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Abstract 1 

Mendelian randomization (MR) is a common tool for identifying causal risk factors 2 

underlying diseases. Here, we present a method, MRAID, for effective MR analysis. 3 

MRAID borrows ideas from fine mapping analysis to model an initial set of candidate 4 

SNPs that are in potentially high linkage disequilibrium with each other and 5 

automatically selects among them the suitable instruments for causal inference. 6 

MRAID also explicitly models both uncorrelated and correlated horizontal pleiotropic 7 

effects that are widespread for complex trait analysis. MRAID achieves both tasks 8 

through a joint likelihood framework and relies on a scalable sampling-based algorithm 9 

to compute calibrated p-values. Comprehensive and realistic simulations show MRAID 10 

can provide calibrated type I error control, reduce false positives, while being more 11 

powerful than existing approaches. We illustrate the benefits of MRAID for an MR 12 

screening analysis across 645 trait pairs in UK Biobank, identifying multiple lifestyle 13 

causal risk factors of cardiovascular disease-related traits.  14 

  15 
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Introduction 1 

Investigating causal relationship among complex traits and identifying causal risk 2 

factors are an important first step towards understanding the biology of diseases. A 3 

common statistical tool for performing such causal inference in observational studies is 4 

Mendelian randomization (MR). MR is a form of instrumental variable analysis that 5 

uses SNPs to serve as instruments for inferring the causal effect of an exposure variable 6 

on an outcome variable(1). MR requires only summary statistics from genome-wide 7 

association studies (GWASs) and is often performed in a two-sample study setting 8 

where the exposure variable and the outcome variable are measured in two separate 9 

studies(2). With the abundant availability of GWAS summary statistics, numerous MR 10 

analyses are being carried out, identifying important causal risk factors for various 11 

common diseases. These MR studies are facilitated by many recently developed MR 12 

methods that include the inverse variance weighted (IVW) method, MR-Egger(3), 13 

median-based regression(4), BWMR(5), RAPS(6), MRMix(7), CAUSE(8), to name a 14 

few. Different MR methods differ in their modeling assumptions and inference 15 

algorithms, but the majority of them encounter two important modeling and algorithmic 16 

challenges that have so far limited the effectiveness of MR analysis.  17 

First, almost all existing MR methods rely on a pre-selected set of independent 18 

SNPs to serve as instruments for MR analysis. The instruments are selected to be 19 

independent from each other to ensure the validity of the statistical inference framework 20 

used in many common MR methods such as IVW. The independent SNPs are often 21 

selected through linkage disequilibrium (LD) clumping, a procedure that first ranks 22 

SNPs based on their marginal association evidence with the exposure variable and then 23 

retains SNPs that are not in high LD with the SNPs on top of the ranking list. Using LD 24 

clumping to select SNPs may be suboptimal, however, as the selected SNPs may only 25 
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represent tagging SNPs that are in LD with the causal SNPs rather than the causal ones 1 

themselves. Using tagging SNPs instead of the causal ones to serve as instruments can 2 

reduce the power of MR analysis. In addition, perhaps more importantly, selecting 3 

independent SNPs for MR analysis may not be ideal either, as complex traits can be 4 

influenced by multiple causal SNPs residing in the same local region that are in 5 

potential LD with each other. Consequently, selecting independent SNPs may only 6 

capture a small proportion of the phenotypic variance in the exposure variable, again 7 

leading to a loss of power in the subsequent MR analysis (1, 2, 9, 10). Indeed, in the 8 

parallel research field of transcriptome-wide association studies, it has been well 9 

documented that incorporating correlated SNPs can substantially improve analysis 10 

power than using independent SNPs only(11-14). Therefore, incorporating correlated 11 

SNPs and developing effective approaches to select instruments among them are 12 

important to fully captivate the potential of MR. 13 

Second, only a limited number of MR methods model horizontal pleiotropy and 14 

even fewer can effectively control for it during MR analysis(15). Horizontal pleiotropy 15 

occurs when the SNP instruments exhibit effects on the outcome through pathways 16 

other than the exposure. Horizontal pleiotropy has been widely observed in complex 17 

trait analysis(13, 15) and often comes in two distinct types. The first type of horizontal 18 

pleiotropy arises through paths independent of the exposure, with the resulting 19 

horizontal pleotropic effects being independent of the SNP effects on the exposure. The 20 

second type of horizontal pleiotropy arises through unobserved exposure-outcome 21 

confounders and induces correlation between the horizontal pleotropic effects and the 22 

SNP effects on the exposure. The presence of either type of horizontal pleiotropy 23 

violates standard MR modeling assumptions and can lead to biased causal effect 24 

estimates and increased false discoveries. Early MR analyses control for horizontal 25 
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pleiotropy by simply removing instrumental SNPs that are potentially associated with 1 

the outcome variable(15-18). Removing SNPs associated with the outcome would 2 

result in a conservative set of selected instruments and lead to a loss of power in the 3 

subsequent MR analysis. Recent MR methods explicitly model horizontal pleiotropy 4 

by specifying modeling assumptions on the horizontal pleiotropic effects. For example, 5 

the Egger assumption assumes the same horizontal pleiotropic effect across SNP 6 

instruments(3, 13), while PMR-VC(13) and BWMR(5) assume the horizontal 7 

pleiotropic effects to follow a normal distribution; all these methods model the first type 8 

of horizontal pleiotropy. MRMix(7) and CAUSE(8), by contrast, employ a normal-9 

mixture model to control for both types of horizontal pleiotropy. Unfortunately, 10 

modeling both types of horizontal pleiotropy has been technically challenging, as the 11 

resulting likelihood function of the MR model often consists of an integration that 12 

cannot be solved analytically. Consequently, both MRMix and CAUSE rely on non-13 

likelihood based approaches to perform MR inference. Specifically, MRMix searches 14 

on a grid of causal effect candidates to identify the one that maximizes the proportion 15 

of GWAS summary statistics residing in the expected sub-model without horizontal 16 

pleiotropy. CAUSE contrasts the out-of-sample prediction accuracy between two 17 

different models, one with the causal effect and the other without, by computing the 18 

expected log pointwise posterior density between the two, for causal inference. Non-19 

likelihood based causal inference, however, can lead to a loss of power and/or 20 

uncalibrated test statistics that are essential for large-scale screening of causal risk 21 

factors underlying diseases. Indeed, as we will show here, MRMix is not robust to 22 

modeling misspecifications on the instrumental effect sizes and is prone to estimation 23 

bias, while CAUSE yields overly conservative p-values.  24 
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Here, we present a likelihood-based two-sample MR method for causal inference 1 

that overcomes the above two challenges. Specifically, our method models an initial set 2 

of candidate SNP instruments that are in high LD with each other and automatically 3 

selects among them the suitable instruments for MR analysis. In addition, our method 4 

accounts for both types of horizontal pleiotropy in a likelihood framework and relies 5 

on a scalable sampling-based algorithm for calibrated p-values computation. We refer 6 

to our method as the two-sample Mendelian Randomization with Automated 7 

Instrument Determination (MRAID). We demonstrate the effectiveness of MRAID 8 

through comprehensive and realistic simulations. We also apply MRAID for an MR 9 

screening analysis across 645 trait pairs in the UK Biobank(19), identifying lifestyle 10 

risk factors that may causally influence cardiovascular disease-related traits.  11 

  12 
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Results  1 

Method overview 2 

MRAID is described in the Materials and Methods, with its technical details provided 3 

in the Supplementary Text and a method schematic shown in Fig. 1. Briefly, MRAID 4 

is a two-sample MR method that aims to infer the causal effect of an exposure variable 5 

on an outcome variable using GWAS summary statistics. MRAID models jointly all 6 

genome-wide significant SNPs that are in potential LD with each other and performs 7 

automated instrument selection among them to identify suitable instruments for MR 8 

analysis. In addition, MRAID explicitly accounts for two types of horizontal pleiotropic 9 

effects through a maximum likelihood-based inference framework and is scalable to 10 

biobank datasets (Table 1).  11 

 12 

Simulations: Type I error control 13 

We evaluated the performance of MRAID and compared it with six existing MR 14 

methods in simulations (details in Materials and Methods). We first examined type I 15 

error control of different methods in different scenarios. In the absence of both 16 

correlated and uncorrelated horizontal pleiotropic effects, most methods, including 17 

MRAID, IVW-R, Robust, RAPS and MRMix, all yield reasonably calibrated type I 18 

error control (Fig. 2A). Weighted mode and CAUSE, on the other hand, display overly 19 

conservative type I error control, which is consistent with the original studies(7, 8, 20). 20 

The null p-value distributions from different methods remain largely similar regardless 21 

of the number of SNPs that affect the exposure (Fig. S1A) and their total effects on the 22 

exposure (Fig. S1B). We further examined the robustness of different methods in 23 

settings where the SNP effects on the exposure do not follow a simple normal 24 

distribution but with some SNPs displaying larger effects than the others. In these 25 
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settings, MRAID, IVW-R and RAPS remain calibrated, while both MRMix and Robust 1 

method show inflated type I errors, presumably due to their restricted normality 2 

assumptions on the SNP effect sizes (Fig. 2B). Note that we directly used correlated 3 

SNPs for MRAID but performed clumping to select independent SNPs for the other 4 

methods. Without clumping, all other MR methods produce overly inflated type I errors 5 

(Fig. S2). 6 

We examined the effects of horizontal pleiotropy on type I error control for different 7 

methods. When horizontal pleiotropic effects are present but are uncorrelated with the 8 

instrumental effects, MRAID maintains type I error control (Fig. 2C). In contrast, both 9 

Weighted mode and CAUSE remain overly conservative, while MRMix, Robust, IVW-10 

R and RAPS yield inflated p-values (Fig. 2C). Similar conclusion holds regardless of 11 

the effect size for the uncorrelated horizontal pleiotropy or the proportion of SNPs that 12 

display uncorrelated pleiotropic effects (Fig. S3). The p-value inflation problem of 13 

MRMix relieves when the proportion of SNPs that display uncorrelated horizontal 14 

pleiotropic effects decreases. When correlated horizontal pleiotropic effects are also 15 

present in addition to the uncorrelated horizontal pleiotropic effects, MRAID maintains 16 

effective type I error control (Fig. 2D). In contrast, both Weighted mode and CAUSE 17 

remain overly conservative, while MRMix, Robust, IVW-R and RAPS produce inflated 18 

p-values. Similar conclusion holds regardless of the effect size of the correlated 19 

horizontal pleiotropy (Fig. S4A vs Fig. S4C), the proportion of SNPs that display 20 

uncorrelated horizontal pleiotropic effects (Fig. S4A vs Fig. S4B), the proportion of 21 

SNPs that display correlated horizontal pleiotropic effects (Fig. S4A vs Fig. S4D), or 22 

how the correlated horizontal pleiotropic effects are created (Fig. S5).  23 

 24 

Simulations: Power comparison 25 
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We examined the power of different MR methods to detect non-zero causal effect. 1 

Because the same p-value from different methods may correspond to different type I 2 

errors, we computed power based on an false discovery rate (FDR) of 0.05 instead of a 3 

nominal p-value threshold to allow for fair comparison among methods. In the absence 4 

of both uncorrelated and correlated horizontal pleiotropic effects, MRAID, IVW-R and 5 

RAPS all have higher power than the other methods across different scenarios. Among 6 

these three methods, MRAID is slightly more powerful than the other two when the 7 

instrumental effects are small or when the causal effect is small (Fig. 3A, 3B), 8 

presumably due to the automated instrument selection procedure employed in MRAID. 9 

MRAID is slightly less powerful than the other two when the instrumental effects are 10 

large and the causal effect is large (Fig. S6), as the simple instrumental selection 11 

approaches used in the other methods can be effective in these lesser challenging 12 

settings. The performance of these three methods is generally followed by Robust. 13 

While Weighted mode, MRMix, and, to a lesser extent, CAUSE, have low power.  14 

We examined the influence of horizontal pleiotropy on the power of different 15 

methods. When horizontal pleiotropic effects are present but are uncorrelated with the 16 

instrumental effects, MRAID is more powerful than the other MR methods (Fig. 3C). 17 

The power gain brought by MRAID becomes more apparent with increasing horizontal 18 

pleiotropy, which is characterized by increased horizontal pleiotropic effect sizes 19 

and/or increased proportion of SNPs that display horizontal pleiotropic effects (Fig. S7). 20 

The performance of MRAID is often followed by RAPS, Robust, CAUSE, and IVW-21 

R, while MRMix and Weighted mode generally have low power (Fig. S7). Among these 22 

methods, the performance of IVW-R is particularly sensitive to the horizontal 23 

pleiotropic effect sizes or the proportion of SNPs that display horizontal pleiotropic 24 

effects. When correlated horizontal pleiotropic effects are also present in addition to the 25 
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uncorrelated horizontal pleiotropic effects, the power of MRAID remains higher than 1 

the other methods. The higher power of MRAID maintains regardless of the correlated 2 

horizontal pleiotropic effect sizes, the proportion of instrumental SNPs that display 3 

correlated horizontal pleiotropic effects (Fig. 3D, Fig. S7D-F), or how the correlated 4 

horizontal pleiotropic effects are created (Fig. S8). The power gain brought by MRAID 5 

is particularly apparent with increased proportion of instrumental SNPs that display 6 

uncorrelated horizontal pleiotropic effects (Fig. 3D vs Fig. S7F, Fig. S7E vs Fig. S7D). 7 

Importantly, the power of MRAID is close to an oracle MR approach that uses the 8 

actual set of instrumental SNPs for MR inference, especially when the casual effect size 9 

is large, supporting the effectiveness of the automatic instrument selection procedure 10 

in MRAID (Fig. S9).  11 

Next, we examined the ability of different MR methods in distinguishing the causal 12 

effect direction through reverse causality analysis. In particular, we tested the causal 13 

effect of the outcome on the exposure in the alternative simulations where the exposure 14 

had casual effect on the outcome but not vice versa. In the presence of horizontal 15 

pleiotropy, the SNP instruments obtained for the outcome in the reverse MR analysis 16 

would contain two sets of SNPs: a set of exposure SNP instruments that are indirectly 17 

associated with the outcome through the exposure and a set of SNPs that are directly 18 

associated with the outcome thought their horizontal pleiotropic effects on the outcome. 19 

Because the two sets of SNPs displayed heterogeneous effects on the exposure, we 20 

would fail to detect a non-zero causal effect of the outcome on the exposure. Therefore, 21 

the reverse causality analysis in the presence of horizontal pleiotropy effectively served 22 

as analysis on null simulations. Indeed, we found that MRAID provides effective type 23 

I error control and calibrated p-values in the reverse causality analysis across a range 24 

of simulation scenarios (Fig. S10 and S11). In contrast, the type I error control of the 25 
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other methods is highly dependent on the extent of the horizontal pleiotropy. 1 

Specifically, when a small proportion of exposure instrumental SNPs display horizontal 2 

pleiotropy on the outcome, the majority of the candidate instrumental SNPs for the 3 

outcome in the reverse causality analysis would not display horizontal pleiotropic 4 

effects on the exposure. In this case, both CAUSE and Weighted mode remain overly 5 

conservative, while IVW-R, MRMix, RAPS and Robust yield slightly inflated p-values 6 

(Fig. S10A, S10C, S11A, and S11C). By contrast, when a large proportion of 7 

instrumental SNPs for the exposure display horizontal pleiotropic effects on the 8 

outcome, the majority of the candidate instrumental SNPs for the outcome in the reverse 9 

causality analysis would display horizontal pleiotropic effects on the exposure. In this 10 

case, MRMix, Robust, IVW-R and RAPS all start to produce inflated p-values (Fig. 11 

S10B and S11B) as we have shown in the corresponding null scenarios. The p-value 12 

information of these methods becomes more prominent with smaller horizontal 13 

pleiotropic effect sizes, where it becomes increasingly hard to select the second set of 14 

SNPs to serve as outcome instruments (Fig. S10D and S11D).  15 

Finally, MRAID produces reasonably unbiased causal effect estimates under the 16 

null (Fig. S12A) and under various alternatives (Fig. S12B-D). 17 

 18 

Real data applications 19 

We applied MRAID and the other MR methods to analyze 38 lifestyle risk factors and 20 

11 CVD-related traits in the UK Biobank (details in Materials and Methods). 21 

Specifically, we divided the UK Biobank data into two separate, equal-sized subsets, 22 

representing an exposure GWAS and an outcome GWAS. We performed two sets of 23 

analysis. First, we focused on the eight CVD-related traits and examined the causal 24 

effect of each trait in the exposure GWAS on the same trait in the outcome GWAS, 25 
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effectively examining the causal effect of the trait on itself. The true causal effect in 1 

such analysis is non-zero and equals exactly one. In the analyses, we found that all 2 

methods were able to detect a non-zero causal effect for the trait on itself across all 3 

eight CVD-related traits (Fig. 4). However, only MRAID and CAUSE were able to 4 

produce 95% confidence intervals that cover the true causal effects for all eight trait 5 

pairs, with CAUSE producing confidence intervals that are 2.39-5.69 times larger than 6 

MRAID (Fig. 4). For example, in the HDL-HDL analysis, MRAID (estimate = 0.98; 7 

95% CI: 0.96-1.01), CAUSE (0.95; 0.82-1.09) and MRMix (0.96; 0.90-1.02) correctly 8 

inferred the causal effect, with MRAID providing the smallest confidence interval (Fig. 9 

4H). In contrast, the confidence intervals from the other four methods did not cover the 10 

true causal effect of one. In the LDL-LDL analysis, MRAID (0.97; 0.94-1.01) and 11 

CAUSE (0.96; 0.84-1.08) correctly inferred the causal effect, with MRAID providing 12 

a smaller confidence interval (Fig. 4F). While the confidence intervals from the other 13 

five methods also did not cover the true causal effect of one. The results suggest that 14 

both MRAID and CAUSE can produce accurate causal effect estimates and calibrated 15 

confidence intervals for trait on itself analysis, with MRAID being more powerful than 16 

CAUSE.   17 

Next, we investigated the causal relationship between 38 lifestyle risk factors and 18 

11 CVD-related traits. The association of lifestyle risk factors on CVD-related traits 19 

has been extensively documented(21, 22). However, it remains controversial on 20 

whether the detected associations are causal as some of the association effects were 21 

estimated to have different signs in different studies(23, 24). We performed both 22 

forward causality analysis examining the causal effects of lifestyle factors on CVD-23 

related traits and reverse causality analysis examining the causal effects of CVD-related 24 

traits on lifestyle factors. The distribution of p-values for the analyzed trait pairs from 25 
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different methods are shown in Fig. 5A. Consistent with the simulations, we found that 1 

the p-values from MRAID (genomic inflation factor, GIF =0.90), and to a lesser extent 2 

MRMix (GIF = 0.78), are generally well behaved and slightly conservative across 3 

analyzed trait pairs, more so than the other methods (Fig. 5A). Also consistent with the 4 

simulations, we found that the p-values from CAUSE are overly conservative (GIF = 5 

0.12), while the p-values from RAPS (GIF = 1.96), Weighted mode (GIF = 1.70), IVW-6 

R (GIF = 2.12), and Robust (GIF = 2.00) all show appreciable inflation (Fig. 5A). 7 

Indeed, only MRAID produces calibrated p-values in the permutation analysis where 8 

we permuted the outcome trait (Fig. 5B).  9 

Based on a Bonferroni corrected p-value threshold (8 ൈ 10ିହ), MRAID detected 10 

eight causal associations (Table S1), all of which have strong biological support. For 11 

example, MRAID detected a negative causal effect of smoking on BMI. The negative 12 

association between smoking and obesity has been well documented in observational 13 

studies(25, 26) and MR studies(27). Specifically, nicotine intake during smoking 14 

decreases resting metabolic rate(28, 29) and inhibits lipoprotein lipase activity and 15 

other kinase pathways to reduce lipolysis(26), all of which lead to a reduction in the net 16 

energy storage in adipose tissues and subsequent weight loss(30). Nicotine also 17 

activates acetylcholine receptors in the hypothalamus and subsequently anorexigenic 18 

neurons(31, 32), which leads to suppressed appetite and food intake. As another 19 

example, MRAID detected an effect of age started smoking in the former smokers on 20 

HDL, suggesting a negative effect of smoking behavior on HDL. Smoking behavior in 21 

general is well known to be causally associated with HDL(33). In particular, smoking 22 

can modify the activity of critical enzymes for lipid transport, lower lecithin-cholesterol 23 

acyltransferase (LCAT) activity, and alter cholesterol ester transfer protein (CETP) and 24 

hepatic lipase activity, all of which can reduce HDL metabolism. In addition, smoking 25 
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induces oxidative modifications that render HDL dysfunctional and deprive its 1 

atheroprotective properties(34, 35).  2 

Importantly, MRAID did not mistakenly detect many false causal associations that 3 

were detected by the other methods. A well-known example of a potential false causal 4 

association is the effect of smoking on blood pressure. A negative association between 5 

smoking and blood pressure has been observed in observational studies(22). However, 6 

multiple subsequent MR studies on large datasets did not support a causal relationship 7 

between the two traits(33, 36). Indeed, the association between smoking and blood 8 

pressure in observational studies is likely confounded by factors that include, but not 9 

limited to age, BMI, social class, salt intake, drinking habits, as well as unmeasured 10 

confounders(37). Consistent with these previous MR studies, MRAID did not detect a 11 

significant causal effect from any of the eight smoking related traits on either SBP or 12 

DBP. In contrast, almost all other methods falsely detected causal effects of some of 13 

the smoking related traits on blood pressure. For example, the causal effect of the 14 

number of unsuccessful stop-smoking attempts on SBP is not detected by MRAID (𝑝 ൌ15 

0.44), CAUSE (𝑝 ൌ 0.01) nor Weighted mode (𝑝 ൌ 1.3 ൈ 10ିସ), but falsely identified 16 

by IVW-R (𝑝 ൌ 1.4 ൈ 10ି), Robust (𝑝 ൌ 4.1 ൈ 10ିଷସ), RAPS (𝑝 ൌ 5.5 ൈ 10ି), and 17 

MRMix (𝑝 ൌ 2.8 ൈ 10ି). Similarly, the causal effect of age started smoking in former 18 

smokers on SBP is not detected by MRAID (𝑝 ൌ 0.06) nor CAUSE (𝑝 ൌ 1.3 ൈ 10ିଷ), 19 

but falsely detected by IVW-R (𝑝 ൌ 7.8 ൈ 10ିହ), Robust (𝑝 ൌ 1.5 ൈ 10ିଷ), RAPS 20 

(𝑝 ൌ 8.9 ൈ 10ି), Weighted mode (𝑝 ൌ 1.7 ൈ 10ି), and MRMix (𝑝 ൌ 4.1 ൈ 10ି). 21 

As another false example, BMI is unlikely to causally influence the time spent driving, 22 

at least not positively. Indeed, MRAID (𝑝 ൌ 0.01), along with MRMix (𝑝 ൌ 0.12), 23 

CAUSE (𝑝 ൌ 0.02) and Weighted mode (𝑝 ൌ 0.04), did not detect any causal effect of 24 
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BMI on time spent driving. However, both IVW-R (𝑝 ൌ 2.5 ൈ 10ି) and RAPS (𝑝 ൌ1 

3.1 ൈ 10ିହ) detected a false positive effect of BMI on time spent driving.   2 

Finally, we note that an important feature of MRAID is its ability to effectively 3 

decompose the SNP effects on the outcome into three distinct paths: one directly acts 4 

from SNPs to the outcome, one mediated through the exposure, and the other acts 5 

through a hidden confounding factor that influences both exposure and outcome. 6 

Consequently, MRAID can be used to estimate the proportion of SNPs in different 7 

categories, including the proportion of SNPs that are associated with the exposure 8 

among the genome-wide significant ones (𝜋ఉ), the proportion of SNPs that exhibit 9 

correlated horizontal pleiotropy (𝜋), the proportion of SNPs that exhibit uncorrelated 10 

horizontal pleiotropy among the selected instruments (𝜋ଵ), and the proportion of SNPs 11 

that exhibit uncorrelated horizontal pleiotropy among the remaining candidate 12 

instruments (𝜋). In the real data applications, we estimated the mean of 𝜋ఉ, 𝜋, 𝜋ଵ 13 

and 𝜋  across the 645 analyzed trait pairs to be 14.6%, 6.4%, 16.4%, and 5%, 14 

respectively (Fig. S13). In addition, we estimated their means in the eight significant 15 

trait pairs to be 6.2%, 5.7%, 11.4%, and 0.1%, respectively. The proportion of SNPs 16 

displaying correlated pleiotropy is also highly correlated with the proportion of SNPs 17 

displaying uncorrelated pleiotropy, with the latter generally being larger than the former 18 

(Fig. S14). These proportion estimates support the wide-spread horizontal pleiotropy 19 

previously identified in complex trait analysis(15) and provide detailed quantifications 20 

on the extent to which the two types of horizontal pleiotropy influence MR analysis. 21 

  22 
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Discussion  1 

We have presented MRAID, a two-sample MR method that can automatically select 2 

suitable instruments from a candidate set of correlated SNPs and that can control for 3 

both correlated and uncorrelated horizontal pleiotropy in a likelihood-based inference 4 

framework. Overall, by automatically selecting instrumental SNPs and performing 5 

inference under a likelihood-based framework, MRAID yields calibrated p-values 6 

across a wide range of scenarios and improves power of MR analysis over existing 7 

approaches. We have illustrated the benefits of MRAID through simulations and 8 

applications to complex trait analysis.  9 

We have primarily focused on modeling quantitative traits with MRAID in the 10 

present study. For binary exposures and outcomes, one could treat them as continuous 11 

variables and directly applied MRAID for MR analysis. Treating binary exposures and 12 

outcomes as continuous variables can be justified by recognizing the linear model as a 13 

first-order Taylor approximation to a generalized linear model such as the logistic 14 

regression(38). However, such approximation is accurate only when the SNP effects on 15 

the exposure and outcome are relatively small. While similar approaches have been 16 

applied in many previous MR studies(39-41), we caution that the interpretation of the 17 

causal effect estimate can be challenging when the linear models are used to fit binary 18 

exposures and outcomes, especially when a two-stage inference procedure is used for 19 

MR analysis(42, 43). For example, when a binary exposure is a dichotomization of a 20 

continuous risk factor, the causal effect estimation through modeling the binary 21 

exposure without the underlying continuous risk factor may require additional 22 

modeling assumptions, even when the main MR assumptions are satisfied. In addition, 23 

modeling binary exposure without the underlying continuous risk factor can lead to 24 

violation of the exclusion restriction assumption, as the instruments can influence the 25 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 22, 2021. ; https://doi.org/10.1101/2021.11.03.21265848doi: medRxiv preprint 

https://doi.org/10.1101/2021.11.03.21265848
http://creativecommons.org/licenses/by-nc-nd/4.0/


17 
 

outcome via the continuous risk factor even if the binary exposure does not change. 1 

Therefore, extending MRAID to explicitly model data types beyond quantitative traits 2 

is important to ensure its wide applicability. Because MRAID builds upon a data 3 

generative model and performs inference on the SNP-exposure model and the SNP-4 

outcome model jointly through a maximum likelihood-based framework, it can be 5 

naturally extended towards modeling other types of exposure or outcome data, through, 6 

for example, a generalized linear model framework. To the best of our knowledge, the 7 

only likelihood-based MR method that accommodates both binary risk factors and 8 

outcome is IV-MVB(44). IV-MVB, however, requires individual-level data, applies to 9 

the one-sample analysis setting, and cannot easily handle multiple instruments in a 10 

computationally efficient fashion especially for those that are correlated. Therefore, 11 

exploring the benefits of MRAID extensions towards modeling generalized data types 12 

while keeping computation in check will be an important direction for future research.   13 

 MRAID is not without limitations. First, while MRAID performs automated 14 

selection on SNP instruments, such selection builds upon a sparsity inducing modeling 15 

assumption specified on the SNP effect sizes. The sparse modeling assumption contains 16 

multiple hyper-parameters that rely on a sampling-based algorithm for inference. 17 

Accurate and robust inference of the hyper-parameters will likely require at least a 18 

moderate number of candidate instruments. While the significance of the trait pairs 19 

evaluated by MRAID in our real data application does not appear to be dependent on 20 

the number of candidate instruments selected for the trait pair (Fig. S15), we caution 21 

that MRAID may incur low power when the instrumental effect size is small and the 22 

number of candidate instruments is low, which can happen in GWAS with small sample 23 

sizes and for exposure traits with a non-polygenic architecture. Second, MRAID 24 

primarily follows the approach of CAUSE to model correlated horizontal pleiotropy by 25 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 22, 2021. ; https://doi.org/10.1101/2021.11.03.21265848doi: medRxiv preprint 

https://doi.org/10.1101/2021.11.03.21265848
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 
 

introducing a single latent variable to serve as the confounder for both the exposure and 1 

the outcome. Because of its limitation in modeling only a single unobserved 2 

confounding factor, MRAID may not be fully effective in settings where multiple or 3 

other types of shared genetic components are present between the exposure and the 4 

outcome. Finally, the summary statistics version of MRAID requires as input two LD 5 

matrices, one from the exposure GWAS and another from the outcome GWAS. In the 6 

present study, we have estimated both LD matrices using individual level data. In the 7 

absence of individual level data, both LD matrices may be estimated from a reference 8 

panel with the same genetic ancestry (e.g. from the 1,000 Genomes Project). However, 9 

care needs to be taken when the exposure and outcome GWASs are carried out on two 10 

populations with distinct genetic ancestries.  11 

  12 
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Materials and Methods 1 

MRAID for individual level data 2 

We provide an overview of our method here, with its inference and technical details 3 

provided in the Supplementary Text and an illustrative diagram displayed in Fig. 1. Our 4 

goal is to estimate and test the causal effect of an exposure variable on an outcome 5 

variable in the two-sample MR setting where the exposure and outcome variables are 6 

measured in two separate GWASs with no sample overlap. We refer to the two separate 7 

GWASs as the exposure GWAS and the outcome GWAS, respectively. To set up the 8 

notations, we denote x as an 𝑛ଵ -vector of the exposure variable measured on 𝑛ଵ 9 

individuals in the exposure GWAS. We denote y as an 𝑛ଶ-vector of the outcome 10 

variable measured on 𝑛ଶ individuals in the outcome GWAS. We scale both x and 𝐲 11 

to have zero mean and unit standard deviation. In the exposure GWAS, we perform an 12 

initial screening to select SNPs that are associated with the exposure variable with a 13 

marginal p-value below the genome-wide significance threshold of 5 ൈ 10ି଼. These 14 

SNPs are likely in LD with each other and are selected to serve as the initial set of 15 

candidate instruments. We denote 𝐙୶ as the resulting 𝑛ଵ by p genotype matrix for the 16 

p selected candidate instrumental SNPs in the exposure GWAS. We also denote 𝐙୷ as 17 

an 𝑛ଶ  by p genotype matrix for the same p candidate instrumental SNPs in the 18 

outcome GWAS. We scale each column of the two genotype matrices to have mean 19 

zero and standard deviation of one. We model the relationship among the exposure, 20 

outcome and genotypes through the following three linear regressions:  21 

      𝐱 ൌ 𝐙୶𝛃  𝛆୶,            (1) 22 

      𝐱 ൌ 𝐙୷𝛃  𝛆୶,            (2) 23 

𝐲 ൌ 𝐱𝛼  𝐙୷𝛈  𝐙୷𝛈ଵ  𝛆୷.   (3) 24 
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Above, equation (1) describes the relationship between the genotypes 𝐙୶ and the 1 

exposure variable 𝐱 in the exposure GWAS; equation (2) describes the relationship 2 

between the genotypes 𝐙୷ and the unobserved exposure 𝐱 in the outcome GWAS; 3 

equation (3) describes the relationship among the genotypes 𝐙୷, the outcome 𝐲, and 4 

the unobserved exposure 𝐱 in the outcome GWAS; 𝛃 is a p-vector of SNP effects on 5 

the exposure; both 𝛈 and 𝛈ଵ are p-vectors of horizontal pleiotropy effects on the 6 

outcome; 𝛼 is a scalar that represents the causal effect of the exposure on the outcome; 7 

𝛆୶ is an 𝑛ଵ-vector of residual error with each element independently and identically 8 

distributed from a normal distribution 𝑁ሺ0,𝜎௫ଶሻ; 𝛆୶ is an 𝑛ଶ-vector of residual error 9 

with each element distributed from the same normal distribution 𝑁ሺ0,𝜎௫ଶሻ; and 𝛆୷ is 10 

an 𝑛ଶ-vector of residual error with each element distributed from a normal distribution 11 

𝑁൫0,𝜎௬ଶ൯. We note that while the above three equations are specified based on two 12 

separate GWASs, they are connected to each other by the common parameter 𝛃. We 13 

carefully consider the modeling assumptions on the SNP effects on the exposure 14 

variable 𝛃 as well as the horizontal pleiotropic effects 𝛈 and 𝛈ଵ as follows. 15 

 The p SNPs included in the above model represent an initial set of candidate 16 

instruments. While all the candidate instruments are marginally associated with the 17 

exposure, the majority of them are unlikely the causal SNPs for the exposure variable. 18 

Instead, most candidate instruments likely represent tagging SNPs that are associated 19 

with the exposure variable due to LD with the truly causal ones underlying the exposure. 20 

Therefore, it would be beneficial to perform additional selections on the candidate 21 

instruments to identify SNPs that are causal for the exposure and treat them as the 22 

instruments in order to maximize the power of MR analysis. To do so, we borrow ideas 23 

from fine-mapping approaches developed in the research field of GWAS and specify a 24 

sparsity inducing modeling assumption on the SNP effects on the exposure (𝛃) to 25 
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perform automated instrument selection. In particular, we assume that 𝛽~𝜋ఉ𝑁൫0,1 

𝜎ఉ
ଶ൯  ൫1 െ 𝜋ఉ൯𝛿, where 𝛿 is the Dirac function that represents a point mass at zero. 2 

That is, with probability 1 െ 𝜋ఉ, the j-th SNP has zero effect on the exposure; while 3 

with probability 𝜋ఉ, the j-th SNP has a non-zero effect on the exposure and its effect 4 

size follows a normal distribution with mean zero and variance 𝜎ఉ
ଶ, where the variance 5 

parameter 𝜎ఉ
ଶ determines the magnitude of the effect sizes. The sparse assumption on 6 

𝛃 allows us to select SNPs with non-zero effects on the exposure to serve as the 7 

instruments in the MR model. 8 

In addition, the p SNPs included in the above model can also exhibit horizontal 9 

pleiotropic effects and influence the outcome variable through pathways other than the 10 

exposure. To control for the potential horizontal pleiotropic effects and improve causal 11 

effect inference, we introduce two sets of parameters, 𝛈 and 𝛈ଵ, to model horizontal 12 

pleiotropic effects. The two sets of parameters are placed separately for the two SNP 13 

groups – the group of selected instrumental SNPs and the group of unselected non-14 

instrumental SNPs – that are categorized by the sparse modeling assumption on 𝛃. In 15 

particular, 𝛈ଵ represents the horizontal pleiotropic effects exhibited by the selected 16 

SNPs instruments with non-zero 𝛃 while 𝛈  represents the horizontal pleiotropic 17 

effects exhibited by the unselected non-instrumental SNPs with zero 𝛃. Controlling for 18 

𝛈ଵ  can help mitigate the bias in causal effect estimation induced by horizontal 19 

pleiotropic effects from the instrumental SNPs. While controlling for 𝛈 can reduce 20 

residual error variance in equation (3) and thus help improve the statistical efficiency 21 

of causal effect estimation.  22 

To effectively control for the horizontal pleiotropic effects exhibited from both 23 

SNP groups, we specify separate modeling assumptions on 𝛈 and 𝛈ଵ. Specifically, 24 
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for the selected SNP instruments, we assume that they can exhibit horizontal pleiotropic 1 

effects in two different ways: they can affect the outcome through a common 2 

confounder that is associated with both the exposure and outcome, and they can affect 3 

the outcome through paths independent of the exposure. For the first type of horizontal 4 

pleiotropy, we assume that each selected SNP instrument has a probability of 𝜋 to 5 

induce pleiotropy through the confounder. Following(8), we assume that the 6 

confounder effect on the outcome is 𝜌 times its effect on the exposure. Consequently, 7 

the effect of the selected SNP instrument acted through the confounder on the outcome 8 

becomes 𝜌𝛽, if the SNP effect on the exposure is 𝛽. Thus, our assumption on 𝜂ଵ
 , 9 

which represents the first type of horizontal pleiotropy as a part of 𝛈ଵ for the j-th SNP, 10 

is 𝜂ଵ
 |𝛽 ് 0~𝜋𝐼ሺ𝜂ଵ ൌ 𝜌𝛽ሻ  ሺ1 െ 𝜋ሻ𝛿, where 𝐼ሺ⋅ሻ is an indicator function that 11 

sets the horizontal pleiotropic effect to be  𝜌𝛽 . For the second type of horizontal 12 

pleiotropy, we assume that each selected SNP instrument has a probability of 𝜋ଵ to 13 

exhibit a horizontal pleiotropic effect on the outcome directly, bypassing the exposure. 14 

We use 𝜂ଵ
௨  to represent the second type of horizontal pleiotropy as a part of 𝛈ଵ for 15 

the j-th SNP. Our assumption on 𝜂ଵ
௨  is thus 𝜂ଵ

௨ |𝛽 ് 0~𝜋ଵ𝑁൫0, 𝜎ఎଶ൯  ሺ1 െ 𝜋ଵሻ𝛿, 16 

where the variance 𝜎ఎଶ  determines the strength of the horizontal pleiotropic effect. 17 

Note that the first type of horizontal pleiotropic effects are correlated with the 18 

instrumental effects on the exposure due to the confounder, while the second type of 19 

horizontal pleiotropic effects are uncorrelated with the instrumental effects on the 20 

exposure. The total horizontal pleiotropy is the summation of the two, with 𝜂ଵ ൌ21 

𝜂ଵ
  𝜂ଵ

௨ . Certainly, because 𝛈ଵ are the horizontal pleiotropic effects for the selected 22 

SNP instruments, we have 𝜂ଵ ൌ 0 if 𝛽 ൌ 0. For the unselected non-instrumental 23 

SNPs with a zero 𝛽, we assume that 𝜂|𝛽 ൌ 0~𝜋𝑁൫0, 𝜎ఎଶ൯  ሺ1 െ 𝜋ሻ𝛿. That is, 24 
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with probability 𝜋, the non-instrumental SNPs display horizontal pleiotropic effects 1 

characterized by the same variance parameter 𝜎ఎଶ. We use the same variance parameter 2 

𝜎ఎଶ for modeling the uncorrelated horizontal pleiotropic effects from both instrumental 3 

and non-instrumental SNPs because we often do not have enough number of SNPs to 4 

estimate two separate parameters accurately. Since 𝛈 are the horizontal pleiotropic 5 

effects for the non-instruments, we also have 𝜂 ൌ 0 if 𝛽 ് 0. 6 

The above parameterization of the horizontal pleiotropic effects is based on the 7 

selection of SNP instruments. An equivalent and alternative parametrization of the 8 

horizontal pleiotropic effects is to partition them into a correlated horizontal pleiotropic 9 

component 𝛈ୡ and an uncorrelated horizontal pleiotropic component 𝛈୳. Specifically, 10 

the correlated horizontal pleiotropy occurs only for the selected SNP instruments with 11 

𝜂|𝛽 ് 0~𝜋𝐼ሺ𝜂ଵ ൌ 𝜌𝛽ሻ  ሺ1 െ 𝜋ሻ𝛿 and 𝜂 ൌ 0 if 𝛽 ൌ 0. The uncorrelated 12 

horizontal pleiotropy, on the other hand, occurs for both instrumental and non-13 

instrumental SNPs with 𝜂௨|𝛽 ് 0~𝜋ଵ𝑁൫0, 𝜎ఎଶ൯  ሺ1 െ 𝜋ଵሻ𝛿  and 𝜂௨|𝛽 ൌ14 

0~𝜋𝑁൫0, 𝜎ఎଶ൯  ሺ1 െ 𝜋ሻ𝛿. In other words, 𝜂 ൌ 𝜂ଵ
  and 𝜂௨ ൌ 𝜂ଵ

௨  𝜂. 15 

Overall, the SNP effects on the outcome in our model are exhibited through three 16 

different paths: via the exposure on outcome causal effect 𝛼 ; via the correlated 17 

horizontal pleiotropic effects mediated by an unobserved confounder; and via the 18 

uncorrelated horizontal pleiotropic effects. SNPs in the model can exhibit none, one, or 19 

multiple types of these effects. Note that the SNP effects on the outcome through the 20 

causal effect and through the correlated horizontal pleiotropy are not distinguishable 21 

from each other unless we make further modeling assumptions. Here, following(8), we 22 

assume 𝜋  to be small. Thus, among the selected SNP instruments with non-zero 23 

effects on the exposure, only a fraction of them exhibit correlated horizontal pleiotropic 24 

effects on the outcome (details in Supplementary Text).  25 
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Our key parameter of interest is the causal effect 𝛼. The causal interpretation of 𝛼 1 

in a standard MR model requires the selected SNP instruments to satisfy three 2 

conditions: (i) instruments are associated with the exposure (relevance condition); (ii) 3 

instruments are not associated with any other confounder that may be associated with 4 

both exposure and outcome (independence condition); (iii) instruments only influence 5 

the outcome through the path of exposure (exclusion restriction condition). Our 6 

modeling assumption on 𝛃 allows us to select SNPs to satisfy the relevance condition. 7 

Our modeling assumptions on 𝛈 and 𝛈ଵ allow us to explicitly model the violation 8 

of the independence and exclusion restriction conditions. Therefore, our model 9 

effectively replaces the general conditions (ii) and (iii) with specific modeling 10 

assumptions on 𝛃 , 𝛈  and 𝛈ଵ . In addition, through explicit modeling of the 11 

correlation between the instrument-exposure effects and instrument-outcome effects 12 

through 𝜌, our model no longer requires the InSIDE assumption, which is sometimes 13 

referred to as the weak exclusion restriction condition(3). Consequently, the causal 14 

effect interpretation of 𝛼 in our model only depends on the explicit assumptions made 15 

in the model. 16 

We are interested in estimating the causal effect 𝛼 and testing the null hypothesis 17 

𝐻:𝛼 ൌ 0. Performing inference on 𝛼, however, is computationally challenging, as the 18 

likelihood defined based on the above modeling assumptions is in a complicated form 19 

and involves integrations that cannot be obtained analytically. Here, we develop an 20 

approximate inference algorithm under the maximum likelihood framework to perform 21 

numerical integration of the likelihood and obtain an approximate p-value for testing 22 

𝛼. Our algorithm is based on the observation that the likelihood function of 𝛼 can be 23 

expressed as a ratio between the posterior and the prior. Because the posterior of 𝛼 is 24 

asymptotically normally distributed(45, 46), we can use Gibbs sampling to obtain 25 
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posterior samples of 𝛼 and use the sample mean and sample standard deviation to 1 

summarize this posterior distribution. In addition, we can also specify a normal prior 2 

on 𝛼 and obtain the prior mean and standard deviation. Because the likelihood of 𝛼 3 

is expressed as the posterior divided by the prior and is itself asymptotically normally 4 

distributed(45, 46), we can rely on the method of moments to obtain the approximate 5 

maximum likelihood estimate 𝛼ො and its standard error 𝑠𝑒ሺ𝛼ොሻ based on the mean and 6 

standard deviation from both the posterior and the prior. Afterwards, we can construct 7 

an approximate Wald test statistic and obtain a p-value for hypothesis testing. Details 8 

of the algorithm is provided in the Supplementary Text. Note that, while our algorithm 9 

relies on Gibbs sampling, we do not perform a Bayesian analysis; rather, we treat the 10 

Gibbs sampling as a convenient and accurate numerical approximation tool to obtain 11 

the marginal likelihood of 𝛼, which is otherwise infeasible or inaccurate to obtain 12 

under various frequentist approaches.  13 

We refer to our model and algorithm together as the two-sample Mendelian 14 

Randomization with Automated Instrument Determination (MRAID). The automated 15 

instrument determination part highlights the desirable feature of our model in 16 

automatically selecting instrumental variables from a set of candidate ones that are in 17 

potentially high LD with each other. Compared with existing two-sample MR 18 

approaches, MRAID relies on a likelihood inference framework, is capable of modeling 19 

correlated instruments, performs automated instrument selection, controls for both 20 

correlated and uncorrelated horizontal pleiotropy, and is computationally scalable. 21 

MRAID is implemented in an R package, freely available at 22 

www.xzlab.org/software.html.  23 

 24 

MRAID for summary statistics 25 
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While we have described MRAID using individual-level data, MRAID can be extended 1 

to make use of only summary statistics. Details for the summary statistics version of 2 

MRAID are provided in the Supplementary Text. Briefly, the summary statistics 3 

version of MRAID requires two types of input: the SNP marginal effect size estimates 4 

on the exposure and outcome; and the SNP correlation matrices in the exposure and 5 

outcome GWASs. Both input types are obtained based on standardized genotype data 6 

where the genotypes for each SNP have been standardized to have zero mean and unit 7 

standard deviation. Here, we denote the p-vector of the SNP marginal effect size 8 

estimates on the exposure as 𝛃୶ and the corresponding vector of marginal effect size 9 

estimates on the outcome as 𝛃୷. We denote the p by p SNP correlation matrix in the 10 

exposure GWAS as Σଵ and the corresponding matrix in the outcome GWAS as Σଶ. 11 

Both Σଵ and Σଶ are positive semi-definite and can be estimated from the same LD 12 

reference panel (e.g. individuals with the same ancestry in the 1,000 Genomes Project). 13 

The MRAID model for summary statistics can be constructed based on the following 14 

two equations 15 

        𝛃୶ ൌ Σଵ𝛃  𝐞୶,         (4) 16 

𝛃୷ ൌ 𝛼Σଶ𝛃  Σଶ𝛈  Σଶ𝛈ଵ  𝐞୷, (5) 17 

where 𝐞𝐱 is a p-vector of residual error that follows a multivariate normal distribution 18 

𝑁ሺ0, Σଵ𝜎௫ଶ/ሺ𝑛ଵ െ 1ሻሻ; and 𝐞୷ is a p-vector of residual error that follows another a 19 

multivariate normal distribution 𝑁൫0, Σଶ𝜎௬ଶ/ሺ𝑛ଶ െ 1ሻ൯ . A similar approximate 20 

inference algorithm under the maximum likelihood framework is developed for the 21 

summary version of MRAID.  22 

 23 

Simulations 24 
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We performed realistic simulations to evaluate the performance of MRAID and 1 

compared it with six existing MR methods. For simulations, we randomly selected 2 

60,000 individuals from UK Biobank(19). We split these individuals randomly into two 3 

equal-sized sets: one set with 30,000 individuals to serve as the exposure GWAS and 4 

another set with the remaining 30,000 individuals to serve as the outcome GWAS. For 5 

these individuals, we obtained their genotypes from 649,695 SNPs on chromosome 1 6 

that are overlapped with the GERA study we used before(13), standardized each SNP 7 

to have mean zero and unit standard deviation, and used the standardized genotypes to 8 

simulate the exposure and outcome. Specifically, in the exposure GWAS, we randomly 9 

selected K SNPs (K =100 or 1,000) to have non-zero effects on the exposure. We 10 

denoted the genotype matrix of the K SNPs as 𝒁෩௫. We simulated the K SNP effect sizes 11 

on the exposure ( 𝛃 ) from a normal distribution 𝑁ሺ0,𝑃𝑉𝐸𝑍෨𝑥/𝐾ሻ , where the 12 

scalar 𝑃𝑉𝐸𝑍෨𝑥  represents the proportion of variance in the exposure variable explained 13 

by these genetic effects. We summed the genetic effects across all K SNPs as 𝒁෩௫𝛃. In 14 

addition, we simulated the residual errors 𝛆୶  from a normal distribution 𝑁ሺ0, 1 െ15 

𝑃𝑉𝐸𝑍෨𝑥ሻ . We then summed the genetic effects and the residual errors to yield the 16 

simulated exposure variable x. In the outcome GWAS, we obtained the genotypes for 17 

the same K SNPs as 𝒁෩௬ and used the same 𝛃 from the exposure GWAS to compute 18 

the genetic component underlying the outcome as 𝒁෩௬𝛃. We set the causal effect 𝛼 to 19 

be 𝛼 ൌ ඥ𝑃𝑉𝐸/𝑃𝑉𝐸𝑍෨𝑥 , so that the proportion of variance in the outcome variable 20 

explained by the causal effect term ( 𝒁෩௬𝛃𝛼 ) is 𝑃𝑉𝐸 . We randomly obtained 21 

𝜋𝐾 SNPs (rounded to an integer) from the K SNPs to exhibit correlated pleiotropy. 22 
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We simulated the correlated pleiotropic effect sizes to be 𝜌𝛃 and set 𝜌 so that the 1 

proportion of variance in the outcome variable explained by correlated pleiotropy is 2 

𝑃𝑉𝐸ୡ. In addition, we randomly obtained 𝜋ଵ𝐾 SNPs (again rounded to an integer) from 3 

the K SNPs and randomly obtained 100 െ 𝜋ଵ𝐾 SNPs from the remaining non-causal 4 

SNPs to exhibit uncorrelated pleiotropy, so that a total of 100 SNPs displayed 5 

uncorrelated pleiotropy. We simulated the uncorrelated horizontal pleiotropic effects 6 

for these 100 SNPs from a normal distribution and scaled them so that the proportion 7 

of phenotypic variance in the outcome explained by uncorrelated pleiotropy is 𝑃𝑉𝐸௨. 8 

We simulated the residual errors 𝛆୷  from a normal distribution 𝑁ሺ0, 1 െ 𝑃𝑉𝐸 െ9 

𝑃𝑉𝐸ୡ െ 𝑃𝑉𝐸௨ሻ . We summed the causal effect term, correlated and uncorrelated 10 

horizontal pleiotropic effects, and the residual errors to yield the simulated outcome 𝐲.11 

 We treated the causal SNPs as unknown and followed standard MR procedure to 12 

select SNPs to serve as the instrumental variables. To do so, we used the linear 13 

regression model implemented in GEMMA(47) to perform association analysis in the 14 

exposure GWAS and selected SNPs with a p-value below 5 ൈ 10ି଼ as the candidate 15 

instrumental variables for analysis. For the selected SNPs, we obtained their effect size 16 

estimates, standard errors, and Z scores to serve as the summary statistics input. We 17 

also denoted the standardized genotype matrices for the selected SNPs in the exposure 18 

and outcome GWASs as 𝒁௫ and 𝒁௬, respectively. Based on the genotype matrices, 19 

we obtained the SNP correlation matrices as 𝜮ଵ ൌ
𝒁ೣ𝒁ೣ
భିଵ

 and 𝜮ଶ ൌ
𝒁𝒁
మିଵ

 to serve as 20 

input for MR model fitting.  21 
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In the simulations, we first examined a baseline simulation setting where we set 1 

𝑃𝑉𝐸෨ೣ ൌ 10%, 𝑃𝑉𝐸ఈ ൌ 0, 𝐾 ൌ 100, 𝜋 ൌ 0, 𝑃𝑉𝐸௨ ൌ 0, 𝑃𝑉𝐸 ൌ 0. On top of the 2 

baseline setting, we varied one parameter at a time to examine the influence of various 3 

parameters on method performance. For 𝑃𝑉𝐸෨ೣ, we set it to be either 5% or 10%. For 4 

𝛃, in addition to simulating it from a normal distribution, we also simulated them from 5 

the Bayesian sparse linear mixed model (BSLMM) distribution(38). Specifically, we 6 

randomly selected either 1% or 10% of the K SNPs to have large effects and these large-7 

effect SNPs explain 20% of 𝑃𝑉𝐸෨ೣ. We set the remaining SNPs to have small effects 8 

to explain the remaining 𝑃𝑉𝐸෨ೣ. For K, we set it to be either 100 or 1,000. For 𝑃𝑉𝐸ఈ, 9 

we set it to be zero in the null simulations and examined different values in the 10 

alternative simulations. In the alternative simulations, we set 𝑃𝑉𝐸ఈ to be 0.05%, 0.15% 11 

or 0.25% when K=100 and set it to be 0.5%, 1.5% and 2.5% when K=1,000 to 12 

ensure sufficient power. For the uncorrelated horizontal pleiotropic effects, we set 13 

𝑃𝑉𝐸௨  to be either 0, 2.5% or 5%. Under the null (𝑃𝑉𝐸ఈ ൌ 0) in the absence of 14 

uncorrelated horizontal pleiotropy (𝑃𝑉𝐸௨ ൌ 0), we set K to be 100 or 1,000. In the 15 

presence of uncorrelated horizontal pleiotropy, we set K to be 100 and set 𝜋ଵ to be 16 

either 0, 10%, 20%, or 30%. We also simulated the correlated pleiotropy effects and set 17 

𝜋 to be either 5% or 10%, with 𝜌 being √0.02 or √0.05 following the previous 18 

literature(8).  19 

For null simulations, we performed 1,000 simulation replicates in each scenario to 20 

examine type I error control. For power evaluation, we performed 100 alternative 21 

simulations along with 900 null simulations, with which we computed power based on 22 
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an FDR of 0.05. We then repeated such analysis five times and report the average power 1 

across these replicates. Note that we computed power based on FDR instead of a 2 

nominal p-value threshold to allow for fair comparison across methods, as the same p-3 

value from different methods may correspond to different type I errors.  4 

 5 

Real Data Applications 6 

We applied MRAID and other MR methods to detect causal associations between 38 7 

lifestyle risk factors and 11 CVD-related traits in the UK Biobank. The UK Biobank 8 

data consists of 487,298 individuals and 92,693,895 imputed SNPs(19). We followed 9 

the same sample QC procedure in Neale lab 10 

(https://github.com/Nealelab/UK_Biobank_GWAS/tree/master/imputed-v2-gwas) to 11 

retain a total of 337,129 individuals of European ancestry for analysis. We also filtered 12 

out SNPs with an HWE p-value < 10-7, a genotype call rate < 95%, or an MAF < 0.001 13 

to obtain a total of 13,876,958 SNPs for analysis. For the retained individuals, we 14 

obtained all lifestyle-related quantitative traits and CVD-related traits, removed those 15 

traits with a sample size less than 10,000, and focused on the remaining set of 38 16 

lifestyle traits and 11 CVD-related traits for analysis. The 38 lifestyle traits include 8 17 

physical activity traits, 12 alcohol intake traits, 10 diet traits (e.g. coffee and fruits) and 18 

8 smoking related traits. The 11 CVD-related traits include four pulse wave traits, two 19 

blood pressure traits (SBP and DBP), four lipid traits (LDL, HDL, TC, and TG) and 20 

BMI. Details of these traits are listed in Table S2. Many of these lifestyle risk factors 21 

have been found to be associated with CVD-related traits in observational studies(48-22 

50), though it remains unclear whether these associations represent causal relationship. 23 

For each trait in turn, we removed the effects of sex and top ten genotype principal 24 
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components (PCs) to obtain the trait residuals, standardized the residuals to have a mean 1 

of zero and a standard deviation of one, and used these scaled residuals for MR analysis.  2 

  To mimic the two-sample MR design, we randomly split the 337,129 individuals 3 

into two non-overlap sets: an exposure GWAS set with 168,564 individuals and an 4 

outcome GWAS set with 168,565 individuals. The random data split strategy ensures 5 

sample homogeneity within each study and independence between studies, and was 6 

extensively used in the previous MR literature(6, 51-53). We examined the 38 lifestyle 7 

traits in the exposure GWAS and examined the 11 CVD-related traits in the outcome 8 

GWAS. In both GWASs, we obtained summary statistics for each trait through linear 9 

regression implemented in GEMMA. When lifestyle traits in the exposure GWAS were 10 

treated as the exposure, we selected SNPs with a p-value below 5 ൈ 10ି଼ to serve as 11 

the candidate instruments for each exposure trait. Because almost all MR methods 12 

require at least two instrumental SNPs and some methods can become unstable when 13 

the number of instrumental SNPs is too large, we removed exposure traits for which 14 

the number of candidate instruments is either below two or above 10,000. This way, we 15 

removed three traits with less than two candidate instruments and four traits with more 16 

than 10,000 candidate instruments. We paired the remaining 31 exposure lifestyle traits 17 

with 11 outcome CVD-related traits into 341 trait pairs. The mean number of 18 

significantly associated SNPs among the 31 traits is 286. When CVD-related traits in 19 

the outcome GWAS were treated as the exposure, we removed three traits with less 20 

than two candidate instruments, and found that the remaining eight traits have more 21 

than 10,000 candidate instruments. Therefore, for these remaining traits, we used a 22 

more stringent p-value threshold of 1 ൈ 10ିଵହ to select SNP instruments and analyzed 23 

the resulting 304 trait pairs. The mean number of associated SNPs among the eight 24 

CVD-related traits is 2,318. In total, we analyzed 645 trait pairs.  25 
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 1 

Compared Methods 2 

We compared the performance of MRAID with six existing methods that include the 3 

followings. (1) IVW-R, which is the random effects version of IVW. It obtains the 4 

causal effect estimate through weighting and combining the effect estimates from 5 

individual instruments. It relies on random effects to account for pleiotropy and effect 6 

estimate heterogeneity across instruments(54). (2) Weighted mode, which is a mode 7 

version of IVW. It obtains the causal effect estimate as the mode, instead of the mean, 8 

of the effect estimates obtained from individual instruments(55). (3) Robust, which is 9 

a robust version of IVW. It uses the MM-estimation procedure consisting of an initial 10 

S-estimate followed by an M-estimate(56) that is further combined with Tukey’s bi-11 

weight loss function(57). We fitted methods (1)-(3) using R package 12 

‘MendelianRandomization’ with default settings. (4) RAPS, which is the MR Adjusted 13 

Profile Score method. It incorporates random effects and robust loss functions into the 14 

profile score to account for systematic and idiosyncratic pleiotropy(6). We fitted RAPS 15 

using R package ‘mr.raps’; (5) MRMix, which relies on a mixture model to account for 16 

horizontal pleiotropic effects and their correlation with instrumental effect sizes(7). We 17 

fitted MRMix using R package ‘MRMix’. (6) CAUSE, which identifies instrumental 18 

effect size patterns that are consistent with causal effects while accounting for 19 

correlated pleiotropy(8). We fitted CAUSE using R package ‘cause’. We compared 20 

MRAID with the above six methods because CAUSE is one of the most recently 21 

developed methods; IVW-R, Robust and RAPS all have been shown to have superior 22 

performance when the InSIDE assumption is satisfied; while MRMix and Weighted 23 

mode perform well even the InSIDE assumption is violated(8, 20). In both simulations 24 

and real data applications, we first obtained SNPs that achieve genome-wide 25 
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significance level (𝑝 ൏ 5 ൈ 10ି଼) to serve as a candidate set of instrumental SNPs. We 1 

directly use this candidate set of instrumental SNPs for MRAID. Because all other MR 2 

methods require independent instrumental SNPs, we performed LD clumping on the 3 

candidate set of instrumental SNPs to select independent ones for analysis. LD 4 

clumping is performed using PLINK, where we set the LD 𝑟ଶ parameter to be 0.001. 5 

CAUSE also requires estimating some nuisance parameters in the model by using a 6 

random set of SNPs across the genome, and we did so by randomly selecting 100,000 7 

SNPs following(8). Finally, we explored an oracle approach in the power simulations 8 

where we knew the actual set of instrumental SNPs that affect the exposure variable. In 9 

the oracle approach, we obtained the actual set of instrumental SNPs, selected among 10 

them the independent ones via pruning, and used the selected set of SNPs to serve as 11 

instruments using the IVW-R method. The compared methods and their corresponding 12 

software are listed in Table S3.  13 

  14 
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Table 1 Mean computational time (in minutes) of various two-sample MR methods. 

#SNPs MRAID CAUSE MRMix IVW-R 
Weighted 

mode 
RAPS Robust 

1000 0.31(0.07) 2.63(1.90) 0.12(0.03) 0.0001(0.00001) 0.17(0.04) 0.0004(0.0003) 0.0004(0.0001) 

2000 1.57(0.26) 2.99(2.24) 0.13(0.03) 0.0001(0.00001) 0.18(0.03) 0.0004(0.0006) 0.0004(0.0001) 

3000 3.91(0.75) 3.66(2.36) 0.14(0.02) 0.0001(0.00002) 0.18(0.03) 0.0004(0.0003) 0.0004(0.0001) 

4000 6.82(1.35) 4.24(1.62) 0.15(0.04) 0.0001(0.00003) 0.18(0.04) 0.0004(0.0001) 0.0004(0.0002) 

5000 10.80(2.69) 4.92(2.29) 0.18(0.05) 0.0001(0.00004) 0.18(0.04) 0.0004(0.0001) 0.0005(0.0003) 

Computation is carried out on a single thread of a Xeon Gold 6138 CPU. The computation time is averaged across 

20 replicates, with values inside parentheses denoting the standard deviation. #SNPs denotes the number of 

instrumental variables included in the model. The computational time for MRAID is based on 1,000 Gibbs sampling 

iterations with the first 200 as burn-in.  
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Fig. 1 Schematic of MRAID. MRAID is a Mendelian randomization method that infers the causal 

effect of an exposure on an outcome in the presence of unmeasured confounder by using SNPs as 

instrumental variables. MRAID first obtains an initial set of candidate SNP instruments that are 

marginally associated with the exposure (SNP1, …, SNPp) and that are in potential LD with each 

other (LD plot on left). MRAID imposes a sparsity assumption on the instrumental effects of the 

candidate SNPs to select instruments with non-zero effects on the exposure (green stars, selected 

by a green arrow). Among the selected instruments, MRAID assumes that a proportion of them 

display horizontal pleiotropic effects that are uncorrelated with instrumental effects (blue stars, 

selected by a blue arrow) and that another proportion of them display horizontal pleiotropic effects 

that are correlated with instrumental effects (orange stars, selected by an orange arrow). Among 

the non-selected instrument candidates (green squares, selected by a green arrow), MRAID also 

assumes that a proportion of them display horizontal pleiotropic effects that are uncorrelated with 

instrumental effects (blue squares, selected by a blue arrow). Overall, MRAID models jointly all 

genome-wide significant SNPs that are in potential LD with each other and performs automated 

instrument selection among them to identify suitable instruments. MRAID explicitly accounts for 

both correlated and uncorrelated horizontal pleiotropy and relies on a likelihood framework for 

effective and scalable inference.  
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Fig. 2 Type I error control of different MR methods in simulations. Type I error is evaluated 
by quantile-quantile plots of -log10 p-values from different MR methods on testing the causal 
effect under the null simulations. Compared methods include CAUSE (blue), MRMix (black), 
MRAID (purple), IVW-R (magenta), RAPS (deep pink), Robust (deep sky blue), Weighted mode 
(light salmon). Four null simulation scenarios are examined. (A) Null simulations in the absence 
of both correlated and uncorrelated horizontal pleiotropic effects. We simulated 100 instrumental 
SNPs with their effect sizes drawing from a normal distribution. (B) Null simulations in the 
absence of both correlated and uncorrelated horizontal pleiotropic effects. We simulated 1,000 
instrumental SNPs with their effect sizes drawing from a BSLMM distribution with 1% SNPs 
having large effects and 99% SNPs having small effects. (C) Null simulations in the absence of 
correlated horizontal pleiotropic effect but in the presence of uncorrelated horizontal pleiotropic 
effect (𝑃𝑉𝐸௨ ൌ 5%). We simulated 100 instrumental SNPs and set the proportion of instrumental 
SNPs having uncorrelated horizontal pleiotropy to be 20%. (D) Null simulations in the presence 
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of both correlated (𝜋 ൌ 5% , 𝜌 ൌ √0.05 ) and uncorrelated horizontal pleiotropic effects 
(𝑃𝑉𝐸௨ ൌ 5%). We simulated 100 instrumental SNPs and set the proportion of instrumental SNPs 
having the uncorrelated horizontal pleiotropy effect to be 20%. 
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Fig. 3 Power of different MR methods in simulations. Power (y-axis) at a false discovery rate 
of 0.05 to detect the causal effect is plotted against different causal effect size characterized by 
𝑃𝑉𝐸ఈ (x-axis). Compared methods include CAUSE (blue), MRMix (black), MRAID (purple), 
IVW-R (magenta), RAPS (deep pink), Robust (deep sky blue), Weighted mode (light salmon). 
Four alternative simulation scenarios are examined. (A) Simulations in the absence of both 
correlated and uncorrelated horizontal pleiotropic effects. We simulated 100 instrumental SNPs 
with their effects size drawing from a normal distribution. (B) Simulations in the absence of both 
correlated and uncorrelated horizontal pleiotropic effects. We simulated 1,000 instrumental SNPs 
with their effects size drawing from a BSLMM distribution with 1% SNPs having large effects 
and 99% SNPs having small effects. (C) Simulations in the absence of correlated horizontal 
pleiotropic effect but in the presence of uncorrelated horizontal pleiotropic effect (𝑃𝑉𝐸௨ ൌ 5%). 
We simulated 100 instrumental SNPs and set the proportion of instrumental SNPs having the 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 22, 2021. ; https://doi.org/10.1101/2021.11.03.21265848doi: medRxiv preprint 

https://doi.org/10.1101/2021.11.03.21265848
http://creativecommons.org/licenses/by-nc-nd/4.0/


48 
 

uncorrelated horizontal pleiotropy effect to be 30%. (D) Simulations in the presence of both 

correlated (𝜋 ൌ 5%, 𝜌 ൌ √0.05) and uncorrelated horizontal pleiotropic effects (𝑃𝑉𝐸௨ ൌ 5%). 
We simulated 100 causal instrumental SNPs and set the proportion of instrumental SNPs having 
the uncorrelated horizontal pleiotropy effect to be 20%. 
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Fig. 4 Point estimates and 95% confidence intervals from different MR methods in the trait 

on itself analysis in the real data. Compared methods include CAUSE (blue), MRMix (black), 

MRAID (purple), IVW-R (magenta), RAPS (deep pink), Robust (deep sky blue), Weighted mode 

(light salmon). Analyzed trait pairs include SBP-SBP (A), BMI-BMI (B), DBP-DBP (C), Pulse 

rate-Pulse rate (D), TC-TC (E), LDL-LDL (F), TG-TG (G), and HDL-HDL (H). The horizontal 

black dashed line in each panel represents the true causal effect size of α=1. Both MRAID and 

CAUSE can produce 95% confidence intervals that cover the true causal effects of all trait pairs, 

with CAUSE producing much larger confidence intervals than MRAID.    
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Fig. 5 Quantile-quantile plot of -log10 p-values from different MR methods on testing the 

causal relationship between lifestyle risk factors and CVD-related traits in UK Biobank. 

Compared methods include CAUSE (blue), MRMix (black), MRAID (purple), IVW-R (magenta), 

RAPS (deep pink), Robust (deep sky blue), and Weighted mode (light salmon). The results are 

shown for all 645 analyzed trait pairs (A) and the empirical null where we permuted the outcome 

ten times in the MR analysis of lifestyle traits on CVD-related traits (B). 
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