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Abstract. In this work will apply mixture models based on distribu-
tions from the SMSN family to antibody data against four SARS-CoV-2
virus antigens. Furthermore, since the true infection status of individuals
is known a priori, performance measures will be calculated for the meth-
ods proposed for cutoff point estimation such as sensitivity, specificity
and accuracy. The results of a simulation study will also be presented.
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1 Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection that
causes the devastating and often lethal COVID-19 disease was first detected
in China, province of Wuhan in December 2019 ([26]). Rapidly, SARS-CoV-2
infection spread over the entire world and the COVID-19 disease was declared
as a pandemic by the World Health Organization.

The detection of the virus is so far done by the so-called reverse transcription
quantitative PCR (RT-qPCR) on samples from nasopharyngeal or throat swabs
([26]). In general, only symptomatic individuals or people who were in close con-
tact with detected cases are tested, which might lead to an underestimation of
the proportion of individuals infected with SARS-CoV-2 ([31]). Alternatively,
serological testing allows to detect asymptomatic individuals exposed to the in-
fection. In addition, serological testing is able to quantify the degree of exposure
to the infection in the population. In this context, it is important to estimate
seroprevalence at the population level, i.e., the proportion of seropositive indi-
viduals that show antibodies against any SARS-CoV-2 antigen ([14]).

The presence of antibodies in a serum sample can be regarded as an indicator
of immunity against a given infectious agent or as an indicator of past infection
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in the absence of vaccination ([10]). The detection of antibodies in the serum
samples is classically done via enzyme linked immunosorbent assays (ELISA),
where the resulting data are light intensities, also called optical density, which
reflects the underlying antibody concentration in the samples ([9]). For statisti-
cal convenience, the analysis of serological data proceeds by dichotomizing the
amount of antibodies present in the serum of an individual using an arbitrary
cutoff point in the antibody distribution to achieve a certain sensitivity and
specificity. This allows the classification of individuals into seronegative (with
antibody levels below the cutoff point) and seropositive (with antibody levels
above the cutoff point) ([26]).

Given the possible impact of the cutoff chosen, different criteria for seropos-
itivity determination have a direct impact on the sensitivity and specificity of
the respective serological classification ([22]). In addition, it might also impact
the estimation of the seroprevalence ([13]) and the following (epidemiological)
decision that can be taken when facing a given estimate of this epidemiological
parameter. This means that when determining the cutoff point for a serological
test, one should take into account the benefit of the test, the economic and social
consequences of serological misclassification and the prevalence of the disease in
the population. It turns out that these aspects are often ignored in practice
([25]).

One of the traditional methods to establish the cutoff point in serological
assays is to consider the logarithmic transformation of the antibody concentra-
tion of a known seronegative population and proceed to calculate the mean plus
2 or 3 standard deviations ([25,18,4,32]). This method is more adequate when
the antibody distribution of the seronegative population is normally distributed
([4]). However, our previous studies of different serological data ([30,9]) showed
evidence against a normality assumption for the antibody levels associated with
a putative seronegative population. In the case where the true infection (or dis-
ease) status is known, ROC curve-based methods are most commonly used to
determine the cutoff point for defining seropositivity. These methods are widely
discussed in the literature ([23,12,27,11,5,33,21]).

Alternatively, finite mixture models can be used to determine the seroposi-
tivite cutoff directly from the data ([4,29,13,21,9]). In our previous work, three
methods for determining seropositivity cutoff were explored using the so-called
scale mixtures of Skew-normal distributions in the case where the true infec-
tion status is unknown ([9]). In this paper we applied the same methods and
models in order to evaluate their performance in freely available serological data
concerning SARS-CoV-2 virus ([26]). We also used simulation to understand
the performance of the cutoff estimators associated with different criteria for
seropositivity determination.
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2 Serological data concerning SARS-CoV-2 virus

In this study we analyzed IgG antibody responses against four SARS-CoV-2
spike or nucleoprotein antigens: RBD – glycoprotein receptor-binding domain;
Stri — S trimeric spike protein; S1 — spike glycoprotein S1 domain; S2 – SARS-
CoV-2 spike glycoprotein S2 domain. Antibodies were measured in serum sam-
ples collected up to 39 days after symptom onset from 215 adults in four French
hospitals (53 patients and 162 health-care workers) with quantitative RT-PCR-
confirmed SARS-CoV-2 infection. A total of 335 negative control serum samples
were collected from France, Thailand, and Peru before the start of the COVID-
19 pandemic ([26]). A detailed description of lab procedures can be found in the
original study ([26]). The data is freely available at https://github.com/MWhite-
InstitutPasteur/SARSCoV2SeroDXphase2.

3 Statistical methods

Serological data can be viewed as arising from two or more latent populations;
each population is assumed to represent different levels of exposure to a given
antigen. For simplicity, individuals that were never exposed or exposed a long
time ago to an infectious agent are considered as seronegative. In contrast, in-
dividuals exposed to the same infectious agent are considered seropositive. In
this scenario, the antibody distribution can be described by a mixture of two
or more probability distributions ([8]). However, the true serological state of the
individuals is unknown and therefore it needs to be estimated.

In the particular case of the SARS-CoV-2 data, we know which individuals
were exposed to the virus and, therefore, we can assume to know which individ-
uals are true seronegative and seropositives.

In many serological studies, it is common to assume a normal distribution for
the basis of the mixture models. However, the behaviour of antibody distribution
is not constant over time and their concentration decreases after infection ([26]).
This fact makes the distribution of the seropositive population skewed to the left
([10]). In order to accommodate the possible skewness in the seropositive pop-
ulation we use the scale mixture of Skew-Normal (SMSN) class of distributions
that include the Skew-Normal and the Skew-t distributions, which will be the
focus of our study. A brief description of these alternative distributions can be
found below.

3.1 Skew-Normal and Skew-t distributions

Let W ⌢ SN(µ, σ2, α) a random variable with a Skew-Normal distribution. In
this distribution, the parameters µ, σ2, and α can be seen as the location, scale,
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and shape parameters, respectively. Then the probability density function (pdf)
is given by

fW (w) = 2
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2 (
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, w ∈ R,

where ϕ(.) and Φ(.) is the pdf and the cumulative distribution function of the
standard Normal distribution, respectively ([3,1,9]). The Skew-Normal distribu-
tion is part of a family of distributions called the Scale Mixtures of Skew-Normal
distributions (SMSN), of which the Skew-t distribution is also a particular case
([9]).

A random variableW is said to have a Skew-t distribution,W ⌢ ST (µ, σ2, α, v),
if the pdf is given by

fW (w) = 2fT (w;µ, σ
2, v + 1)FT

(
A(w)

√
v + 1

d(w) + v
; v + 1

)
, w ∈ R, (2)

where fT (.;µ, σ
2, v+1) and FT (.;µ, σ

2, v+1) represents the pdf and the cumu-
lative distribution function of the generalized Student’s t distribution with v+1

degress of freedom, A(w) = α (w−µ)
σ and d(w) =

(
w−µ
σ

)2

([3,1,9]).

3.2 Finite mixture models

Let G1 and G2 be the seronegative and seropositive subpopulations from a pop-
ulation G, respectively. Let π1 and π2 the probabilities of sampling a seroneg-
ative and a seropositive individual, respectively (with the usual restriction of∑2

k=1 πk = 1 and 0 ≤ πk ≤ 1) and considering Z the random variable that rep-
resents the antibody level. The probability density function (pdf) of Z is given
by

f(z;Θ) =
2∑

k=1

πkfk(z;θk), (3)

where fk(z;θk) is the mixing probability density function of Z associated with
the k− th latent population and parameterized by the vector θk. Θ is the vector
of all unknown parameters of the mixture model, i.e., Θ = (π1, π2,θ1,θ2). In our
application, fk(z;θk), is given by the Skew-normal or the Skew-t distributions.
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In general, the estimation of a finite mixture model can be done by the clas-
sical EM algorithm ([15]). The EM algorithm is an iterative method widely used
in incomplete data problems where the maximum likelihood estimators (MLE)
have no closed expression ([7]). Considering (z1, z2, ..., zn) the observed sample
of size n and Yi ≡ Yik, (i = 1, .., n; k = 1, 2), the binary vector representing the
component from which the data comes from. Thus, Yi ⌢ Bernoulli(π2) and the
pdf of Yi is given by

f(yi;Θ) = πyi2
2 (1− π2)

1−yi2 . (4)

We have that the complete data is the pair (zn, yn) and the joint pdf is given
by

f((zi, yi);Θ) = [(1− π2)(f1(zi;θ1))]
1−yi2[π2f2(zi;θ2)]

yi2. (5)

Then, the log-likelihood function is given by

logL(Θ) =

n∑
i=1

(1− yi2) log{(1− π2)(f1(zi;θ1))}+ yi2 log{π2f2(zi;θ2)}. (6)

The step E of the EM algorithm consists in obtaining

Q(Θ,Θ(p)) = EΘ(p){logL(Θ)|zi} =
n∑

i=1

w
(p+1)
i1 log{(1−π2f1(zi;θ1)}+w

(p+1)
i2 log{(π2f2(zi;θ2)},

(7)

where w
(p+1)
ik = EΘ(p){Yik|zi} = PΘ(p){Yik = 1|zi}, k = 1, 2.

The step M consists in maximizing Q(Θ,Θ(p)) as function of the unknown
parameters. However, if the model has many parameters that need to be esti-
mated, then step M may incur in computational problems such as excessive time
consuming or estimate instability. In this sense, it is possible to break the step
M into several sub-steps (S > 1) that allow to get around these computational
constraints by performing some restrictions on the parameters. This method
is called expectation-conditional-maximization (ECM) algorithm ([20,17,19]).
Considering that Θ(p+s) represents the value of Θ in the sth CM step of the
iteration p + 1 in order to maximize Q(Θ,Θ(p)) and the constraint function
gs(Θ) = gs(Θ

(p+(s−1)), the ECM algorithm is performed as follow ([17]):

1. calculate the expected complete-data log-likelihood given the current esti-
mates of the parameters, Θ(p). The calculations are the same as for the EM
algorithm;

2. fix Θ(p) and calculate Θ(p+s) to maximise the expected complete-data log-
likelihood;

3. fix Θ(p+s) and calculate Θ(p+(s+1)) to maximise the expected complete-data
log-likelihood on the s+ 1 sub-step iteration and continuing until you have
gone through all the S sub-steps.
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In this way, it can be seen that Q(Θ,Θ(p+s) ≥ Q(Θ,Θ(p)) for all Θ ∈
Ωs(Θ

(p+s)), where Ωs(Θ
(p+s)) = {Θ ∈ Ω : gs(Θ) = gs(Θ

(p+(s−1))} ([20,17,19]).

Considering the SMSN family of distributions, namely the Skew-Normal and
the Skew-t distributions, the application of the ECM algorithm in the context
of mixtures can be found in ([16,3]).

In order to decide which model is the best one among all the models fitted
to the same data, we used the Bayesian Information Criterion (BIC) ([9]).

3.3 Definition of seropositivity

Seroprevalence is an epidemiological measure defined by the proportion of
seropositive individuals in the sample. For its estimation, it is then necessary
to define the serological status of the i-th individual by dychotomization the
variable, Zi, which represents the antibody concentration of the individual. This
dychotomization is done by determining a value c such that for antibody values
equal to or greater than c, the individual is classified as seropositive and seroneg-
ative, otherwise. Thus, let Y be the random variable representing the number of
seropositive individuals in a sample of size n, we have to

Y =
n∑

i=1

I{Zi≥c} ⌢ Binomial(n, π2),

where π2 represents the seroprevalence, i.e, π2 = P [Zi ≥ c] and I{.} is the indi-
cator variable. Considering that the random variable representing the antibody
levels Zi is modelled by a finite mixture of distributions, the way to estimate the
cutoff c from the observed data is not standard. To facilitate the determination
of this cutoff value, we below present three estimation methods or criteria.

- Method 1 (M1): It is based on the 99.9%-quantile associated with the
estimated seronegative population. This method is the most popular in sero-
epidemiology ([29,28]). It is often called as the 3σ rule, because the 99.9%-
quantile is given by the mean plus 3 times the standard deviation of a nor-
mally distributed seronegative population;

- Method 2 (M2): It relies on the minimum of the density mixture functions.
In the case of two latent populations, the cutoff corresponds to the absolute
minimum, and in the case of three or more latent populations the cutoff
corresponds to the lowest relative minimum. This point can be calculated
using the Dekker’s algorithm ([6]). It should be noted that the minimum of
the mixing function is not expected to coincide with the point of intersection
of the probability densities of each individual subpopulation;

- Method 3 (M3): It imposes a threshold in the the so-called conditional
classification curves ([29]). Under the assumption that all components but
the first one refer to seropositive individuals, the conditional classification
curve for the i-th individual given the antibody level Zi = x is defined as

p+|Zi=x =
π2f2(Zi = x;θ2)∑2

k=1 πkfk(Zi = x;θk)
. (8)
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In turn, the classification curve of seronegative individuals is simply given
by

p−|Zi=x = 1− p+|Zi=x. (9)

After calculating these curves, one can impose a minimum value for the
classification of each individual. In this case, two cutoff values arise in the
antibody distribution, one for the seronegative individuals and another for
seropositive individuals. Mathematically, the classification rule is given as
follows

Ci =

 seronegative , if xi ≤ c−
equivocal , if c− < xi < c+
seropositive , if xi ≥ c+

(10)

where c− and c+ are the cutoff values in the antibody distribution that
ensure a minimum classification probability, say 90%. To calculate these
cutoff values in practice, one can use the bisection method providing an
initial interval where they might be located ([29]).

3.4 Performance of the proposed methods for cutoff point
estimation

In order to evaluate the performance of each of the cutoff points, we estimated
the respective sensitivity and specificity. LetD andD∗ be the true and estimated
serological classification (or infection status), respectively. Sensitivity is defined
as the conditional probability

sens = P (D∗ = +|D = +), (11)

In turn, the specificity is defined as

spec = P (D∗ = −|D = −). (12)

The overall performance of each method is given by the accuracy (ACC) of the
proposed method which corresponds to the proportion of correct results, that is,

ACC = sens× P (D = +) + spec× P (D = −). (13)

3.5 Simulation study

We performed a small simulation study to assess the performance of cutoff
points proposed by each method. With this purpose, we assume two simulation
scenarios regarding the mixture model assumed for the data: (i) a mixture model
based on the Skew-Normal distributions and (ii) a mixture model based on the
Skew-t distribution.

For each scenario, we simulated 1000 samples with dimensions 100, 500 and
1000. In addition, for each simulation cycle, the weight of the mixture model was
varied to check the ability of the model to identify the seropositive component
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even when the weight assigned to that component is very low. The implica-
tions of varying the weight of the seronegative and seropositive population are
as follows: in the case where the proportion of seronegative individuals is very
high relative to seropositive individuals, more effective decisions can be made to
control the number of infections in the population. The opposite scenario is im-
portant in the case of effectiveness of vaccination in the population, particularly
for individuals who may have lost immunity.
To this end, it was considered that the proportion of seronegative individu-
als could take the values 90%, 60% and 30%, being the respective proportion
of seropositive individuals 10%, 40% and 70%, respectively. For each simulated
sample, the parameters of the mixture model were estimated by maximum likeli-
hood (via the EM algorithm) according to the distributional scenarios described
above, as well as the respective cutoff points according to the methods M1, M2
and M3. Considering θ∗ the estimated parameter, θ the true value of the param-
eter, than we calculate the relative error that is 1

1000

∑1000
i=1 [(θ∗ − θ)/θ] × 100%

and the mean squared error (MSE), i.e, 1
1000

∑1000
i=1 [(θ∗ − θ)2].

3.6 R packages

We used the package mixsmsn to fit different mixture models based on SMSN
([24]). In particular, we used the function smsn.mix to estimate the model pa-
rameter via the EM algorithm For fitting the Student’s t-distribution, we con-
sidered the R package extraDistr ([34]), namely, the function dlst to calculate
their density, the function plst to define the cumulative distribution function
and the function rlst to generate random samples in the simulation study.
The fitting of the Skew-Normal distributions was performed with the package
sn ([2]). The functions dsn, psn and rsn were used to calculate the probabil-
ity density function, the cumulative distribution function and generate random
samples of the Skew-Normal distribution, respectively. In the case of the Skew-t
distribution, the functions dst, pst and rst were used to calculate the probabil-
ity density function, the cumulative distribution function and generate random
samples, respectively.

4 Results

4.1 Patients characteristic’s

For this study, data relating to 549 individuals was analysed. Serum samples
were collected from individuals with confirmed SARS-CoV-2 infection by PCR
test in four hospital units from Paris, namely: 4 (0.7%) from the Hôpital Bichat,
49 (9.0%) from the Hôpital Cochin and 161 (29.3%) from the Nouvel Hôpital
(Strasbourg). Regarding the negative controls, 68 (12.4%) are from the Thai Red
Cross (TRC), 90 (16.4%) from the Peruvian donors (NHP) and 177 (32.2%) from
the France blood donors (Établissement Français du Sang). For each antigen
under analysis, the logarithmic transformation of base 10 was considered for the
concentration of antibodies against that antigen.
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Fig. 1: Antibody distribution by infection status. A. Antibody distribution for
RBD antigen. B. Antibody distribution for S1 antigen. C. Antibody distribution
for S2 antigen. D. Antibody distribution for Stri antigen. Number of negative
individuals: 335; number of positive individuals: 214. Antibody concentration in
y axis is given in log10 units.

Regarding the analysis of antibodies by the individuals who performed PCR
test, there were statistically significant differences between individuals who tested
negative and positive for SARS-CoV-2 by Mann-Whitney test (RBD: 1.64 vs.
3.48, p < 0.001; S1: 1.72 vs. 2.59, p < 0.001; S2: 1.79 vs. 2.99, p < 0.001; Stri:
1.59 vs. 3.43, p < 0.001) (Figure 1). Such differences were expected given the
general knowledge about the infection status, i.e., individuals who have already
been exposed to the virus will have a higher concentration of antibodies than
those who are still susceptible.

4.2 Mixture Model approach

We performed the fitting of the different mixture models considering two sub-
populations, i.e., a seronegative population and a seropositive population. Ac-
cording to the BIC values, the model based on the Skew-Normal distribution was
considered for the following antigens: RBD (BIC=852.25), S1 (BIC=561.63), S2
(BIC=775.29). For the case of the Stri antigen, the best model was found to
be the Skew-t distribution (BIC=915.82) (Figure 2 and table 2). As has been
observed in previous studies, there is a marked skew to the right of the data for
the seronegative population and a skewed for the left in the seropositive popu-
lation, although not very marked for the S1 (αS1 = 1.062) and S2 (αS2 = 0.450)
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antigens (Table 1).
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Fig. 2: Best models with two components for the data under analysis. A. Anti-
body distribution for RBD antigen. B. Antibody distribution for S1 antigen. C.
Antibody distribution for S2 antigen. D. Antibody distribution for Stri antigen.
Antibody concentration in x axis is given in log10 units.

Table 1: Parameter estimates for the best model
Seronegative population Seropositive population

Antigen Distribution µ σ2 α v µ σ2 α v

RBD Skew-Normal 1.435 0.125 6.318 NA 4.077 0.767 -7.634 NA
S1 Skew-Normal 1.569 0.062 2.687 NA 2.339 0.321 1.062 NA
S2 Skew-Normal 1.583 0.096 2.804 NA 2.817 0.212 0.450 NA
Stri Skew-t 1.352 0.121 5.751 4.873 3.885 0.367 -6.482 4.873

4.3 Seropositivity estimation

After defining the model that best fits the data, we proceeded to categorize the
amount of antibodies for each antigen by estimating the cutoff point. For this,
we used the methods M1, M2 and M3 already described and whose results are
shown in Figure 1 and table 2.

Estimation of the cutoff point based on the minimum densities of the mixture
model (M2) proved to be the method with the highest sensitivity for classifying
seropositive individuals, as well as the one that produces the highest propor-
tion of correct results (accuracy) for the RBD antigen (cutoff = 2.49, sens =
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86.45%, ACC = 92.89%), S1 (cutoff = 2.27, sens = 71.03%, ACC = 86.89%)
and S2 (cutoff = 2.39, sens = 83.64%, ACC = 90.89%). In the case of the
Stri antigen, it was not possible to calculate the sensitivity and accuracy of the
method based on the 99.9%-quantile (M1), given the high values that the quan-
tile assumes leading to the seropositive population being fully absorbed by it.
Thus, for comparison purposes, the application of each methods to the Skew-
Normal distribution was considered, again verifying that the method based on
the minimum densities of the mixture model produces the highest sensitivity
(cutoff = 2.46, sens = 90.19%). However, for this antigen, the method with the
highest accuracy is based on the conditional probability (set at 90%) of clas-
sifying an individual as being seropositive (ACC=93.44%) (Figure 3 and table
2).
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Fig. 3: Performance of each method to estimate the cutoff value. A. Sensitivity
values for each method. B. Specificity values for each method. C. Accuracy
values for each method.
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In order to evaluate the quality of methods M1, M2 and M3, the optimal
cutoff point was estimated using the ROC curve. This is possible since the true
infection status of the individuals is known. It is interesting to see that in terms
of specificity and accuracy the results are similar to the method that is tradition-
ally used (ROC curve). However, it is possible to observe a poor performance of
the M1 method with regard to its sensitivity. (Figure 3, table 2 and table 3).

Table 3: Cutoff point estimates, sensitivity, specificity, accuracy and area under
the curve (AUC) for the empirical ROC curve method

Antigen Cutoff
Sensitivity

(%)
Specificity

(%)
Accuracy

(%)
AUC

(CI 95%)

RBD 2.15 94.39 94.33 94.35
98.50

(97.80, 99.30)

S1 2.07 86.92 93.73 91.07
96.10

(94.60, 97.60)

S2 2.33 86.92 94.63 91.62
94.90

(92.80, 97.00)

Stri 2.81 86.92 98.51 93.98
98.30

(97.40, 99.20)

4.4 Simulation results

To conduct the simulation study, two scenarios were considered: the first con-
sists of the scenario where the model that best fits the data is a Skew-Normal
distribution, and the second where the model that best fits the data is a Skew-t
distribution. For this purpose, the results for the RBD antigen (Skew-Normal
distribution) and the Stri antigen (Skew-t distribution) were selected. For each
scenario the sample size was varied, as well as the proportion of seronegative
individuals in the population. The results are shown in table 4 and table 5.

In general it is found that as the sample size increases, both the relative error
and the root mean square error tend to decrease. It is also found that for small
samples and extreme π1 values (π1 = 0.3 or π1 = 0.9), the models tend to have
some difficulty in identifying a seronegative and seropositive population. This is
a result that alerts to the existence of possible false positives and false negatives
in the case of small samples.
In situations where there is an ongoing vaccination plan and therefore the ma-
jority of the population is seropositive (e.g. π1 = 0.9) it is important to know
if it is possible to identify seronegative individuals in this population given the
time of immunization. If the timing of immunization is short, it is important
to identify these individuals early in order to take action and prevent a further
increase in infections.
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Table 4: Relative bias and Mean Square Error (MSE) of the 99.9%-quantile
method (M1); minimum of mixture densities method (M2) and conditional prob-
ability method (M3) for the RBD antigen. optM1 denotes the theoretical cutoff
point for the 99.9%-quantile; optM2 denotes the theoretical cutoff point for the
minimum of the density mixture method; optM3 denotes the theoretical cutoff
point for conditional probability method. π1 denotes the weight of the seronega-
tive population; cM1 denotes the cutoff estimated by M1 method after N=1000
simulations; cM2 denotes the cutoff estimated by M2 method after N=1000 sim-
ulations; cM3 denotes the cutoff estimated by M3 method after N=1000 simula-
tions.
Normal distribution; optM1 = 2.65; optM2 = 2.33; optM3 = 2.37

Sample size π1 cM1 cM2 cM3

Relative
bias cM1

(%)

MSE
(cM1)

Relative
bias cM2

(%)

MSE
(cM2)

Relative
bias cM3

(%)

MSE
(cM3)

% Two
comp.

retained
0.3 5.67 2.34 2.46 113.9314 0.0914 0.6185 0.0001 3.8938 0.0004 93.1

100 0.6 5.17 2.51 2.58 95.2155 0.0641 7.6017 0.0004 8.8272 0.0006 100.0
0.9 3.68 2.72 2.75 39.0584 0.0114 16.6388 0.0017 15.9472 0.0016 99.9
0.3 5.68 2.35 2.48 114.3252 0.0183 0.9958 0.000007 4.5243 0.00003 100.0

500 0.6 5.19 2.51 2.59 95.9969 0.0129 7.7858 0.00007 9.2046 0.0001 100.0
0.9 3.72 2.70 2.73 40.3432 0.0023 16.1593 0.0002 15.3683 0.0002 100.0
0.3 5.69 2.35 2.47 114.6181 0.0092 0.8462 0.000002 4.3660 0.00001 100.0

1000 0.6 5.19 2.51 2.59 95.9990 0.0064 7.7956 0.00003 9.1638 0.00005 100.0
0.9 3.73 2.70 2.73 40.6998 0.0011 16.0422 0.0001 15.3499 0.0001 100.0

Skew-Normal distribution; optM1 = 2.83; optM2 = 2.49; optM3 = 2.56
0.3 4.63 2.50 2.74 63.3181 0.0345 0.5088 0.0001 7.0728 0.0010 96.9

100 0.6 5.73 2.75 2.74 102.2463 0.0846 10.3808 0.0010 6.9046 0.0006 99.5
0.9 3.94 3.04 2.89 39.2453 0.0131 22.0631 0.0043 12.7332 0.0016 94.7
0.3 4.44 2.48 2.68 56.7727 0.0053 -0.5071 0.000009 4.6945 0.00007 100.0

500 0.6 5.76 2.74 2.73 103.2662 0.0171 10.2602 0.0001 6.3299 0.00006 100.0
0.9 3.94 3.14 2.89 39.2537 0.0025 26.1894 0.0011 13.0415 0.0002 100.0
0.3 4.39 2.48 2.68 55.3506 0.0024 -0.5008 0.000003 4.6036 0.00003 100.0

1000 0.6 5.76 2.75 2.72 103.3116 0.0085 10.4370 0.00009 6.0958 0.00003 100.0
0.9 3.94 3.16 2.89 38.9617 0.0012 27.1796 0.0005 12.9545 0.0001 100.0

Student t distribution; optM1 = 4.16; optM2 = 2.34; optM3 = 2.38
0.3 5.85 2.15 2.23 40.6111 0.0296 -7.8239 0.0004 -6.3481 0.0004 99.9

100 0.6 15.22 2.31 2.45 265.6374 57.9703 -1.2775 0.0001 2.7550 0.0003 100.0
0.9 33.74 2.60 2.86 710.4484 13.8984 11.5284 0.0013 20.084 0.0035 84.3
0.3 5.85 2.16 2.25 40.4626 0.0057 -7.3517 0.00006 -5.4927 0.00004 100.0

500 0.6 5.39 2.31 2.47 29.3408 0.0030 -0.9376 0.00004 3.7417 0.00006 100.0
0.9 25.38 2.59 2.92 509.6060 1.0029 11.2388 0.0001 22.5757 0.0006 100.0
0.3 5.85 2.16 2.25 40.5011 0.0028 -7.4162 0.00003 -5.5194 0.00002 100.0

1000 0.6 5.37 2.31 2.47 28.8965 0.0014 -1.0348 0.000001 3.7648 0.00001 100.0
0.9 24.52 2.59 2.93 489.0068 0.4401 11.2467 0.00007 23.0901 0.0003 100.0

Skew-t distribution; optM1 = 4.80; optM2 = 2.60; optM3 = 2.89
0.3 4.59 2.35 2.53 -4.5079 0.0031 -9.9120 0.0009 -12.7692 0.0021 99.3

100 0.6 8.14 2.47 2.68 69.4317 0.4065 -5.1031 0.0004 -7.5949 0.0012 100.0
0.9 NA 2.78 3.06 NA NA 6.6832 0.0008 5.5875 0.0014 40.6
0.3 4.43 2.31 2.49 -7.8118 0.0004 -11.0747 0.0001 -14.2211 0.0003 100.0

500 0.6 6.81 2.48 2.71 41.8089 0.0114 -4.6537 0.00004 -6.5774 0.0001 100.0
0.9 22.93 2.83 3.22 377.5419 0.7006 8.8679 0.0001 11.1838 0.0005 98.7
0.3 4.42 2.32 2.50 -7.9676 0.0002 -10.8456 0.00008 -13.6653 0.0001 100.0

1000 0.6 6.82 2.49 2.73 42.1175 0.0048 -4.2254 0.00001 -5.8102 0.00004 100.0
0.9 22.81 2.85 3.28 374.9435 0.3352 9.6048 0.00007 13.0902 0.0002 99.5

5 Conclusions

The purpose of this study was to use a flexible class of mixture models to an-
tibody data against the SARS-CoV-2 virus. In particular, we used a class of
models that allows capturing the skewness present in this type of data, namely
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Table 5: Relative bias and Mean Square Error (MSE) of the 99.9%-quantile
method (M1); minimum of mixture densities method (M2) and conditional prob-
ability method (M3) for the Stri antigen. optM1 denotes the theoretical cutoff
point for the 99.9%-quantile; optM2 denotes the theoretical cutoff point for the
minimum of the density mixture method; optM3 denotes the theoretical cutoff
point for conditional probability method. π1 denotes the weight of the seronega-
tive population; cM1 denotes the cutoff estimated by M1 method after N=1000
simulations; cM2 denotes the cutoff estimated by M2 method after N=1000 sim-
ulations; cM3 denotes the cutoff estimated by M3 method after N=1000 simula-
tions.
Normal distribution; optM1 = 2.75; optM2 = 2.37; optM3 = 2.47

Sample size π1 cM1 cM2 cM3

Relative
bias cM1

(%)

MSE
(cM1)

Relative
bias cM2

(%)

MSE
(cM2)

Relative
bias cM3

(%)

MSE
(cM3)

% Two
comp.

retained
0.3 5.52 2.33 2.51 100.7315 0.0769 -2.4407 0.0002 1.6126 0.0004 95.2

100 0.6 5.09 2.51 2.64 84.9707 0.0549 5.3154 0.0002 6.8551 0.0004 100.0
0.9 3.69 2.75 2.81 34.1160 0.0094 15.1483 0.0015 13.6833 0.0014 99.7
0.3 5.53 2.33 2.53 101.0684 0.0154 -2.1549 0.00001 2.3597 0.00002 100.0

500 0.6 5.09 2.51 2.64 85.4509 0.0110 5.2410 0.00003 6.9538 0.00006 100.0
0.9 3.72 2.75 2.81 35.1543 0.0018 15.0652 0.0002 13.6792 0.0002 100.0
0.3 5.53 2.33 2.52 101.0995 0.0077 -2.2169 0.000004 2.2269 0.000006 100.0

1000 0.6 5.10 2.51 2.64 85.6346 0.0055 5.3327 0.00002 7.0909 0.00003 100.0
0.9 3.72 2.74 2.81 35.4638 0.0009 14.9128 0.0001 13.6695 0.0001 100.0

Skew-Normal distribution; optM1 = 2.98; optM2 = 2.46; optM3 = 2.58
0.3 4.19 2.38 2.69 40.7854 0.0155 -3.3167 0.0002 4.3221 0.0007 95.8

100 0.6 5.69 2.69 2.78 91.0185 0.0741 9.2839 0.0007 7.6265 0.0007 98.5
0.9 4.03 3.03 2.91 35.1676 0.0116 23.2536 0.0046 12.7065 0.0016 77.8
0.3 4.13 2.37 2.73 38.4556 0.0026 -3.7077 0.00003 5.4574 0.00008 100.0

500 0.6 5.73 2.69 2.78 92.1103 0.0151 9.2010 0.0001 7.6095 0.00009 100.0
0.9 3.99 3.14 2.96 34.1244 0.0020 27.5261 0.0011 14.4625 0.0002 100.0
0.3 4.12 2.37 2.72 38.2737 0.0013 -3.7890 0.00001 5.2385 0.00003 100.0

1000 0.6 5.73 2.69 2.78 92.1627 0.0075 9.1482 0.00006 7.6591 0.00004 100.0
0.9 3.99 3.19 2.96 33.8530 0.0010 29.4491 0.0006 14.6881 0.0001 100.0

Student t distribution; optM1 = 4.34; optM2 = 2.39; optM3 = 2.48
0.3 6.12 2.27 2.47 40.9502 0.0499 -4.9286 0.0002 -0.1643 0.0002 100.0

100 0.6 7.47 2.42 2.66 71.9891 5.5903 1.2376 0.00009 7.5574 0.0006 100.0
0.9 25.93 2.68 2.97 496.9340 7.0674 12.0814 0.0011 19.9530 0.0031 87.9
0.3 5.96 2.28 2.49 37.1156 0.0052 -4.6806 0.00003 0.8053 0.00008 100.0

500 0.6 5.49 2.43 2.69 26.4182 0.0027 1.5251 0.000006 8.8431 0.0001 100.0
0.9 21.13 2.67 3.04 386.3460 0.6201m 11.8413 0.0001 22.7049 0.0006 100.0
0.3 5.95 2.28 2.49 37.0179 0.0026 -4.7472 0.00001 0.7876 0.000002 100.0

1000 0.6 5.49 2.43 2.70 26.3405 0.0013 1.6033 0.000002 9.1507 0.000005 100.0
0.9 20.91 2.67 3.05 381.2481 0.2865 11.9272 0.000008 23.1211 0.0003 100.0

Skew-t distribution; optM1 = 5.49; optM2 = 2.53; optM3 = 2.84
0.3 4.20 2.33 2.59 -23.4201 0.0186 -7.7389 0.0005 -8.9259 0.0012 99.9

100 0.6 6.97 2.49 2.79 26.9224 0.1472 -1.2113 0.0001 -2.0286 0.0006 100.0
0.9 NA 2.76 3.05 NA NA 9.2127 0.0010 7.1952 0.0013 43.7
0.3 4.19 2.31 2.59 -23.6233 0.0035 -8.7076 0.0001 -8.8653 0.0001 100.0

500 0.6 7.09 2.51 2.86 29.2639 0.0094 -0.5573 0.000009 0.6079 0.00003 100.0
0.9 19.83 2.83 NA 261.1660 0.4367 12.0420 0.0002 NA NA 97.2
0.3 4.19 2.31 2.59 -23.6742 0.0017 -8.8327 0.000005 -8.9670 0.000008 100.0

1000 0.6 7.27 2.52 2.88 32.4641 0.0043 -0.3427 0.0000003 1.2370 0.000001 100.0
0.9 19.8 2.85 3.28 260.0015 0.2104 12.5592 0.0001 15.3388 0.0003 97.8

the Skew-Normal and Skew-t distributions.

It has become clear that diagnostic tests play a key role in the early iden-
tification of infected individuals, allowing us to act to control a pandemic by
isolating and tracing the contacts of an infected person. Diagnostic tests can
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classify an individual as seronegative or seropositive by defining a cutoff point
that can take on different values depending on the technique used by the manu-
facturer to develop the test. Most of the time, this cutoff point is relaxed and is
calculated using the 3σ-rule, which assumes that the underlying distribution of
the data is Normal. However, as we have seen in our application, this assumption
cannot always be made, making this method unfeasible.

Note that this study has the advantage that the true cases and controls of
the infection are known, allowing us to compare different methods for obtaining
the cutoff point that allows classifying an individual as seropositive.

In [9], three methods for obtaining the cutoff point had been presented that
could not yet be validated because the true infection status of the individu-
als was not known. In this sense, we proceeded to use these methods in this
study, and it was verified that the three methods under analysis present high
accuracy, compared to methods used in literature, namely through the empir-
ical ROC curve. However, the proposed methods proved to be more specific
than sensitive. Note that the performance of the method based on the 99.9%
probability quantile may be overestimated, especially when the fitted distribu-
tion corresponds to a heavy-tailed distribution (such as the Skew-t distribution).
This is because the calculation of this quantile involves only and exclusively the
population of seropositive individuals, so that if the distribution is too skewed
to the right, then the seropositive population is totally absorbed by this quantile.

When a new virus is present in the population, there is a natural tendency
for the proportion of susceptible individuals to be much higher than the seropos-
itive individuals. This is the phase in which early identification of the infected
people is essential for pandemic control, although total control of the spread of
the virus only occurs when there is vaccination or eradication of the virus. In this
sense, with the simulation study developed in this work, we intend to analyze the
pandemic evolution scenarios and understand the behavior of different methods
for determining the cutoff point. It was found that as the sample size increases,
there is a tendency for the relative error and the mean square error of the cutoff
point estimates in skewed distributions to decrease, while this tendency is not
linear in the case of the usual symmetric distributions (Normal and Student t).
This fact may be due to the fact that symmetrical distributions are not the most
appropriate for these types of data, or even that the proposed methods should
not be used when considering the usual distributions.

As we expected, for small sample sizes and for large imbalances in the serolog-
ical populations, the proposed models were found to have problems in identifying
two components. Note that in the case of skewed distributions, it will be natural
that if the weight of the seronegative population is very high, then observations
relating to the seropositive population are considered false negatives and false
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positives otherwise.

A limitation of this study is the fact that the adjustment of the different mix-
ture models was performed using the same distribution for the two components
(through the package mixsmsn). If the components of the mixture model were
distinct, this would have a direct implication on the estimated cutoff points.
However, the package that would allow this analysis is now discontinued.

In conclusion, we recommend the use of mixture models based on distribu-
tions of the SMSN family for the analysis of serological data given the flexibility
of these models, as well as the use of the proposed methods for determining
cutoff points as an alternative to the method based on the 3σ rule.
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