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APPENDIX

A.1 Notation

We now focus on establishing the theoretical properties of Bayesian group testing with lattice

models under dilution effects, and the discussion will henceforth be much more technical. We

begin by reviewing the statistical formulation more formally. The set of classification states is

taken to consist of the powerset of N subject profiles that indicate positivity status for each of

N subjects. Each state in the model describes all the subjects in terms of whether each of the

subjects is either positive or negative with respect to an outcome of interest. Note that there are 2N

possible states, corresponding to each element in the powerset. States can be identified through

the subjects described as being negative, and can be partially ordered through set inclusion.
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Note that state j ⩾ k if the collection of negative subjects associated with state j contains all

the negative subjects associated with state k. The collection of these states thus form what will

be referred to as a powerset lattice.

Let the collection of classification states S be a finite lattice, with an unknown true state. In

brief, recall that a lattice is a partially ordered set such that any two elements have both a unique

least upper bound (join) and a unique greatest lower bound (meet). For two elements i, j ∈ S,

their join and meet are respectively denoted as i ∨ j and i ∧ j. The up-set of an element i isxi = {j ∈ S : i ⩽ j}, and the down-set of i is
yi = {j ∈ S : j ⩽ i}. More generally, for a set

I ⊆ S,
xi = {j ∈ S : there exists i ∈ I such that i ⩽ j}, and

yI = {j ∈ S : there exists i ∈

I such that j ⩽ i}. A top element 1̂ is an element such that for any i ∈ S, i ⩽ 1̂ Similarly, a

bottom element 0̂ is an element such that for any i ∈ S, 0̂ ⩽ i. Both a top and bottom element

exist in a finite lattice. For i ∈ S, define Ci to be the set of covers of i, where y ∈ S is a cover of

an element i if i < y and there does not exist z ∈ S such that i < z < y. Also, let Di denote the

set of anti-covers, in other words the set of states y ∈ S such that for y < i, there does not exist

z ∈ S such that y < z < i. In Figure 1a of the main text, note that the anti-covers for state AB

are the states A and B, while state AB is the only cover for both states A and B. In general, for

a powerset lattice, the covers of a true state s are the states associated with one more negative

subject, while its anti-covers are the states that are associated with one less negative subject.

Hence, |Cs| = N − |s| and |Ds| = |s|, where |Cs|, |s|, and |Ds| denote respective cardinalities.

Let E be a finite collection of pooled tests. Denoting X as the random variable being observed

for an experiment e ∈ E , let f(x|e, j) be the class conditional probability density for j ∈ S.

Note that there is a one-to-one correspondence between elements in E and S\0̂, so that for

instance e = j for some j ∈ S implies that the set of subjects out of N that are represented as

negative by j are the corresponding samples being pooled. Please note that here we do not use the

notation
˜
e for experiments, as in the main text. In establishing asymptotic results, assume each
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e ∈ E can be replicated an unlimited number of times. Also, let K(f, g) represent the Kullback-

Leibler information for distinguishing distribution f and g when f is true. Throughout, it will be

assumed that for all e ∈ E , there exists j1, j2 ∈ S such that K(f(·|e, j1), f(·|e, j2)) > 0. In this

case, e is said to distinguish states j1 and j2. Also, assume that for any j1, j2 ∈ S and e ∈ E ,

K(f(·|e, j1), f(·|e, j2)) is finite.

Denote s ∈ S as the unknown true state. For j ∈ S, let π0(j) denote the prior probability

that j = s. Assume π0(j) > 0 for all j ∈ S. Given that at the first stage a test e1 ∈ E is selected,

and a random variable X1 with density f(·|e1, s) has observed value x1, π1(j) ∝ π0(j)f(x1|e1, j).

Inductively, at stage n for n > 1, conditionally on having chosen tests e1, e2,. . . , en−1, and

having observed X1 = x1, X2 = x2, . . . , Xn−1 = xn−1, a test en ∈ E is chosen and Xn with

density f(·|en, s) is observed. The posterior probability that j = s then becomes

πn(j) ∝ π0(j)

n∏
i=1

f(xi|ei, j).

The posterior probability distribution on S at stage n will be denoted by πn.

As seen in Tatsuoka and Ferguson (2003), it is necessary and sufficient to distinguish s from

all other states in order for πn(s) → 1 almost surely. Letting ne be the number of times e is

administered up to stage n, the limiting proportion that e is administered is denoted as pe, with

pe = lim inf ne/n. It is desirable to seek rules that sequentially select tests, e1, e2, . . ., in the appro-

priate limiting proportions so that the posterior probability of the true state s, πn(s), converges

almost surely to 1 at the fastest possible, or optimal rate. An optimal strategy is comprised of a

collection of limiting proportions associated with each e ∈ E such that administration of the tests

in their respective limiting proportions leads to convergence at the optimal rate. From Theorem

A.2 in Tatsuoka and Ferguson (2003), it is argued that for k ∈ S, k ̸= s,

lim inf
n→∞

−(1/n) log(πn(k)) =
∑
e∈E

peK(f(·|e, s), f(·|e, k)).

The right-hand side denotes the rate at which πn(k) → 0 as n → ∞. This rate depends on
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the Kullback-Leibler information values for tests that distinguish state k from s, as well as the

limiting proportions in which they are administered. Hence, larger Kullback-Leiber information

values for tests are desirable, as they indicate greater discriminatory efficiency. It can be shown

that α is the minimum of these rates among k ̸= s, and hence maximizing α is equivalent to

maximizing the rate of the slowest converging posterior probability terms among k ̸= s.

A.2 Dilution Effects

Consider the following statistical formulation. Again, suppose the collection of tests E corresponds

to all possible non-empty subsets of subjects and hence to S\{0̂}. In other words, every possible

combination of the N can be pooled and tested. For e ∈ E and j ∈ S, assume that

f(x|e, j) = fr,|e|(x), (A1)

where |e| denotes the number of samples in pool test e, and

r = |e| − |e ∩ j|, r ⩾ 0,

where r is the number of positive samples in pool test e given j is the true state.

Note when e ⩽ j, this implies r = 0. This formulation allows for response distributions to

vary depending on how many positive samples are in a pool, and according to pool size. When

fr,|e| is a Bernoulli density, let pr,|e| be the probability that the outcome indicates that no positive

samples are present given r positive samples are present and pool size is |e|. Note then that for

r = 0 ( no positives), p0,|e| represents the specificity of a test of pool size |e|. Also, for r ⩾ 1,

qr,|e| = 1− pr,|e| is the sensitivity of the test when r positive samples are present in a pool of size

|e|. In this section, let K(r1, r2, |e|) = K(fr1,|e|, fr2,|e|).

The following conditions, based on Kullback-Leibler information, are given to reflect the
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presence of dilution effects: (i) Suppose that both

K(r, r − r′, |e|) and K(r, r + r′, |e|) (A2)

are non-increasing in |e| for fixed r ⩾ 0 and respectively for fixed 0 ⩽ r′ ⩽ r and r′ ⩾ 0, with

K(0, 1, |e|) > 0 andK(1, 0, |e|) > 0. (ii) Suppose also that the Kullback-Leibler information values

are non-decreasing in r′ for fixed r ⩾ 0 and |e|, with respectively 0 ⩽ r′ ⩽ r, and 0 ⩽ r′ ⩽ |e| − r.

(iii) Moreover, suppose the functions in (A2) are non-increasing in r for fixed r′ and |e|, with for

each r ⩾ 1,

K(r, r − 1, |e|) ⩾ K(r, r + 1, |e|). (A3)

A.3 Optimal designs and optimal rates of convergence

The following examples illustrate issues that arise in determining optimal strategies under dilu-

tion effects, which are established in Theorem A.1. An emphasis is on how the lattice structure

determines the difficulty in classification. Given conditions (A1)-(A3), from a lattice-theoretic

point of view, it is necessary and sufficient to distinguish a true state from its covers and anti-

covers (the states that directly surround it) in order to distinguish the true state from all the

others.

Example A.1 Suppose that S is the lattice in Figure 1a, and that s = 0̂ (all subjects are

positive), as in part (i) of Theorem A.1. The covers of s are the atoms of the lattice, in other

words the states that respectively represent only one of the samples being negative, Cs = {A,B}.

Consider now possible strategies for distinguishing s from its covers. One approach would be

to individually test each subject. For instance, if sample from A is tested individually, then for
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states in
xA= {A,AB}, since A is negative, the distribution of response is f0,1 . If the true state

is in {
xA}c = {0̂, B}, then subject A would be positive, and hence the corresponding distribution

would be f1,1. Hence, this test distinguishes s = 0̂ from A and AB. Similarly, states B and AB

can be distinguished through individually testing B. In sum, when testing subjects individually,

the corresponding atoms are positive distinguished one test at a time. However, when response

distributions depend on the number of positives in a pool, the atoms also can be distinguished

from the state s = 0̂ by pooling objects. Note if subjects A and B are pooled, then either state A

or B being true would result in the test having distribution f1,2, while for s = 0̂ it would be f2,2.

This follows since if state A or B are true, there is one positive sample in the pool, while given s

is true, both sample are positive. Hence, more than one cover at a time can be distinguished from

s through pooled experiments. Because of dilution effects (i) and (iii), K(1, 0, 1) ⩾ K(2, 1, 2),

so individual testing may lead to more efficient discrimination between s and its covers, while

pooling A and B has the advantage of distinguishing s from A and B simultaneously. Hence, in

the presence of dilution effects, there is a trade-off between these testing approaches. Theorem A.1

resolves such trade-offs in terms of optimizing the rate of convergence. Note also that by dilution

effect (ii), K(2, 0, 2) ⩾ K(2, 1, 2), so state AB is distinguished from s at least as efficiently as

states A and B when samples from A and B are pooled. Under individual testing, state AB is

distinguished whenever states A or B are distinguished. Hence, with either approach, πn(AB)

will converge to zero at a rate at least as fast as either πn(A) or πn(B).

Example A.2 In part (ii) of Theorem A.1, it is supposed that the true state s = 1̂ (all subjects

are negative). In Figure 1a, state AB = 1̂. In distinguishing s from its anti-covers, Ds = {A,B},

again more than one strategy must be considered. When pooling A and B, note that the test has

distribution f0,2. States A and B each have class conditional distribution f1,2. Hence, both of the

anti-covers are distinguished simultaneously from s. It is also possible to distinguish states A and

B by individually testing the subjects. For instance, when testing subject A, states A and AB
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have distribution f0,1 since A would be negative if either is the true state, while states B and 0̂

would have distribution f1,1, as A is positive if either of those states is true. Hence, the anti-cover

B is distinguished. Similarly, the anti-cover A is distinguished when B is tested alone. Due to

the increasing pool size, K(0, 1, 1) ⩽ K(0, 1, 2), as reflected by dilution effect (i). Again, because

of the presence of a dilution effect, there is a trade-off to consider in terms of distinguishing both

anti-covers at once, but perhaps less efficiently than distinguishing them one at a time. As one

would expect, it will be seen that as the dilution effect gets stronger, it becomes more attractive

to test smaller pools.

When 0̂ < s < 1̂, more complex situations can arise. This is because in distinguishing covers,

anti-covers can be distinguished as well when positive samples are pooled together with negative

ones. However, when it is attractive to do so, there do not exist general closed form solutions

of optimal strategies for such cases, as many contingencies can arise. It will instead be assumed

that for

r positives, 1 ⩽ r ⩽ N − |s|, and k negatives, 1 ⩽ k ⩽ |s|,

(r/(N − |s|))K(r, r − 1, r) ⩾ (r/(N − |s|)K(r, r − 1, r + k)− (k/|s|)K(r, r + 1, r + k). (A4)

As will be argued in Theorem A.1, this condition insures that for an optimal strategy, it can

be assumed that the optimal value of k is k∗ = 0, and hence that asymptotically, positives

and negatives are not tested together. When r > 0 and k = 0, a corresponding pooled test

distinguishes covers but not anti-covers. Hence, given (A1)-(A4), when S is a powerset lattice

and 0̂ < s < 1̂, it will be shown that determining optimal rates of convergence involves identifying

an optimal value r∗, the number of positives to be pooled to distinguish covers, and j∗, the optimal

size of pools comprised only of negatives, to distinguish the anti-covers. In contrast, when there

is no dilution effect, as in Tatsuoka and Ferguson (2003), the optimal strategy is to distinguish

covers by individually testing positives (r∗ = 1, k∗ = 0), and to distinguish anti-covers by pooling
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negatives all at once (j∗ = |s|).

In Theorem A.1, it is assumed that the true state is known. Clearly, in practice, it is unknown,

and in fact determining its identity is the primary objective of classification. Still, the following

results have direct practical relevance. After, an optimal rule for selecting pooled tests will be

established. In order to be optimal, a rule must first be convergent in the sense that the true

state is eventually identified almost surely. In addition, it must then also eventually adopt an

optimal strategy for selection of tests, corresponding to whatever state is true. Thus, Theorem

A.1 characterizes the pooling sequences that must eventually be adopted almost surely under the

various scenarios that can arise.

For 0 ⩽ |s| < N , let

R∗
c = sup

1⩽r⩽N−|s|
(r/(N − |s|))K(r, r − 1, r),

with r∗ being a value that satisfies R∗
c = (r∗/(N − |s|))K(r∗, r∗ − 1, r∗). Also, for 0 < |s| ⩽ N ,

let

R∗
d = sup

1⩽j⩽|s|
(j/|s|)K(0, 1, j),

with 1 ⩽ j∗ ⩽ |s| attaining the value of R∗
d.

Theorem A.1 Suppose that S is a powerset lattice of N subjects, and let s ∈ S denote the

true state. Suppose that tests in E satisfy (A1), dilution effects (i)-(iii), and (A4).

(i) If s = 0̂, the optimal rate of convergence is R∗
c , with |s| = 0. This rate is attained if each

possible subset of r∗ subjects are pooled in equal limiting proportion 1/
(
N
r∗

)
.

(ii) If s = 1̂, the optimal rate of convergence is R∗
d, with |s| = N . This rate is attained if each

possible subset of j∗ subjects are pooled in equal limiting proportion 1/
(
N
j∗

)
.

(iii) Otherwise, when 0̂ < s < 1̂, the optimal rate is

R∗
c ·R∗

d/(R
∗
c +R∗

d).
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This optimal rate is attained if each subset of r∗ positive subjects are pooled and tested in equal

limiting proportion

(1/

(
N − |s|

r∗

)
) ·R∗

d/(R
∗
c +R∗

d),

and all tests e ⩽ s, |e| = j∗ (pools of size j∗ consisting only of negatives) are administered in

equal limiting proportion

(1/

(
|s|
j∗

)
) ·R∗

c/(R
∗
c +R∗

d).

The respective given optimal strategies are not necessarily unique. When j∗ or r∗ are not unique,

the optimal rate can be attained by any mixture of optimal allocations associated with each of the

values. If E is restricted by bounds on pool size, Theorem A.1 can straightforwardly be extended

by optimizing j∗ and r∗ with respect to the corresponding constrained values.

A.1 gives demarcations for when it is optimal to pool subjects under dilution effects. This

result is in some sense analogous to that in Ungar (1960), which states that when there is no

testing error with binary outcomes, it is preferable to individually test when the proportion of

positive subjects is greater than (1/2)(3−
√
5); otherwise, group testing is preferred. In part (i)

with s = 0̂ (all subjects are positive), the demarcation for when it is optimal to individually test

subjects is that for all 1 < r ⩽ N − |s|,

K(1, 0, 1) ⩾ rK(r, r − 1, r). (A5)

This condition follows by comparing rates of convergence for the covers of s = 0̂ when r subjects

are tested at a time. It is a regulation on dilution effect (iii). In part (ii) when s = 1̂, it is optimal

to pool all the subjects if for 1 ⩽ j ⩽ N − 1,

K(0, 1, N) ⩾ (j/N)K(0, 1, j). (A6)

More generally, it is optimal to do some form of pooling as long as 1 < j∗ ⩽ N . Condition

(A6) regulates the decrease in efficiency of detecting a single positive subject versus no positive
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subjects as pool size increases, and hence relates to dilution effect (i). If this decrease does not

occur too quickly, it is optimal to pool all subjects, which are all negative when s = 1̂. These

demarcations will be illustrated below, as well as for when pooling is preferred when 0̂ < s < 1̂.

Given the presence of dilution effects, it will be of particular interest to demarcate how strong

the effects must be to alter the optimal strategies from when there is no-dilution effect. If (A5)

and (A6) hold, the respective optimal strategies for when s = 0̂ and s = 1̂ correspond to the

no-dilution effect case. The following examples indicate that the same optimal strategy as with

no dilution effects is still optimal even in the presence of significant dilution effects.

Example A.3 Suppose s = 1̂, let N be the number of objects to be classified, and suppose

sensitivity decreases with pool size, but specificity stays constant. Let fr,|e| be Bernoulli density

functions, with p0,|e| = 0.99 for all 1 ⩽ |e| ⩽ N , and q1,1 = 0.99. Following (A6), note that

if N = 15, in terms of the rate of convergence, group testing all fifteen subjects is preferred if

q1,15 > 0.294 and (A6) holds for the other values of j < 15. Further, (A6) would still be satisfied

at j = 30 if q1,30 > 0.174. For j = 100, (A6) would still hold if q1,100 > 0.073. Hence, under these

conditions, (A6) should hold in most practical applications.

Next, supposed that specificity is affected by pool size as well, and in equal magnitude to the

sensitivity, with q1,|e| = p0,|e|. With q1,1 = p0,1 = 0.99 and assuming (A6) holds for all other values

of j < N , it is still preferable to group test all subjects when N = 15 if q1,15 = p0,15 > 0.689,

when N = 30, q1,30 = p0,30 > 0.635, and when N = 100 if q1,100 = p1,100 > 0.575.

Suppose f0,|e| is the density for the standard normal distribution for all e, and f1,|e| is the

density for a normal distribution with mean µ1,|e| and variance 1. Assume that (A6) holds for

j < N . Letting µ1,1 = 3.0, it can be seen that when N = 15, it is still more attractive to group test

all objects if µ1,15 > 0.775, when N = 30, µ1,30 > 0.548, and when N = 100, if µ1,100 > 0.300.

Example A.4 Consider when s = 0̂. The demarcation in (A5) can similarly be illustrated nu-
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merically for when it is more attractive to individually test subjects under this case. As described

in example A.2, the trade-off is between discriminatory efficiency as measured by Kullback-Leibler

information versus the number of covers of s = 0̂ being distinguished per test. Pooling allows for

more covers to be distinguished, but is less efficient in discrimination than individual testing. For

instance, sensitivity qr,r = 0.99 for r ⩾ 1, and specificity p0,|e| = 0.99 for all 0 < |e| ⩽ N . For this

case, the demarcation is the same as in example A.3. Thus, assuming (A5) holds for all j < N ,

(A5) is also satisfied for N = 15, 30 and 100 when respectively q14,15 < 0.294, q29,30 < 0.174, and

q99,100 < 0.174. This example illustrates that the dilution effect (iii) can be quite strong, and yet

the no-dilution effect strategy of eventually individually testing positive subjects is not affected.

Given (A1), dilution effects (i)-(iii), and 0̂ < s < 1̂, a simple condition that is sufficient for

insuring that r∗ = 1 is

K(1, 0, 1) ⩾ rK(r, r − 1, r) (A7)

for 2 ⩽ r ⩽ N − |s|. This condition is essentially the same as (A5), except (A7) applies to

a smaller range of r. Hence, if (A5) is already established, (A7) follows as well. The numerical

demarcation in example A.4 is thus applicable to (A7), and indicates that (A7) can hold generally.

If the following condition holds, along with (A7), testing positives individually is optimal: for all

1 ⩽ k ⩽ |s|,

(1/(N − |s|))K(1, 0, 1) ⩾ (1/(N − |s|))K(1, 0, k + 1)− (k/|s|)K(1, 2, k + 1). (A8)

Note that (A8) is a special case of (A4) with r = 1. Finally, given (A7) and (A8), it follows that

distinguishing the anti-covers is conducted by pooled tests consisting of negatives of size j∗. For

1 ⩽ j ⩽ |s| − 1, j∗ = |s| when

K(0, 1, |s|) ⩾ (j/|s|)K(0, 1, j). (A9)

Note that (A6) implies (A9). Indeed, substituting N with |s|, note that example A.3 illustrates

that j∗ = |s| except under strong dilution effects. In practice, checking conditions (A5) and (A6),
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and (A8) with |s| = N , is sufficient for determining for all states whether or not corresponding

strategies are altered.

In sum, Examples A.3 and A.4 illustrate that dilution effects, unless severe, do not generally

alter the optimal strategy of eventually pooling all negative subjects, while individually testing

each of the positive subjects. One practical ramification that these results suggest is that, given

low prevalence of positive samples, it is attractive to initially pool as many samples as possible,

in spite of dilution effects, since the top element is most likely the true state a priori. In the

next section, it will be seen that when (A5), (A6) and (A8) hold, a simple and intuitive rule for

dynamically selecting pools will be optimal in the sense that optimal strategies will be selected

eventually, corresponding to the unknown true state, with probability one.

A.4 Optimal Pooling Selection Under Dilution Effects

Now let us consider rules for pooling selection that, given the observed outcomes to previously

administered pools and prior information, select the composition of the next stage pool to test. It

is desirable to have a rule that adopts optimal strategies and attains optimal rates almost surely,

no matter which state is true. It will be seen in this section that an intuitive and simple rule, a

halving algorithm, attains optimal rates of convergence when the optimal strategy coincides with

the no-dilution effect case, and hence even under strong dilution effects. For instance, if (A5),

(A6) and (A8) hold and s = 1̂, then it is desirable for a pooling selection rule to eventually pool

all objects. If 0̂ < s < 1̂, then we would want the rule to lead to sequences of pools that eventually

consist of all the negative subjects, or individually tests the positive subjects.

Theorem A.2 Under (A1), dilution effects (i)-(iii), and (A5), (A6), and (A8), for S being a

powerset lattice and any s ∈ S being the true state, the Bayesian halving algorithm described by
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(1) will attain the optimal rate almost surely.

A.5 Bayesian Estimation of Prevalence Through Group Testing

Based on the above-described Bayesian group testing framework, prevalence can be estimated

as mixtures of posterior distributions. This approach reflects the uncertainty from test response

error, and can employ pooled test results. Assume a binomial distribution. Suppose that it is of

interest to estimate the proportion of positives in a target population, denoted by θ, based on

group testing data. Given there is uncertainty as to the positivity status of subjects, a natural

estimate could rely the information provided by πn. For instance, given a conjugate Beta prior

distribution for θ, f(a, b), the posterior distribution for θ given the observed group testing out-

comes is a mixture of posterior Beta densities with respect to πn, where the Beta densities are

updated depending on which state is true:

∑
j∈S

f(a+ |j|, b+N − |j|) · πn(j).

For the powerset lattice, |j| is the number of negatives out of the N objects given state j is true.

Note that this mixture will converge to the posterior distribution for θ that would be obtained

if the correct diagnoses for all the N subjects were known exactly, given πn(s) converges to 1

almost surely for true state s.

As a simple illustration, suppose as in Example A.1 that N=2. We are interested in estimating

θ, and suppose a beta prior distribution, β(2, 2). Prior mean and standard deviation are thus

0.50 and 0.22. For n = 2 stages, recall π2 = {π2(AB) = 0.0009, π2(A) = 0.9985, π2(B) =

0.0001, π2(0̂) = 0.0005}. The posterior density for θ is thus the mixture

(0.0009)f(4, 2) + (0.9985)f(3, 3) + (0.0043)f(3, 3) + (0.0005)f(2, 4).

The mixture posterior mean of θ is 0.5022, and the mixture posterior standard error is 0.1888.
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A.6 Proofs

Proof. of Theorem A.1

Again, let pe denote the limiting proportion that e ∈ E is administered. From Tatsuoka and

Ferguson (2003), the optimal rate of convergence of πn(s) to 1 is thus related to the following

linear program: find probability vector {pe}e∈E and v to

maximize v

subject to

pe ⩾ 0, e ∈ E , and
∑

e∈E pe = 1,

and

v ⩽
∑
e∈E

peK(|e| − |e ∩ s|, |e| − |e ∩ k|, |e|) for k ∈ S\{s}. (A10)

A probability vector, {pe}, is sought to maximize the minimum of the right side of (A10) over

k ∈ S\{s}. Note that the right side of (A10) is the rate of convergence for state k given the

allocation {pe}.

Consider first when s = 1̂. The case when s = 0̂ follows similarly. For z ∈
yDs\Ds, note that

since S is a powerset lattice, there exists x, y ∈ Ds such that z ⩽ x∧ y. Hence, z is distinguished

from s whenever x and y are distinguished. Further, by (A2), the rate of convergence for terms

in
yDs is thus slowest for terms in Ds. We thus need only consider the terms in Ds in establishing

the optimal rates. Moreover, it can be established that if all experiments in {e : |e| = j, e ⩽ s},

1 ⩽ j ⩽ N , are each administered in limiting proportion 1/
(
N
j

)
, the rate of convergence is

(j/N)K(0, 1, j). Denote such an allocation as a(j,N).

It will now be shown that if

|e′|K(0, 1, |e′|) > |e|K(0, 1, |e|) and |e′| < |e|,

then it is optimal for pe = 0. Suppose e is administered with limiting proportion pe > 0, and

let δ = {pk}k∈E be an optimal allocation. Note that the rate of convergence contribution to
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each state distinguished from s by administration of e is peK(0, 1, |e|). However, by instead

administering all k ∈ E contained in {
xe}c∩Ds, |k| = |e′|, in equal limiting proportion pe(1/

( |e|
|e′|

)
),

the corresponding rate contribution to each state in {
xe}c ∩Ds is pe(|e′|/|e|)K(0, 1, |e′|), which

is greater than peK(0, 1, |e|). Hence, allocation δ can be improved, and would not be optimal.

Suppose now there exists e such that |e| < j∗, |e| = infk:pk∈δ,pk>0 |k|. From above, there exists

e′ ∈ δ such that pe′ > 0, |e′| > |e|, e ̸< e′, and |e′|K(0, 1, |e′|) > |e|K(0, 1, |e|), or else the allocation

is dominated. Consider

D′ = {{
xe}c ∪ {

xe′}c} ∩Ds = Ds\{
xe ∩ xe′}.

It will now be established that the rate can be improved by administering all tests in

E(e, e′) = {k : |k| = |e′|, {
xk}c ∩Ds ⊆ D′, {

xe}c ∩Ds ⊆ {
xk}c ∩Ds},

in a certain equal limiting proportion given below instead of administering e with proportion pe.

Note that there are n′ =
(|D′|−|e|
|e′|−|e|

)
such experiments.

Consider two cases: First suppose

(i) pe′ − pe((K(0, 1, |e|)/K(0, 1, |e′|)− 1) > 0.

For terms in {
xe}c ∩Ds, note that if tests in E(e, e′) are administered in equal proportion

(pe + pe((K(0, 1, |e|)/K(0, 1, |e′|))− 1))/n′ = pe((K(0, 1, |e|)/K(0, 1, |e′|))/n′,

then the corresponding rate contribution for each distinguished state is still

peK(0, 1, |e|),

the same as if e were administered in proportion pe. Moreover, administering e′ with proportion

pe′ − pe((K(0, 1, |e|)/K(0, 1, |e′|))− 1),

note that terms in {
xe′}c ∩ xe ∩Ds are distinguished in proportion

(pe + pe((K(0, 1, |e|)/K(0, 1, |e′|))− 1))(|e′| − |e|)/(|D′| − |e|)+
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pe′ − pe((K(0, 1, |e|)/K(0, 1, |e′|))− 1).

The corresponding rate contribution is greater than pe′K(0, 1, |e′|) when |D′| > |e′| > |e| >

0, |e′| + |e| > |D′|, and |e′|K(0, 1, |e′|) > |e|K(0, 1, |e|), as is assumed. Finally, note the rate

contribution to states in {
xe′}c ∩ {

xe}c ∩Ds by administration of tests in E(e, e′) and e′ is even

greater.

Suppose now

(ii) pe′ − pe((K(0, 1, |e|)/K(0, 1, |e′|))− 1) ⩽ 0.

Solving for p∗e such that

pe′ − p∗e((K(0, 1, |e|)/K(0, 1, |e′|))− 1) = 0,

it can be found that

p∗e = pe′K(0, 1, |e′|)/(K(0, 1, |e|)−K(0, 1, |e′|)).

The rate contribution to terms in {
xe}c ∩Ds from administration of experiments in E(e, e′)

in equal proportion (pe′ + p∗e)/n
′, and administration of e in proportion pe − p∗e is still

(pe′ + p∗e)K(0, 1, |e′|) + (pe − p∗e)K(0, 1, |e|) = peK(0, 1, |e|).

Further, note the rate contribution to each state in {
xe′}c ∩ xe∩Ds by experiments in E(e, e′)is

(pe′ + p∗e)((|e′| − |e|)/(|D′| − |e|))K(0, 1, |e′|),

which is greater than pe′K(0, 1, |e′|) under the given conditions. The rate contribution to states

in {
xe′}c ∩ {

xe}c ∩ Ds is thus also greater. Hence any optimal allocation will administer only

tests such that |e| = j∗. Moreover, the optimal rate is attained when all terms in Ds converge to

zero at the same rate. The allocation a(j∗, j∗) is thus optimal.

Suppose now that 0̂ < s < 1̂. The condition in (A4) results from comparing the respective

maximin rate among states in Cs ∪Ds that would result when covers are distinguished by pools
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comprised of r positives with no positives, versus pools with r positives and k negatives, and anti-

covers are distinguished by e ∈
ys, |e| = j∗. By (A3), even when anti-covers are distinguished by

pools containing both positives and negatives, it is necessary to administer tests in
ys in positive

limiting proportion. Using the arguments above, in an optimal strategy, among experiments inys, only e ∈
ys with |e| = j∗ will be administered. Given (A4), then, among states in Cs ∪Ds,

the maximin rate is obtained by administering r positives with k = 0 negatives rather than if

k > 0. Hence, for states in Cs ∪Ds, it is optimal to consider only strategies with k = 0.

If j is incomparable to s, then there must be an object k1 that is negative if s is true but

that is positive if j is true. Let d1 ∈ Ds be the anti-cover associated with k1 in the sense that

the objects associated as negative for d1 correspond to all the negatives for s except k1. When d1

is so distinguished, so is j. Further, if k = 0 when distinguishing covers, j converges at least as

fast as d1. Hence, only states in Cs ∪Ds would determine the optimal rate, and so it is optimal

to only consider strategies with k = 0. Following as above, only pools with r∗ positives and

k = 0 negatives will be administered to distinguish covers, along with pools comprised only of

j∗ negatives to distinguish anti-covers. Respective limiting proportions that insure that posterior

probability terms for states in Cs ∪ Ds converge at the same rate, such as stated in (iii), are

optimal.

□

Proof. of Theorem A.2

Define pj(n) = nj/n, where nj represents the number of times j ∈ E is administered through

stage n, and pjs(n) = njs/n, where njs represents the number of times j ∈ S\{s} is distinguished

from s through stage n. Also, let Gcs be the minimal elements in Kcs. For a powerset lattice, Gcs

corresponds to the atom associated with the subject that is negative for c but positive for s.

First note that the halving algorithm is convergent in the sense that πn(s) → 1 almost surely,
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and that all states are distinguished from s infinitely often. Note

{c} =
xc∩ {

⋃
c′∈Cs\{c}

xGc′s}c for c ∈ Cs, and
yDs = {

xs}c ∩ {
⋃

c∈Cs

xGcs}c.

Also, let

M c
n = |S| · πn(c) for c ∈ Cs, and Ms

n = |S| · sup
j∈
yDs

πn(j).

Define two test selection rules, procedures AI and AII . Procedure AI is defined as follows:

en = s if Ms
n ⩾ πn(c) for all c ∈ Cs; otherwise, select j ∈

⋃
c∈Cs

Gcs which maximizes h(j, πn).

Consider now procedure AII :

en = s if πn(0̂) > M c
n for all c ∈ Cs; otherwise, select j ∈

⋃
c∈Cs

Gcs which maximizes h(j, πn).

Both of these procedures attain the optimal rate of convergence for s being the true state in a

general lattice model. This can be seen by applying the arguments of Theorem 6 (Proposition 1)

in Tatsuoka and Ferguson (2003), it should instead be stated that a(n)/n → B/(A + B)). Note

the slowest converging states in S\{s} are those in Cs and those in
yDs.

When n is large and hence πn(s) > 0.5, each cover c is distinguished by the corresponding

element c∗ ∈ G∗
cs. This follows since mn(c

∗) > mn(j) for any j ∈ {j′ : c∗ < j′ ⩽ c}. Note also that

for n large, 1−mn(s) > 1−mn(j) for j ∈
yDs. This implies that h(s, πn) > h(j, πn) eventually

for all j ∈
yDs.

Again following as in Theorem 6 of Tatsuoka and Ferguson (2003), it can be argued that

eventually j ∈ {
yCs}c is not administered. Further, the halving algorithm can be compared

with procedures AI and AII , establishing that the halving algorithm administers the respective

optimal limiting proportions. □
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A.7 Addressing Computational Challenges Through Big-Data Technologies and Optimizations

Our framework provides a self-adjustable solution for flexible parallelization that depends on

workload characteristics. We have implemented several novel algorithmic optimizations to our

proposed simulation framework, which achieve benefits for reducing general computational com-

plexity of modeling and simulations, optimizing memory consumption, and providing adjustments

to broad simulation scenarios based on modeling and simulation characteristics. We briefly de-

scribe a few of the major optimization techniques below:

1. Lattice models will remove subjects as soon as their individual classification threshold is

reached, then reorganize remaining states and their posterior probabilities, which gradually

reduces complexity associated with lattice computation and test selection rules as simulation

continues.

2. We implement multiple optimizations on test selection rules by utilizing the ordered struc-

ture property of lattices in the “search” for the experiments that optimize test selection

criteria. For example, for the Bayesian Halving Algorithm, if we find the posterior mass for

the up-set of state A is less than 0.5, then we don’t need to examine states in the up-set

of A, as they are guaranteed to have even smaller posterior mass on their respective up-

sets. Such optimizations help eliminate large portions of states to be evaluated and greatly

enhance the performance of proposed test selection rules.

3. We further provide two types of parallelism for test selection rules, which we refer to as

“inter-lattice” and “intra-lattice”. For larger lattices, we use inter-lattice parallelism where

all computing resources are assigned to a single lattice to compute the test selection. For

smaller lattices, we switch to intra-lattice parallelism, where each CPU core works on a

single lattice. By dynamically adjusting between inter- and intra-lattice parallelism, we

alleviate computation imbalance, which is an important factor in affecting performance in
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an HPC setting.

4. We implement two schemes for generating simulation trees with trade-offs between speed

and memory usage. The first scheme generates one big tree in parallel (single-tree scheme),

which can be statistically evaluated with all true states. The second scheme generates many

trees, with each corresponds to a given true state (multi-tree scheme). Here we introduce

branch probabilities, in which tree branches with probabilities less than some threshold,

such as 0.001 for a given state, are “pruned” from consideration in performance assessment

for that state, which drastically reduces the size of trees.

5. To improve speed for the multi-tree scheme while keeping its benefit of being able to per-

formance large-scale simulations, we propose one optimization for a frequently seen special

case, which is when the individual prior probability values p0 are all equal. We utilize the

symmetries within the powerset lattice and Bayesian probability values, and redundant

computations involving states with same number of negatives can be avoided. For instance,

in such cases, when N = 25, computationally only 26 states need be considered, as opposed

to all 225 states.

6. The multi-tree scheme also benefits in performance improvement by skipping the evalua-

tion of states with low prior probabilities, such as removing states with the lowest prior

probability values that sum up to 1%. This has only a small effect on the accuracy of the

performance statistic values.

These optimization techniques were both systematically evaluated on an Intel-based HPC

with up to 476 cores and an AMD-based HPC cluster with up to 272 CPU cores.
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Figure A.1: Standard deviations of number of tests ranging pool size from 6 to 16 over 3 prior
probability settings and k = 1 to 4.


