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eMethods 

Imputation of cases and deaths data for Nebraska counties 

The time-series of cases and deaths data are truncated for counties in Nebraska after June 30, 2021, due to non-
reporting of cases and deaths data at the county level. To produce estimates for Nebraska we imputed cases and 
deaths for each county based on state-level cases and deaths, assuming each county experienced the same 
proportional changes in cumulative cases and deaths as reported at the state level. 

Imputation and temporal disaggregation of vaccination data 

We imputed data for 2,006 counties in the weekly vaccination data (First dose) (minimum missing weeks: 1, 567 
counties, maximum missing weeks: 35, 8 counties). The states with the highest percentage of counties with missing 
data are Nebraska and South Dakota. After the temporal disaggregation of the weekly time series to daily data, a 
remaining 57 counties had missing data at the end of the time-series (minimum missing days: 8, maximum missing 
days: 211). 

We used a three-step process to render a daily timeseries from the (irregular) weekly timeseries. First, we used linear 
interpolation to impute missing First dose and Fully vaccinated data on a weekly (7-day) interval from January 10th, 
2021. Second, we disaggregated the weekly time series to the daily level, using a second order smoothness 
constraint. This method fits a smooth line that always passes the observation on the first day of the week and 
increases in the following days. Third, we imputed the remaining missing data of at the end of the time series using 
the following approach. 

We imputed the missing data of First dose at time X using the fraction of people who get fully vaccinated. We 
assume there is an average lag of Y days between First dose and Fully vaccinated. For a single-dose vaccine 
(Johnson, 8% of all fully vaccinated individuals), the status Fully vaccinated is achieved on the same day as the 
First dose. For Moderna (37.3% of all fully vaccinated individuals), the recommended time between the first and 
second dose is four weeks (28 days). For Pfizer-BioNTech (54.6%), the recommended time is three weeks (21 days) 
1,2. The weighted average of time until fully vaccinated is 22 days. 

For each time point, we computed the fraction fully vaccinated. The missing values of First dose were calculated 
from the imputed values and had to meet the constraint that at any time, the total number First dose must be smaller 
than the total population size. We further constrain the time series to be monotonically increasing.  

Children under 12 years old were not eligible for COVID-19 vaccination in the time period of analysis. We 
constrained the fraction of the full population with a First dose to never exceed the fraction of the full population of 
12 years and older. For example, Santa Cruz, Arizona, reports 99% of its population has received a First dose, while 
only 81% of the population is 12 years and older. In this case, we constrain the constrain the fraction vaccinated to 
be 81%. 

Logistic regression rendering state specific odds ratios of vaccination given infection status 

We used a logistic regression model to estimate the association between self-reported vaccination status and prior 
COVID-19 diagnosis. The regression model included fixed effects for week and state. We also included state-level 
random coefficients for prior COVID-19 diagnosis, to allow for state-level differences in the overlap between 
vaccination and prior infection. Below is the full regression model, where 𝑋(.) is a model matrix for the specified 
variable. We used a binomial likelihood to model the number people with a self-reported vaccination status (n) out of 
the total (N).  

logit(𝜃) = b! + 𝑋week𝐛week + 𝑋state𝐛state + 𝑋state×covid(bcovid + 𝐠r.e.)
ℒ(𝜃|𝑁, n) = 𝜃#(1 − 𝜃)$%#

𝑔r.e. ∼ 𝒩(0, 𝜎)
𝜎 ∼ 𝑈(0,∞)

  



 

Derivation of joint probability from odds ratio 

We have estimates of the probability of ever being infected and (adjusted) data of the probability of ever being 
vaccinated. In addition, we have a specified a data-driven prior distribution on the odds ratio of vaccination for those 
with a prior diagnosis versus those without a prior diagnosis. We want to compute the probability of being immune 
(the probability of ever being vaccinated and/or infected). 

Following the rules of probability and our definition of immunity, we can compute the probability of being immune 
as a function of the probability of vaccinated, infected, and the conditional probability of being vaccinated given 
prior infection. 

𝑝immune = 𝑝vac ∪	inf
= 𝑝vac + 𝑝inf − 𝑝vac ∩	 inf
= 𝑝vac + 𝑝inf − 𝑝vac 𝑝vac	|	inf

= 𝑝vac + 𝑝inf − 𝑝vac
𝑂vac	|	inf

1 + 𝑂vac	|	inf

 

 

To compute the probability of being immune, we need an expression for the unknown 𝑂vac	|	inf. Making use of the 
fact that: 

𝑂vac	|	inf

𝑂vac	|	not inf
= 𝑂𝑅

𝑂vac	|	inf = 𝑂𝑅 𝑂vac	|	not inf

  

 

we can express 𝑝vac as a function of 𝑝inf, 𝑂𝑅 and 𝑂vac	|	inf 

𝑝vac = 𝑝inf 𝑝vac	|	inf 																						+	𝑝not inf 𝑝vac	|	not inf

= 𝑝inf  
𝑂vac	|	inf

1 + 𝑂vac	|	inf
													+ 	𝑝not inf  

𝑂vac	|	not inf

1 + 𝑂vac	|	not inf

= 𝑝inf  
OR 𝑂vac	|	not inf

1 +OR 𝑂vac	|	not inf
	+	(1 − 𝑝inf)

𝑂vac	|	not inf

1 + 𝑂vac	|	not inf

=
𝑝inf OR 𝑂vac	|	not inf

1 +OR 𝑂vac	|	not inf
									+	

𝑂vac|not inf − 𝑝inf 𝑂vac	|	not inf

1 + 𝑂vac	|	not inf

 

 

For readability, let us define short hands for the above terms. 

𝑝vac = 𝑣
𝑝inf = 𝑖

𝑂vac	|	not inf = 𝑑	(for	o𝐝ds)
OR = 𝑟	(for odds ratio)

 

Using the new labels, rearranging the terms, and equating to zero renders a quadratic equation of d (𝑂vac	|	not inf): 



𝑣 =
𝑖𝑟𝑑

1 + 𝑟𝑑 +
𝑑 − 𝑖𝑑
1 + 𝑑

0 = 𝑣(1 + 𝑟𝑑)(1 + 𝑑)      − 𝑖𝑟𝑑(1 + 𝑑)  − (𝑑 − 𝑖𝑑)(1 + 𝑟𝑑)
= 𝑣 + 𝑣𝑟𝑑 + 𝑣𝑑 + 𝑣𝑟𝑑) − 𝑖𝑟𝑑 − 𝑖𝑟𝑑)   − 𝑑 + 𝑖𝑑 − 𝑟𝑑) + 𝑖𝑟𝑑)
= (𝑣𝑟 − 𝑟)𝑑) + (𝑣𝑟 + 𝑣 − 𝑖𝑟 + 𝑖 − 1)𝑑 + 𝑣

 

Making the following substitutions,  

(𝑣𝑟 − 𝑟) = 𝑎
(𝑣𝑟 + 𝑣 − 𝑖𝑟 + 𝑖 − 1) = 𝑏

𝑣 = 𝑐
 

allows us to solve the quadratic formula, rendering a solution for 𝑂vac|not inf, which allows us to compute the joint 
probability of being vaccinated and infected, and finally the probability of being immune. 

−𝑏 ± L(𝑏) + 4𝑎𝑐)
2𝑎 = 𝑑 = 𝑂vac	|	not inf

𝑂vac	|	inf = 𝑂vac	|	not inf OR

𝑝vac	|	inf =
𝑂vac	|	inf

1 + 𝑂vac	|	inf

𝑝vac ∩ inf = 𝑝vac	𝑝vac	|	inf

  

 
Waning functions 
 
We propose four simplistic functions of waning of immunity (eFigure 1), under three scenarios: a baseline scenario, 
used in the analyses in the manuscript, and an additional optimistic and pessimistic scenario (dotted lines in eFigure 
1) for sensitivity analyses.  
 
Baseline scenario: 

- Protection against infection conferred by vaccination or natural infection is 80% for the first two months 
after natural infection or vaccination, then declines to 50% in month 4, and then declines more slowly over 
the next five months, such that the protection nine months after infection or vaccination is 25% and 
constant thereafter.  

- Protection against infection conferred by the combination of vaccination and natural infection is 90% and 
does not decline. 

- Protection against severe outcomes conferred by vaccination or natural infection is 95% for the first six 
months after infection or complete vaccination, and then declines by 10 percent points every six months. 

- Protection against severe outcomes conferred by the combination of natural infection and vaccination is 
95% and does not decline. 

 
Optimistic scenario: 

- Protection against infection conferred by vaccination or natural infection is 90% for the first two months 
after natural infection or vaccination, then declines to 75% over the next two months, and then declines 
further over the next five months, such that the protection nine months after infection or vaccination is 50% 
and constant thereafter.  

- Protection against infection conferred by the combination of vaccination and natural infection is 95% and 
does not decline. 

- Protection against severe outcomes conferred by vaccination or natural infection is 100% for the first six 
months after the infection or complete vaccination, and then declines by 5 percent points every six months. 

- Protection against severe outcomes accrued by the combination of natural infection and vaccination is 
100% and does not decline. 

 
Pessimistic scenario: 



- Protection against infection conferred by vaccination or natural infection is 75% for the first two months 
after natural infection or vaccination, then declines to 45% over the next two months, and then declines 
further over the next five months, such that the protection nine months after infection or vaccination is 20% 
and constant thereafter.  

- Protection against infection conferred by the combination of vaccination and natural infection is 80% for 
the first six months after being previously infected and vaccinated, and then declines by 10 percent points 
every six months. 

- Protection against severe outcomes conferred by vaccination or natural infection is 100% for the first six 
months after the infection or complete vaccination, and then declines by 20 percent points every six 
months. 

- Protection against severe outcomes conferred by the combination of natural infection and vaccination is 
90% for the first six months after being previously infected and vaccinated, and then declines by 10 percent 
points every six months. 

 
Validation of Household Pulse Survey data 
We fit a logistic regression model on the Axios-Ipsos Coronavirus Survey data3, similar to the logistic regression we 
used for the Household Pulse Survey data, that was used in the main analyses. The Axios-Ipsos survey data does not 
have state-specific estimates, rendering a simplified regression equation: 

logit(𝜃) = b! + 𝑋week𝐛week + 𝑋covidbcovid
ℒ(𝜃|𝑊,𝑤) = 𝜃*(1 − 𝜃)+%*

𝑏(⋅) ∼ 𝒩(0,1000)
 

 
  



eTable 1: Means and standard deviations of the log-normal prior distributions for odds ratio of vaccination given 
infection status for each US state. 

State Odds ratio Lower bound 
95% CrI 

Upper bound 
95% CrI 

Florida 0.400 0.361 0.444 
Michigan 0.455 0.390 0.529 
Oregon 0.469 0.397 0.555 
Washington 0.47 0.401 0.551 
North Carolina 0.475 0.424 0.532 
Pennsylvania 0.484 0.428 0.547 
Alaska 0.488 0.407 0.586 
Illinois 0.495 0.441 0.557 
New Mexico 0.501 0.403 0.623 
Maryland 0.503 0.425 0.596 
New Jersey 0.504 0.439 0.578 
Arizona 0.505 0.444 0.574 
New York 0.505 0.46 0.556 
Vermont 0.507 0.406 0.633 
Hawaii 0.508 0.417 0.618 
Delaware 0.511 0.421 0.621 
Indiana 0.512 0.449 0.584 
West Virginia 0.512 0.431 0.608 
Connecticut 0.516 0.44 0.605 
North Dakota 0.516 0.431 0.617 
Idaho 0.516 0.434 0.614 
Colorado 0.516 0.447 0.596 
Nevada 0.517 0.431 0.621 
Massachusetts 0.518 0.441 0.607 
Ohio 0.518 0.466 0.575 
Wyoming 0.519 0.427 0.631 
Rhode Island 0.519 0.432 0.625 
Kansas 0.521 0.441 0.616 
Minnesota 0.523 0.446 0.612 
Maine 0.525 0.442 0.623 
Mississippi 0.526 0.445 0.621 
District of Columbia 0.53 0.438 0.641 
Georgia 0.53 0.472 0.595 
Tennessee 0.532 0.457 0.62 
New Hampshire 0.534 0.435 0.656 



Montana 0.535 0.439 0.651 
Oklahoma 0.535 0.456 0.627 
Missouri 0.535 0.467 0.614 
Utah 0.536 0.451 0.637 
Nebraska 0.537 0.435 0.663 
Virginia 0.538 0.459 0.629 
South Dakota 0.538 0.444 0.653 
Arkansas 0.541 0.456 0.643 
South Carolina 0.541 0.464 0.632 
California 0.545 0.502 0.591 
Iowa 0.554 0.472 0.652 
Wisconsin 0.555 0.483 0.638 
Alabama 0.56 0.484 0.649 
Louisiana 0.567 0.487 0.659 
Kentucky 0.569 0.486 0.665 
Texas 0.581 0.532 0.634 

  



eTable 2: Effective protection outcomes for each US state on October 31, 2021 under base-case, pessimistic and 
optimistic scenarios. 

State Effective protection against 
infection; base-case 
scenario (pessimistic; 
optimistic) 

Effective protection against 
severe disease; base-case 
scenario (pessimistic; 
optimistic) 

Wisconsin 
42.3% 
(32.4%-58.1%) 

72.5% 
(56.6%-80.7%) 

District of 
Columbia 

48.7% 
(38%-65.8%) 

78.5% 
(61.3%-87.7%) 

Maryland 
47.7% 
(36.8%-64.8%) 

78.1% 
(61%-87.7%) 

Louisiana 
50.5% 
(37.7%-64.6%) 

76.7% 
(59.9%-84.6%) 

West Virginia 
37.2% 
(21.4%-42.6%) 

62.9% 
(45.1%-66.1%) 

Illinois 
47.1% 
(37.7%-65.4%) 

77% 
(61.3%-86.8%) 

New Mexico 
57.4% 
(42.5%-71.3%) 

83% 
(64%-90.2%) 

Arizona 
55.2% 
(41.1%-69.8%) 

81.6% 
(63.3%-89.1%) 

Texas 
53% 
(38.5%-66.8%) 

79.5% 
(60.8%-86.7%) 

Oklahoma 
57.5% 
(38.8%-67.4%) 

81.6% 
(60.3%-87.4%) 

South Dakota 
49.8% 
(36.9%-64.6%) 

76.8% 
(59.5%-85.3%) 

Iowa 
44.4% 
(34.4%-60%) 

73.5% 
(58.4%-81.9%) 

North Carolina 
43.9% 
(32.5%-57.8%) 

71.8% 
(56.2%-79.9%) 

Arkansas 
48.5% 
(33.8%-60.4%) 

75.1% 
(57.1%-81.9%) 

Tennessee 
48.3% 
(33.9%-60.3%) 

75.4% 
(57.6%-82%) 

Kentucky 
49.9% 
(34.3%-60.8%) 

76% 
(56.8%-82.1%) 



Virginia 
42.9% 
(31.2%-58.2%) 

72% 
(53.2%-80.4%) 

Kansas 
47.8% 
(35.3%-61.8%) 

75.4% 
(58.5%-83.2%) 

Michigan 
45.7% 
(33.3%-57.6%) 

73.8% 
(56.4%-79.5%) 

Missouri 
41.4% 
(30%-54.2%) 

69.3% 
(53.5%-76.3%) 

Alabama 
53.1% 
(36.1%-64.1%) 

78.8% 
(59%-85.1%) 

Indiana 
42.7% 
(31.8%-56.9%) 

70.9% 
(55.1%-78.7%) 

Nevada 
53.7% 
(38.7%-66.8%) 

79.6% 
(60.8%-86.9%) 

California 
51% 
(39.2%-67.7%) 

79.6% 
(62.1%-88.3%) 

Montana 
48.8% 
(33.1%-59.3%) 

74.8% 
(56.3%-81.2%) 

New 
Hampshire 

46% 
(30.9%-58.2%) 

76.1% 
(54.9%-83.2%) 

Ohio 
40.6% 
(30.8%-55.8%) 

69.2% 
(54.8%-78%) 

Hawaii 
41.6% 
(31.7%-60.5%) 

78% 
(61%-89.3%) 

Idaho 
52.5% 
(33.2%-60.3%) 

76% 
(55.5%-81.9%) 

Wyoming 
53.4% 
(34%-61.6%) 

77.8% 
(56.4%-83.4%) 

Massachusetts 
49.1% 
(37.6%-66.3%) 

79.3% 
(59.5%-87.9%) 

Georgia 
51.8% 
(36.4%-63.5%) 

77.9% 
(59.3%-84.6%) 

New Jersey 
52.4% 
(41.4%-70.5%) 

80.3% 
(62.4%-89.9%) 

Pennsylvania 
52.1% 
(37.8%-66.7%) 

80.2% 
(60.9%-88.6%) 



Washington 
45.5% 
(31.5%-59.8%) 

74.8% 
(53.3%-82.8%) 

Maine 
44.3% 
(31.2%-58.6%) 

76.5% 
(57.9%-84.6%) 

North Dakota 
47% 
(35.3%-61.1%) 

75% 
(60.1%-82.8%) 

Colorado 
56.9% 
(42.8%-72.1%) 

83.3% 
(65.4%-92.3%) 

Nebraska 
45.2% 
(31.5%-57.7%) 

72.1% 
(53.7%-79.2%) 

Minnesota 
43.2% 
(33.2%-59.2%) 

72.6% 
(57.4%-81.7%) 

Oregon 
45.5% 
(31.2%-58.1%) 

74.2% 
(55.8%-82.1%) 

New York 
53.8% 
(41.4%-69.3%) 

81% 
(63.2%-89.6%) 

Delaware 
51.7% 
(38.7%-66.3%) 

79% 
(61.2%-87%) 

Alaska 
54.1% 
(35.2%-63%) 

77.4% 
(57.1%-83.9%) 

South Carolina 
49.7% 
(34.4%-61.1%) 

75.5% 
(57.2%-82.2%) 

Vermont 
37.2% 
(26.9%-51.3%) 

67.8% 
(51.9%-75.7%) 

Florida 
60.9% 
(40.2%-71.1%) 

83.8% 
(59.7%-89.8%) 

Rhode Island 
55.3% 
(41.3%-69.9%) 

81.8% 
(63%-89.7%) 

Mississippi 
50.8% 
(36.6%-62.9%) 

76.9% 
(59.6%-83.7%) 

Connecticut 
51.1% 
(39.1%-68%) 

81.4% 
(63%-90.6%) 

Utah 
45.3% 
(32.6%-57.8%) 

71.7% 
(55.7%-79.3%) 

  



eFigure 1: Assumed waning curves for protection against infection and severe disease, from natural infection and/or 
vaccination.  

Footnote: Dashed lines indicate the optimistic and pessimistic scenario. 

eFigure 2: County-level estimates of the fraction of the population with effective protection at four time-points 
between December 31, 2020 and October 31, 2021.  

eFigure 3: Contribution of prior infection and vaccination to the fraction of the population immunologically exposed 
for each US state over time. 

Footnote: Purple: percent ever infected and not vaccinated. Green: percent vaccinated and not prior infected. 
Blended color: percent ever infected and vaccinated. 

eFigure 4: Contribution of effective protection from prior infection and vaccination or both to the total effective 
protection for each US state over time. 

Footnote: Purple: effective protection from those infected and not vaccinated. Green: effective protection from those 
vaccinated and not prior infected. Blended color: effective protection from those infected and vaccinated. 

eFigure 5: Comparison of immunity estimates for each US state, with credible intervals, with blood donor estimates 
of immunity4. 

Footnote: red lines indicate the blood donor estimates 
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