.e., other factors such as demographics are known to reduce mortal-
ity), we predicted that the relationship between SARS-CoV-2 IFR and beta-diversity would
be “triangular,” with consistently low SARS-CoV-2 IFR at low beta-diversity, and both
high and low SARS-CoV-2 IFR at high beta-diversity, where reductions may or may not be
caused by other factors. Thus, we employed a quantile regression approach, which modeled
percentiles of the distribution of SARS-CoV-2 IFR conditional on beta-diversity. We utilized
a semi-parametric approach because with our data assumption violations appeared to yield
low precision and specificity for standard, normal parametric approaches. Specifically, we
first ordered the observations – beta-diversity, SARS-CoV-2 IFR pairs – by beta-diversity.
We then calculated the mean beta-diversity and percentile of IFR (10%, 25%, 50%, 75%,
90%) within each possible 20-observation window of the thus ordered data. The relationship
between the window means and percentiles was linear, so we fit linear models to measure
the association between the percentiles and beta-diversity, and used the slope estimate from
these associations as a test statistic. To assess the significance of the slopes, we employed
two procedures. First, we employed a randomization test, randomizing the distribution of
the raw (not averaged within counties) COVID-19 data, and iterating the entire procedure
100 times to generate a null distribution of slope estimates. Second, we resampled the ob-
servations (beta-diversity, SARS-CoV-2 IFR pairs) 100 times with replacement to generate
bootstrap distributions of the slope estimates. This quantile regression method was applied
in additional analyses described below, using the 75th percentile.

To check the influence of outliers and also investigate the effects of spatial autocorrelation,
we recomputed the aforementioned slopes by omitting each state’s (fifty iterations) United
States Census Division’s (nine iterations) samples. If the slopes from these omission analyses
were consistent with the slopes from the whole data set analyses, then that would indicate
that outliers and spatial autocorrelation were not driving the results observed for the whole
data set.

1.2.2 Genera that drive associations between beta-diversity and COVID-19
mortality

To assess which genera drove associations between beta-diversity and SARS-CoV-2 IFR,
we used an approach based on hierarchical partitioning. Starting with a single randomly
selected genus, we calculated Bray-Curtis dissimilarity. We then calculated the leave-one-
out cross validation R2 using the above approach for regressing the 75th percentile of IFR
on beta-diversity. With sequential addition of additional genera to the “community” we
recalculated beta-diversity, and recorded the corresponding change in cross validation R2

with the addition of each genus. Iterating this process over 100 orderings yielded a mean
change in cross validation R2 for each genus. This entire process was also iterated 100 times
with the IFR estimates randomized to generate a null distribution of mean change in cross
validation R2 statistics for each genus. Genera which (i) on average increased R2 by more
than 0.01, (ii) increased R2 significantly (p < 0.05) compared to the null distribution of R2

shifts, and (iii) occurred in more than 1, 500 samples (indoor plus outdoor) were identified
preliminarily as being drivers of the association between beta-diversity and SARS-CoV-2 IFR.
Sets of genera with correlated distributions were clustered using single-linkage clustering on
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Spearman-rank correlation coefficients (threshold 0.5). If one or more genus in a cluster was
identified preliminarily using the aforementioned procedure, then that cluster – i.e., one or
more genus in that cluster, but not necessarily the identified genus per se – was inferred to
be a driver of the association between beta-diversity and SARS-CoV-2 IFR.

Based on simulations, this approach had low false positive and negative rates at identifying
prevalent genera responsible for overall associations between beta-diversity and IFR. To assess
error rates, we created 100 simulated data sets where the genera driving the beta-diversity
vs IFR association were known. Specifically, we randomly selected half of the genera to be
“associated.” The beta-diversity of these selected genera was calculated (omitting the other
genera) and averaged within each county. To simulate an IFR value for each county, we used
a random variate simulated from the following distribution: 0.27·U ·b, where U is a uniformly
distributed random variate on the unit interval, and b is the mean observed beta-diversity
over the associated taxa in the county. Iterating this process 100 times generated 100 data
sets where the the genera driving the beta-diversity IFR association were “known.” For each
genus and cluster of genera, we then assessed the confusion matrix for the method outlined
above. When clusters, rather than genera per se, were inferred to be associated, the method
had low false positive and negative rates (Figure E6A) when genus prevalence was greater
than 1, 500 samples. For the genera with prevalence in fewer than 1, 500 samples, despite
encompassing over 1, 100 homes, the data set appears to have insufficient power: it appears
impossible to reliably identify which of these genera are associated, although false negative
rates are controlled for these genera with the implemented method. While this approach
toward inferring important genera may seem complex, other, similar and simpler approaches
– for instance, when inferences are made about individual genera rather than clusters of
genera – have much higher error rates and were prone to false positive results (Figure E6B).

1.2.3 Associations between indoor and outdoor fungal relative abundance, and
COVID-19 mortality

To further assess the associations between indoor-outdoor mycobiome and SARS-CoV-2 IFR,
we analyzed how IFR was associated jointly with the indoor and outdoor relative abundance
of the genera selected using the hierarchical partitioning approach described above. Specif-
ically, we regressed the 75th quantile of IFR on the indoor and outdoor relative abundance
of each selected genus (using the R package quantreg18). Unlike the analysis of IFR vs beta-
diversity, here the assumptions of standard quantile regression methods appeared to be met,
and this method also allowed the quantile regression of IFR on two predictors rather than
just one, as above. For visualization, we plotted the predicted values of the selected models
as a function of the observed indoor and outdoor relative abundances.

1.2.4 Effects of human population transience on associations between fungal
beta-diversity and COVID-19 mortality

To assess whether there was an effect of human population transience on the association
between fungal beta-diversity and SARS-CoV-2 IFR, we divided the counties into low and
high population transience categories based on whether they were in the lower or upper
half of the counties ranked by population transience, respectively. Population transience
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was measured by dividing total immigration to a county over 2014 to 2019 by the 2014
population (data from the American Community Survey https://www.census.gov/programs-
surveys/acs/, downloaded on 16 June 2021). The windowed quantile regression analyses
described above were performed on each half of the data. In addition, 100 bootstrap iterations
were performed to estimate errors.

1.2.5 Correlations between covariates and IFR

For each covariate, we first sort United States counties in descending order relative to the
target covariate. Next we applied a sliding window of 20 counties down the rank list, and
within each window, we calculated the average value of the covariate, as well as the 75th
percentile of IFR. We then fit a linear model and report the R2 values for each pairing.

1.2.6 Machine learning methods for SARS-CoV-2 IFR prediction

Three iterative Random Forest (iRF)19,20 model configurations were used for this study.
Configuration 1: The first model is configured as follows. Predictors include the following

feature sets: a) climate, b) demographic, c) housing, and d) COVID-19 policy features, all
at county-level resolution. We use these feature sets as predictors, and fit an iRF model to
predict fungal beta-diversity at county resolution. Our goal with this model is to understand
which, if any potential confounding factors may contain the same information (e.g., through
multi-colinearity) as we have with fungal beta diversity. This is an important analysis, and
it complements our causal inference analyses (described below) that also attempts to adjust
for all other potentially explanatory features in our dataset.

Configuration 2: The second model configuration predicts SARS-CoV-2 IFR, and uses,
as predictors: a) climate, b) demographic, c) housing, d) COVID-19 policy features, e)
and fungal beta-diversity along with fungal relative abundances at the phylogenetic level of
genera.

Configuration 3: The third model configuration is designed to study the overall feature
importance of feature sets a-e above. To do this, we fit iRF models wherein one feature set,
e.g., a) climate, was either left-out (omitted), or permuted (each feature within the target
feature set is uniformly permuted), and all other features are unperturbed. We then study
the effects on predictive accuracy (e.g., median absolute error) after omission or permutation
of each feature set. This process is done many times with different random seeds and random
permutations to quantify variation—ten sets of five-fold cross validation were generated for a
total of fifty model runs per feature set. This process was repeated on each of the five feature
sets (a-e, above), and results were compared to the full, unperturbed model.

Down-sampling densely sampled counties: to account for an uneven distribution of fungal
samples across United States counties, the model creation included grouped-kfold cross-
validation with down sampling. Once for each fold process, the samples in each county were
randomly downsampled to five samples. The grouped-kfold sampling process was completed
using the GroupKFold function from the sklearn library21, with an 80/20 split corresponding
to five folds. For each model, the five-fold process was repeated ten times, resulting in fifty
iRF runs per model. Importantly, results were highly consistent across across runs, with
less than 1% standard error in R2 (Coefficient of Determination). For the first fold, sample
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groups were randomly pulled into the training set until approximately 80% of the samples
were included, leaving the other 20% reserved for testing the model. For each subsequent
fold, this process was repeated with the caveat of having a completely unique 20% testing
set from the previous folds.

Each iRF training run used 1000 trees, five iterations, and 160 threads on the Summit
high performance compute system, which is housed at the Oak Ridge Leadership Computing
Facility, has approximately 4600 compute nodes, each containing two IBM POWER9 pro-
cessors, six NVIDIA Tesla V100 GPUs, and 512 gigabytes of RAM. Each iRF testing run
used the model created in its corresponding training run, with the 1000 trees and five itera-
tions. The testing run used the fitted iRF models and ran kfold cross-validation to generate
beta-diversity and IFR predictions.

1.2.7 Disease associations

To analyze the known microbe-disease interactions of the seven most important fungal taxa,
as identified by our hierarchical partitioning analysis, we performed a series of enrichment
analyses to evaluate the known associations between these taxa and human diseases for qual-
itative and quantitative trends. As a quantitative source of correlative disease associations
we used the Disbiome resource22, which collates the associations between 1622 microbes and
372 diseases based on analysis of microbiome data (accessed 13 July 2021). The Disbiome
taxa were collapsed to the genus level and each of the 7 fungal taxa (genera) were mapped to
any associated diseases in Disbiome. To test for statistical enrichment of specific conditions
associated with the seven fungal taxa, we performed a Fisher exact test with a False Discov-
ery Rate (FDR) multiple testing correction on contingency tables based on in and out group
counts the seven genera as well as disease associations. In addition to flat taxa-disease asso-
ciations, we also mapped the Disbiome diseases to the Mondo23 ontology to further classify
and group conditions using their sister and parent relationships. Mapping was performed
with Named Entity Recognition using a wrapper wrapped in turbomam/scoped-mapping24

for the EBI Ontology Lookup Service25. With this procedure, certain groups of conditions
(such as ‘infectious’ or by human anatomical site) were tested for statistical enrichment per-
formed as described above. Finally, to identify other possible qualitative trends, additional
causally implicated disease associations of the seven fungal species were considered, relying
on the DrFungus resource26. These were mapped to the Mondo disease ontology, as described
above, and were combined into a nonredundant set of taxa to Mondo disease associations
based on the union with Mondo disease associations from the Disbiome disease mapping.
Frequencies of disease classes were calculated by summing the count of taxa-disease associa-
tions per disease category, including multiple disease associations per taxa. Relative disease
prevalence was inferred from DrFungus entries as well as clinical reports in the literature. The
directionality of correlative effects (positive or negative health effects) was obtained solely
from Disbiome data, hence this is also the only source of beneficial effects, and all the other
data on fungal associations with diseases was negative26.

1.3 Code Availability

Except where otherwise noted, all code used to run analyses is available at:
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· https://github.com/jladau/COVID19Fungi

· https://github.com/jladau/JavaSource

2 Causal Inference: overview of methods and results

To supplement purely correlative analyses, we made use of targeted maximum likelihood
estimation (tMLE,27), a form of causal inference, to provide an additional line of evidence
for detected associations between fungal beta diversity and SARS-CoV-2 IFR. The tMLE
framework is particularly useful for studies that make use of machine learning estimators, as
tMLE can make use of any predictor (including black box predictors) to inform its estimates
of conditional expectations.

The covariate of interest here is fungal beta diversity, which, in causal inference parlance,
we call the “exposure variable”. Since our exposure variable is continuously valued on [0,1],
we design our causal parameter with a stochastic policy to avoid violating positivity of
beta diversity scores. Essentially, we assess the causal effect based on the counterfactual
outcomes under exposure levels drawn from counterfactual distributions shifted from the
original distribution of the exposure variable.

The intuition is, if we observe notable differences between average outcomes under more
aggressive/conservative exposure assigning policies, then we have more confidence to draw
the conclusion that the exposure has a significant causal influence on the response. This
framework is known as stochastic intervention and its usage in inference has been well es-
tablished in previous studies28,29. For the purposes of model interpretation, we designed a
summary parameter via a working Marginal Structural Model30 to statistically characterize
the positive linear trend observed in this figure, and presented the results in section 2.1.
Note that the goal of designing this parameter is to make statistical inference and provide
interpretability — we do not assume a linear diversity-IFR relation.

We used a doubly robust estimation framework – Targeted Maximum Likelihood (TML)27

to estimate the counterfactual expected outcomes and construct their asymptotic normal dis-
tributions. Then, we derived the estimation and confidence interval of the summary linear
coefficient between IFR and beta diversity via the Delta method. The TML estimators allow
more relaxed convergence conditions compared to plug-in and inverse probability weighted
(IPTW) estimators, and are asymptotically efficient27. The standard deviations of the es-
timators can be analytically derived from the efficient influence curve31 which allows us to
construct confidence bonds. The underlying conditional density of beta diversity and condi-
tional expectation of IFR are fitted with Super Learning32, which builds an ensemble model
as a weighted combination of predictive functions from a diverse collection of statistical and
machine learning algorithms.

2.1 Evidence that the associations between microbial beta-diversity
and COVID-19 severity may be causal

Finally, causal inference incorporating a) climate, b) demographic, c) housing, d) COVID-19
policy features, e) and fungal beta-diversity along with fungal relative abundances at the
phylogenetic level of genera point to a strong causal link between indoor-outdoor microbial
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beta-diversity and SARS-CoV-2 IFR even when these other potentially confounding vari-
ables are considered. The estimations of expected 75-quantile IFR under counterfactual beta
diversity distributions are shown in Figure E7, and the table below shows the estimations
of the linear coefficient presented in this figure. The last column is the confidence level to
reject the null hypothesis that there is no positive linear trend in 75-quantile IFR with an
increasing fungal beta diversity score—which can be thought of as similar in purpose to a
p-value.

Plug-In Estimator TML Estimator TMLE Std
Confidence level

(1 − p-value)

Mar.2020-Oct.2020 7.43e− 04 6.68e− 04 3.72e− 05 100.00%
Mar.2020-Feb.2021 1.67e− 04 9.98e− 05 3.75e− 05 99.61%
Mar.2020-Oct.2020
w/ selected fungi

5.10e− 04 5.02e− 04 4.97e− 05 100.00%

Mar.2020-Feb.2020
w/ selected fungi

1.06e− 04 9.82e− 05 5.09e− 05 97.32%

The results confirm that there is a significant positive increment in the outcome when the
exposure distribution is shifted rightwards, meaning that higher beta diversity scores may
cause higher 75-quantile IFR on the population. Please note, we take this only as another
line of evidence. While the rapidly growing field of causal inference is compelling, it is no
substitute for counterfactual experiments. However, when counterfactual experiments are
difficult or impossible, as may be the case here, causal inference procedures, including tMLE,
are useful to supplement purely correlative analyses.

2.2 Causal inference: background and methods

In a large number of causal inference problems, researchers design a causal parameter whose
estimation is based on some sort of static counterfactual mechanism, meaning that the pa-
rameter relies on the distribution of outcome Y given that the exposure variable A is de-
terministically set to some specific alternative values. A classic example is the estimation
of average treatment effect (ATE) using a directed acyclic graph (DAG) model in a clinical
trial with binary intervention.

In such model settings, one often has to fit the data generating mechanism with suitable
statistical learning methods and assume a given individual’s likelihood of having an alterna-
tive exposure level a (within the range of consideration) is always positive. Although this
assumption is reasonable in the example above, it becomes highly unrealistic in a setting
where the exposure variable is highly diverse or even continuous.

One way to address this issue, presented by Dı́az and van der Laan28, is to consider a set
of counterfactual exposure assigning policies under shifted distributions. This technique is
referred to as stochastic interventions. We use this approach to model the population causal
effect of fungi’s beta diversity level on COVID-19’s fatality rate.

Since the 75-quantile IFR can not be directly observed, we take the route of fitting a
quantile model with a portion of our data and acquiring the 75-quantile IFR for the subjects
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in the remaining portion. This remaining portion of the data is used for causal inference.

2.3 Causal Inference: Parameters of Interest – Stochastic Inter-
ventions

Let O = (W,A, Y ) be the observation variable consisting of the confounding, exposure and
outcome triple, P = (p(W ), p(A | W ), p(Y | A,W )) be the true probability model. EA∼pδ(Y )
denotes the average outcome under an exposure distribution pδ(A | W ), then we let {pδ(A |
W ) = p(A − δ(A,W ) | W )}δ be a family of density functions shifted from the true density
p, in which δ(A,W ) is given by

δ(a, w) =


δ if a > l(w) + δ and a < u(w) + δ

a− l(w) if a ≤ l(w) + δ

a− u(w) if a ≥ u(w) + δ

(1)

where [l(w), u(w)] is the range of A given w. To clarify, each pδ(A | W ) within the family
is a counterfactual distribution constructed via right-shifting the original distribution by δ,
with a cap on the shift so that its support does not go beyond the permissible range of A. In
a nonparametric structural equation model (NPSEM,33) setting, the corresponding family of
parameters {Ψ(δ) = EA∼pδ(Y )}δ can be identified under standard randomized assumption
A⊥Ya | W by

Ψ(δ) =

∫
W

∫
A
E(Y | a, w)pδ(a | w)p(w) dλ(a) dµ(w) (2)

= E [E [E(Y | A+ δ(A,W ),W ) | W ]] (3)

where λ and µ are suitable measures for a and w respectively. These parameters reflect the
variation of resulting outcomes given different levels of exposure intensity, and the robust
estimation of these parameters involves propensity weights p(A− δ(A,W ) | W )/p(A | W ) in
which the discrepancy between the numerator and denominator can be decently smaller than
the ones under deterministic policies. To statistically characterize this influence of δ over
Y , we design a summary parameter via a working Marginal Structural Model (MSM,30) as
follow

β∗ = arg min
β

∫
D

[Ψ(δ)− (α + β · δ)]2 dυ(δ) (4)

where υ is a suitable measure, e.g. a discrete uniform over a grid of customized δ values.
This parameter captures the positive/negative linear trend in the estimated mean outcomes
under shifting exposures.

2.4 Causal Inference: Estimations – Targeted Maximum Likeli-
hood

In evaluating Ψ(δ), we apply the Targeted Learning framework27. Under some regularity
assumptions28, the tMLE estimator Ψ̂n(δ) will be consistent as long as either one of E(Y |
A,W ) and p(A | W ) is estimated consistently. The estimator is asymptotically normal if the
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model fits Ên(Y | A,W ) and p̂n(A | W ) have a combine order of L-1 error less than n−0.5 (e.g.
n−0.25 each) as compared to the plug-in or inverse probability weighted (IPTW) estimator
for which Ên(Y | A,W ) or p̂n(A | W ) must have an order of error < n−0.5 individually.
Figure E8 provides a demonstration of the need for TMLE. Once these assumptions hold,
the estimator is asymptotically efficient, and the variance can be derived and estimated by
its efficient influence curve (EIC) denoted as DP (O):

DP (O) =
p(A− δ(A,W ) | W )

p(A | W )
[Y − E(Y | A,W )] + E(Y | A+ δ(A,W ),W )−Ψ(δ) (5)

with which the asymptotic distribution of Ψ̂n(δ) can thus be constructed as

√
n(Ψ̂n(δ)−Ψ(δ))⇒ N (0,Σ) (6)

where Σ = E
[
DP (O) ·DP (O)T

]
and can be estimated by

Σ̂n = En
[
DP̂n

(O) ·DP̂n
(O)T

]
=

1

n

n∑
i=1

[
DP̂n

(Oi)
]2

(7)

Upon attaining the estimates of Ψ(δ), the asymptotic distribution of the slope estimate β̂∗n
is derived with the Delta method, with which we evaluate the p-value of the null hypothesis—
that there is no positive linear trend in 75-quantile IFR given a shifting fungal beta diversity
score. The confidence level of rejecting this null hypothesis thus follows.

3 Results

3.1 Disease Associations

Beneficial environmental microbiome effects on human health are less frequently reported
than disease, however the Disbiome22 resource is the first collection of correlative human
microbiome taxa associations with human diseases. While the human and environmental mi-
crobiomes are distinct measurements, there is data that environmental microbes are reflected
in human microbiome taxa abundance34,35. We observed that the seven fungal genera can
originate from a variety of indoor and outdoor habitats, including soil, plants, lakes, and food
spoilage26. For these genera we compiled taxa-disease associations across Disbiome data and
curated data on mycoses26 and also categorized them into disease classes by their Mondo on-
tology parent terms (https://github.com/jladau/Covid19FungiSupplementaryTables). Many
of these genera and species can be associated with numerous effects on human diseases,
beneficial or harmful, including Clostridium difficile-related diseases, Caries, and Crohn’s
diseases22 26 (Table E2). Our knowledge of causal fungal-disease interactions is still incom-
plete but based on existing microbiome and case study data we wanted to check whether
any of these genera are known to affect human health. Half of the disease associations are
with the inflammatory, digestive, and respiratory disease classes, often for conditions that
are considered allergic reactions or autoimmune responses. 20% of the associations are with
inflammatory or autoimmune diseases (see Methods), suggesting a direct link to aspects of
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the immune system not necessarily involved in response to infections, although infectious
disease associations also appear to be enriched (p=0.025; Table E3), however our enrichment
analysis does not include the direction of the effect of taxa presence on disease outcome.
Since our knowledge of human diseased, environmental microbes, and their interaction are
incomplete, it is possible that the associated non-infectious diseases have an infectious com-
ponent, or that there are unrecognized aspects of immune response or health status in what
are currently considered infectious diseases. Some of the respiratory or other allergies related
to these fungal genera could be under-reported if symptoms are mild, transient, or misdi-
agnosed. These disease class associations results show that fungal diseases often occur in
tissues exposed to the environment (digestive, respiratory, intestinal), and are not involved
with cardiac, renal, or hematologic systems. Several diseases were associated with multiple
of the seven taxa, most notably Clostridium difficile associated disease, Caries, and Crohn’s
disease all having associations to three of the seven taxa. Interestingly, these three conditions
occur in environmentally exposed human tissues, and specifically the gastrointestinal system,
which is consistent with environmental microbe exposure.

We considered one more level of information for Disbiome taxa to disease associations,
and that is the direction of the effect on disease out comes. In many cases Disbiome provides
an ’elevated’ or ’reduced’, and we find many positive interactions between the seven genera
or species belonging to that genera and human diseases (Table E2). Overall, while the total
number of negative fungal associations outnumbered positive ones, we believe this is partly
due to the biased focus on negative disease outcome in current metagenome and clinical
studies, which in general do not focus on salutology. Finally, we observe that Aspergillus
species are associated with both positive and negative disease outcomes, involving different
diseases and different Aspergillus species. Hence, members of the same genus can have both
positive and negative effects depending on the disease condition, and likely other factors
such as human genotype36. Two Aspergillus species were associated with worse COVID-19
outcomes, however we believe this is influenced by bias from negative studies not allowing to
observe more positive associations and also that early protective exposure to fungi is likely
to be independent from presence of these fungi in the human microbiome later in life (e.g.,
Disbiome data). Thus we are still limited in our knowledge of fungal disease associations,
with 28 disease associations for the seven fungal genera associated with lower IFR, given
that these genera correspond to thousands or more species. However, we do know that
fungi are abundant in indoor and outdoor environments and rarely cause serious disease but
are common opportunistic pathogens. Given this, our ability to derive specific and causal
hypothesis for fungal affects on human disease remains limited warranting further human
fungal sequencing studies.
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