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ABSTRACT

Detailed characterization of SARS-CoV-2 transmission across different settings can help design less disruptive interventions.
We used real-time, privacy-enhanced mobility data in the New York City and Seattle metropolitan areas to build a detailed
agent-based model of SARS-CoV-2 infection to estimate the where, when, and magnitude of transmission events during the
pandemic’s first wave. We estimate that only 18% of individuals produce most infections (80%), with about 10% of events that
can be considered super-spreading events (SSEs). Although mass-gatherings present an important risk for SSEs, we estimate
that the bulk of transmission occurred in smaller events in settings like workplaces, grocery stores, or food venues. The places
most important for transmission change during the pandemic and are different across cities, signaling the large underlying
behavioral component underneath them. Our modeling complements case studies and epidemiological data and indicates that
real-time tracking of transmission events could help evaluate and define targeted mitigation policies.

Introduction
Without effective pharmaceutical interventions, the COVID-19 pandemic triggered the implementation of severe mobility
restrictions and social distancing measures worldwide aimed at slowing down the transmission of SARS-CoV-2. From shelter
in place orders to closing restaurants/shops or restricting travel, the rationale of those measures is to reduce the number of social
contacts, thus breaking transmission chains. Though individuals may remain highly connected to household members or close
contacts, these measures reduce the connections in the general community that allow the virus to move through the network
of human contacts. Some venues may attract more individuals from otherwise unconnected social networks, or may attract
individuals who are more active and thus have greater exposure. Understanding how interventions targeted at particular venues
could impact transmission of SARS-CoV-2 can help us devise better non-pharmaceutical interventions (NPIs) that pursue
public health objectives while minimizing disruption to the economy, the education system, and other facets of everyday life.

Although it is by now clear that NPIs have helped to mitigate the COVID-19 pandemic1, most of the evidence is based
on measuring the subsequent reduction in the case growth rate or secondary reproductive number. For example, econometric
models were used to estimate the effect of the introduction of NPIs on the secondary reproductive number2, 3. Other studies
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have shown directly (through correlations or statistical models4) or indirectly (through epidemic simulations5, 6) the relationship
between mobility or individuals’ activity and number of cases. Unfortunately, most of the data used so far do not have the
granularity required to assess how social contacts and SARS-CoV-2 transmission events are modified by NPIs7.

This is especially important given the heterogeneous spreading of SARS-CoV-2. Overdispersion in the number of secondary
infections produced by a single individual was an important characteristic of the 2003 SARS pandemic8 and has been similarly
observed for SARS-CoV-29. Several drivers of super-spreading events (SSEs) have been proposed: biological, due to differences
in individuals’ infectiousness; behavioral, caused by unusually large gatherings of contacts; and environmental, in places
where the surrounding conditions facilitate spread10. Transmissibility depends critically on the characteristics of the place
where contacts happen, with many SSEs documented in crowded, indoor events with poor ventilation. A characteristic of this
overdispersion is that most infections (around 80%) are due to a small number of people or places (20%), suggesting that better
targeted NPIs or cluster-based contact tracing strategies can be devised to control the pandemic11. Although several studies
have provided insights on SSEs7, 12, given their outsized importance for SARS-CoV-2, we need better information about where,
when, and to what extent these SSEs happen and how they may be mitigated or amplified by NPIs.

In this paper we use a longitudinal database of detailed mobility and socio-demographic data to estimate the probability of
contact and transmission between individuals in different places across the New York and Seattle metropolitan areas, during the
period from February 17 to June 1 of 2020 (see Supp. Material Section 1). Note that the metropolitan areas considered extend
beyond the city limits for both locations. We selected these areas because of their large differences in COVID-19 epidemiology,
population size and density. The NY metro area has a population of 20 million people, while the Seattle metro area has 3.8
million inhabitants. Moreover, the NY metro area has a higher density (5,438 people per km2, median by census tract) than
Seattle (1,576 people per km2). Finally the number of reported COVID-19 cases/deaths during the study period in the NY area
was very large (223 per 100,000) compared to that in the Seattle area (24 per 100,000). Individual mobility data is sampled to
be representative of the different census areas (Census Block Groups, see Figure 1). Probabilistic estimation of contact between
individuals is weighted according to the likelihood of exposure between them in the different places around the metro areas.
This defines a weighted temporal network consisting of four layers representing the probabilistic estimation of physical/social
interactions occurring in (1) the community, (2) workplaces, (3) households, and (4) schools, see Figure 1. The community
and workplaces layers are generated using 4 months of data observed in the New York and Seattle metropolitan areas from
anonymized users who opted-in to provide access to their location data, through a GDPR-compliant (General Data Protection
Regulation) framework provided by Cuebiq (see Supp. Material Section 1).

The data allows us to understand how infection can propagate in each layer by estimating the probability of transmission
between individuals in the same setting, including schools, workplaces, households and multiple locations in the community.
Settings associated to the community are obtained from a large database of 375k locations in the New York and 70k in the
Seattle from the Foursquare public API. By measuring the probability that people interact in the different layers, we construct a
probabilistic time-varying contact network of ωi jt between individuals i and j on the same day t in the education, community,
work and household layers. Estimates of transmission in the community layer is done by extracting stays of users to the settings
using different time and distance in the setting. Our results are independent of the particular choice of minimal time (5 minutes
or 15min) and maximum distance to the setting (10 meters or 50 meters), see Figure 1 and Supp. Material Section 1 and 2 for
more information about the data and layers. Our model covers all possible interactions in urban areas and not just foot traffic
to commercial locations that people visit7, something especially important given the relevant role of households, schools or
workplaces in the transmission of the SARS-CoV-2. It is important to note that the underlying data does not provide a direct
measurement of contacts between individuals and the nature of these contacts (masked/unmasked, with conversation). Rather,
our method uses this data to extrapolate the locations visited by each subject and the amount of time they spent there, in order
to estimate the transmission probability between individuals, relaxing the homogeneous mixing assumption commonly used in
mathematical modeling approaches. In simpler terms, our method does not detect directly co-location of individuals, but rather
is a probabilistic estimation of the transmission between them according to the time they spend in the same places or layers.

To model the natural history of the SARS-CoV-2 infection, we implemented a stochastic, discrete-time compartmental model
on top of the contact network ωi jt in which individuals transition from one state to the other according to the distributions of
key time-to-event intervals (e.g., incubation period, serial interval, etc.) as per available data on SARS-CoV-2 transmission (see
Supp. Material Section 3 for details). In the infection transmission model, susceptible individuals (S) become infected through
contact with any of the infectious categories (infectious symptomatic (IS), infectious asymptomatic (IA) and pre-symptomatic
(PS)), transitioning to the latent compartment (L), where they are infected but not infectious yet. Latent individuals branch out
in two paths according to whether the infection will be symptomatic or not. We also consider that symptomatic individuals
experience a pre-symptomatic phase and that once they develop symptoms, they can experience diverse degrees of illness
severity, leading to recovery (R) or death (D). The value of the basic reproduction number is calibrated to the weekly number of
deaths (see Supp. Material Sections 4, 5 and 7 for further information on the calibration process, model’s details, and for the
sensitivity of our results towards different values of parameters used in the model).
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Figure 1. Network components, New York and Seattle metropolitan areas population and social contacts dynamics at
the community layer over time. Panel a is a schematic illustration of the weighted multilayer and temporal network for our
synthetic population built from mobility data. There are four different layers; the school and household layers are static over
time, and the combined workplace and community layers have a daily temporal component. Panel b shows the geographic
penetration (fraction of mobile devices by population) from our mobility data compared to the total population for the New
York and Seattle metropolitan areas. Panel c represents the average daily number of contacts in the community layer for both
metropolitan areas.
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Figure 2. Evolution of the first wave. (a) Weekly number of deaths in New York (NY) and Seattle (ST) metro areas. The
dots/triangles represent the reported surveillance data used in the calibration of the models. The lines represent the median of
the model ensemble for each location and the shaded areas the 95% C.I. of the calibrated model17. (b) Evolution of the
effective reproduction number according to the output of the simulation. The solid (dashed) line represents the median of the
model ensemble and the shaded areas the 95% C.I. of the model. (c) Estimated prevalence in our model (median represented
with solid/dashed lines and 95% C.I with the shaded area) and values reported by the CDC (dots/triangles represent New York
and Seattle data respectively)18. (d) Estimated number of deaths if the NPIs had been applied in New York one week
earlier/later. Solid (dashed) lines represent the median of the model ensemble and the shaded areas the 95% C.I. (e) Estimated
evolution of the effective reproduction number if the measures had been applied in New York one week earlier/later. Solid
(dashed) lines represent the median of the model ensemble. (f) Estimated prevalence in New York (left) and Seattle (right) if
the NPIs had been applied in New York one week earlier/later and in Seattle one week later. The height of the bars represents
the median of the model ensemble, while the vertical error bars represent the 95% C.I. The dot/triangle shows the value
reported by the CDC for the last week of April 2020.

Results

Impact of NPIs
Our data clearly show that the statistic of potential contacts in the two metro areas have changed due to the introduction of NPIs
during the week of March 15th to March 22nd, see Figure 1. A National Emergency was declared on March 13th, and the
NY City School System announced the closure of schools in March 16th13. NY City Mayor issued a "shelter in place" order
in the city on March 1714, and non-essential business were ordered to close or suspend all in-person functions in New York,
New Jersey and Connecticut by March 22nd. As we can see in Figure 1 the individuals’ total number of contacts decreased
dramatically from around 7 (in our community layer) to below 2. In Seattle, the reduction of contacts started one week earlier
than in NY City, coinciding with earlier closing of some schools15, and the Seattle mayor issuing a proclamation of civil
emergency on March 3rd16.

In Figure 2 we report numerical simulations of the epidemic curve that accurately reproduce the evolution of the incidence
of new COVID-19-related deaths in both NY and Seattle metro areas, even though both cities were affected very differently by
the epidemic in the first wave. The analysis identifies the impact of the reduction in the estimated number of contacts due to the
implemented NPIs: both in the NY and Seattle metro areas, Rt dropped below 1 one week after NPIs were introduced. To
estimate the importance of timely implementations of NPIs in metropolitan areas, we have generated counterfactual scenarios
in which the NPIs and the ensuing reduction in the number of contacts could have happened one week earlier or later than the
actual timeline19. The comparison between NY and Seattle is relevant, because we observed that the reduction in contacts in
Seattle started to happen exactly one week before that in NY. To this end we have shifted in time the contact patterns around the
week where NPIs where introduced in both cities. The results for these scenarios are reported in Figure 2d, where we see that a
one week delay in introducing NPIs could have yielded a peak in the number of deaths two times larger than the observed one
(0.7 deaths per 1,000 people compared to the 0.35 per 1,000). This doubling in peak deaths following a one week delay is
also observed in the Seattle metro area and in the cumulative infection prevalence in the metro area. Conversely, a one week
earlier implementation of the NPIs timeline in NY area could have reduced the death peak by more than a factor of three, a
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Figure 3. Spatial spreading of the disease. The plots in the left column represent the share of infections across layers in
New York (a) and Seattle (d). In the middle column, the estimated location where the infections took place for New York (b)
and Seattle (e) in the community layer. Note that the y-axis is 20 times smaller in Seattle. The evolution has been smoothed
using a rolling average of 7 days. In the right column, the distributions are normalized over the total number of daily infections,
showing how infections were shared across categories in the community layer. The evolution has been smoothed using a rolling
average of 7 days.

result similar to that found using county-level simulations19. In Seattle, implementing the NPIs one week earlier would have
prevented the first wave of infections. For this reason, the results are not contained in panel F.

Taxonomy of transmission events
The high resolution of our dataset allows us to estimate the relevance of different settings and the effects of NPIs on the
transmission dynamic of SARS-CoV-2. People spent different time in each layer and place before and after the introduction
of NPIs (see Supp. Material Section 1). As a result, the number of infections varied significantly during the observed period.
As we can see in Figure 3, before NPIs were introduced, we estimate that most infections took place in the community and
workplace layers. Once restrictions were implemented in both cities on March 16th, as expected, the proportion of infections in
the household layer greatly increased, especially in the NY area. In Seattle, the number of infections in the workplace and
household layers were comparable, probably because the number of cases overall was lower than in NY. We can further stratify
data by venue type in the community layer as in Figure 3, by looking at the estimated top categories (see Supp. Material Section
1 for their definition) in terms of the number of total infections throughout the whole period. Before the NPIs were introduced,
our model estimates that most of the infections in the community layer happened in Food/Beverage, Shopping, and Exercise
venues. Also a significant number of infections happened in Art/Museums and Sport/Events venues. After the introduction
of NPIs, the number of infections in Exercise, Sport/Events or Art/Museums venues decreases as expected. However, Food,
Groceries and Shopping venues became the main community setting for transmission in both cities.

Super-spreading events
Our agent-based simulations also allow us to estimate statistically the transmission events by a single individual and estimate
how many secondary infections she generates. In Figure 4 we report the distribution of the number of secondary infections
produced by each individual in the community layer only. This is driven by individual-level differences in activity and those
individuals they might interact with. The distribution is highly skewed and can be modeled by a negative binomial distribution
with dispersion parameters (k) of 0.16 (NY) and 0.23 (Seattle), in agreement with the evidence accumulated from SARS-CoV-2
transmission data9, 10, 20, 21. As a result, super-spreading events (SSEs) are likely to be observed. We define a transmission
event as a SSE if the individual infects in a specific location category more than the 99-th percentile of a Poisson distribution
with average equal to R (see8 and Supp. Material Section 6 for further details), here corresponding to an infected individual
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Figure 4. Behavioral super-spreading events. Distribution of the number of infections produced by each individual in New
York (a) and Seattle (b) up to the declaration of National Emergency. The distribution is fitted to a negative binomial
distribution yielding a dispersion parameter of k = 0.163 [0.159−0.168] 95%CI and k = 0.232 [0.224−0.241] 95%CI,
respectively. In both plots the inset represents the same distribution on the log-scale and distinguishing infections that took
place before the declaration of National Emergency on 03/13 and after that date.
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infecting 8 or more others. Interestingly, if we compare the distribution of secondary infections produced before and after the
introduction of NPIs, even though we see a clear reduction of SSEs, we still find a heterogeneous distribution of secondary
infections. Thus, the NPIs did not prevent the formation of SSEs, but only significantly lowered their frequency.

Consistent with this pattern of over-dispersion in the number of transmission events, we find that the majority of infections
is produced by a minority of infected people: ∼ 20% of infected people were responsible for more than ∼ 85% of the infections
in both metro areas (see Figure S9 in Supp. Material). However, note that a critical driver here of this phenomenon is that
a large majority of infected people (85% in the community layer) do not infect any others in our simulations. Only a small
fraction of infection events (0.08%) are made of 8 (or more) secondary infections.

Transmission events and SSEs did not happen equally in different settings or along time or geography. In Figure 5 we show
the results of our simulations for the total number of infections produced in each category and the share of those infections that
can be related to SSEs (see also Table S2 in the Supp. Material). The combination of those two features define a continuous
risk map in which places can be at different types of risk: (i) low contribution from SSEs and low contribution to the overall
infections, such as Outdoor places; (ii) larger contribution from SSEs but low contribution to the overall infections, such as
Sports/Events, Arts/Museum or Entertainment before the introduction of NPIs; (iii) large contribution to the overall infections
but with low contribution from SSEs, such as Shopping or Food/Beverage after the introduction of NPIs; and (iv) large number
of infections and with large contribution from SSEs, such as Grocery. This classification has important implications from
a public health perspective. For instance, venues in (ii) do not have a major contribution to the overall infections but might
represent a challenge for contact tracing. Conversely, for categories in (iii) it might be easier to trace chains of transmission
but their total contribution is large. Note that this definition is not static, but changes over time due to the NPIs imposed by
authorities. Indeed, looking at the weekly pattern of infections (see Fig. 5) we observe how some categories move to a different
quadrant due to the behavior of individuals. Although we estimate that SSEs and infections were more likely in Arts/Museum,
Sport/Events in NY, and Entertainment and Grocery in both cities, our simulations show that Grocery category still greatly
contributes to the total number of infections, but do not have as many SSEs after March 16. On the other hand, we estimate that
SSEs were rare before March 9 in Seattle, but their contribution doubled in the week of March 9-15 - when many individuals
probably went for supplies amid preparation for the future introduction of NPIs. This observation includes implicitly a very
important message: a place may not be inherently dangerous; rather, the risk is a combination of both the characteristics of the
place/setting and of the behavior of individuals who visit it. This suggests revisiting studies which find that settings could play
always the same role in the evolution of the pandemic7.

Discussion
Our results emphasize the intertwined nature of human behavior, NPIs, and the evolution of the COVID-19 pandemic in two
major metropolitan areas. Specifically, our results suggest that heterogeneous connectivity and behavioral patterns among
individuals lead naturally to differences in risk across settings and the generation of SSEs. In particular, the implemented
partial or full closures of different settings (e.g., sport venues, museums, workplaces) had a dramatic effect in shaping the
mixing patterns of the individuals outside the household22, 23. As a consequence, the settings responsible for the majority of
transmission events and SSEs varied over time. In absolute terms, the food and beverage setting is estimated to have played a
key role both in determining the number of transmission events and SSEs in the early epidemic phase; however, this setting was
among the first targets of interventions and thus its contribution become zero over time because of the introduced NPIs. On the
other hand, settings such as grocery stores, which consistently provided a low absolute contribution to the overall transmission
and SSEs, became, in relative terms, a source of SSEs during the lockdown when most of other activities were simply not
available. These findings suggest that there is room for optimizing targeted measures such as extending working time to dilute
the number of contacts or the use of smart working aimed at reducing the chance of SSEs. That could be especially relevant to
avoid local flare ups of cases when the reproduction number is slightly above or below the epidemic threshold.

Although the overall picture emerging from studying Seattle and New York is consistent, it is important to stress that each
urban area might have specific peculiarities due to local transportation, tourism, or other economic drivers differentiating the
cities’ life cycle. Our results suggest that a one-size-fits-all solution to minimize the spread of SARS-CoV-2 might have very
different impact across cities. Furthermore, the results presented may not be generalized to rural areas. Though large parts
of the Seattle metro area could be considered as rural, individual connectivity patterns may be differently constrained by the
generally lower population density in some other parts of the country.

Our modeling analysis does not have the ambition to substitute field investigations, which remain the primary source of
evidence. Some of the reported findings (e.g., the role of food and beverage venues or groceries) appear to be in agreement with
epidemiological investigations7, 24–27. Future empirical analyses could provide further validation of our findings. Our modeling
investigation is based on real-time data on human mobility/activity that provides an indirect proxy for infection transmission.
One of the strengths of this approach is that, differently from epidemiological investigations, the data can be retrieved in
real time and longitudinally, thus allowing to quickly capture possible changes in the most relevant settings for transmission.
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Figure 5. Dynamics of super-spreading events (SSE). Risk evolves with time as a function of the behavior of the
population and policies in place. A) and B) : risk posed by each category per week, defined using the corresponding map below.
As a reference, the gray area on top shows the estimated weekly incidence. C) and D) : the x axis represents the fraction of total
infections that are associated with each category, while the y axis accounts for the share of those infections that can be
attributed to SSEs in each category. Note that the fraction of infections is normalized over all the infections produced in all the
social settings throughout the whole period. This defines a continuous risk map in which places with few infections and low
contribution from SSEs will be situated on the left bottom corner. Places where the number of infections is high but the
contribution from SSEs is low are situated in the bottom right corner. Conversely, places with large contribution from SSEs but
a low amount of infections are situated on the top left corner. Lastly, places with both large number of infections and an
important contribution from SSEs are situated in the top right corner. The color associated to each tile in the top row is extracted
from the position of the point in the plane defined in the bottom figure. The points in the bottom row show the evolution of the
position of the categories Arts/Museum and Grocery for each week, with the arrows indicating the time evolution.
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Furthermore, our approach could help minimize the noisy and biased data collection related to massive transmission events28.
Yet, the approach used here is far from capturing all the finest details of human social contacts and thus the estimates on the
contribution of different settings to SARS-CoV-2 transmission entail an unavoidable uncertainty.

To properly interpret our results, it is important to acknowledge the limitations of the assumptions included in our modeling
exercise. First, we have considered a decrease of the transmission probability in outdoors as compared to indoors settings of
1/2029. Although this choice is guided by empirical evidence and our results are robust to this choice (see Supp. Material Section
7), further studies better quantifying the relative risk of indoor vs. outdoor transmission are warranted. Second, our model
neglects to consider differences in the behavior that people follow when in contact with each other. It is indeed possible that
contacts between relatives and friends have a larger chance of resulting in a transmission event as compared with interactions
with strangers30. Third, we do not model nursing homes, which were severely hit by the COVID-19 pandemic across the globe.
However, although they represent a key setting to determine COVID-19 burden in terms of deaths and patients admitted to
hospitals and ICUs, they are possibly not central to capture the transmission dynamics of SARS-CoV-2 at the population level,
which is the aim of this study. Although there is some location information from hospitals, we do not model them. Nonetheless,
contact tracing studies from several countries have revealed that transmission within hospitals is relatively low, and hospital
staff are more at risk from interactions with their coworkers (e.g. in the breakroom) or out in their communities31, 32.

In conclusion, the majority of NPIs introduced in large urban areas in March were effective to dramatically slow down
the first wave of COVID-19 by greatly reducing the number of effective contacts in the population. Closing down schools,
businesses, workplaces and social venues, however, took (and still does) an enormous toll on our economy and society. Our
results and methodology allow for a real-time data-driven analysis that connects NPIs, human behavior and the transmission
dynamic of SARS-CoV-2 to provide quantitative information that can aid in defining more targeted and less disruptive
interventions not only at a local level, but also to assess whether local restrictions could trigger undesired effects at nearby
locations not subject to the same limitations. Although nowadays the epidemiological landscape has dramatically changed by
the introduction of vaccines, spread of more transmissible variants, and the build up of natural immunity, the results offered in
this paper provide unique insights on the transmission pathways of SARS-CoV-2 and can be instrumental for the definition of
location-based mitigation policies and for taking informed decisions about high-risk activities.

Methods
We used individual-level mobility data of over half a million individuals distributed in New York and Seattle metropolitan
areas during the months of February 2020 to June 2020 to estimate the day and type of venues where people might have
interactions that yield to transmission events. To do that we extracted from the mobility data the stays (stops) of people in a
large collection of around 440k settings33. With this information we built two synthetic populations, one for each metropolitan
area, in which agents can interact in different settings: workplaces, households, schools, and the community (points of interest).
We then explore the transmission of SARS-CoV-2 using a compartmental and stochastic epidemic model applied on top of this
population.

The behavioral changes induced in the population by the introduction of several NPIs are naturally encoded in the mobility
data, allowing us to characterize the effect of these interventions. We ran counterfactual simulations of our stochastic epidemic
model to understand that effect. Furthermore, the resolution of this data allows us to characterize the spreading through
different types of venues at different stages of the epidemic, depicting a complex picture in which the combination of both the
characteristics of the place/setting and of the behavior of individuals who visit it determine its risk.

Lastly, the information about the statistical heterogeneity of the contact pattern of different individuals allows us to study
the frequency and characteristics of behavior-related super-spreading events (SSE). We study the likelihood of finding a SSE
per setting as a a function of time by looking at the number of infections produced by each individual in each location. A full
description of the materials and methods is provided in the different sections of the Supp. Materials.
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