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Supplementary Methods

SNV/indel processing

Samples were aggregated from four independent sources: 1) previously published data from the
Autism Sequencing Consortium (ASC; total N = 26,26810,73); 2) previously published data from
the Simons Foundation for Autism Research Initiative (SFARI) Simons Simplex Collection (SSC;
total N = 9,1706,73); 3) unpublished data from the ASC (N = 5,036); 4) the recently released
Simons Powering Autism Research for Knowledge (SPARK initiative; N = 22,76674). The
distribution of these samples is provided in Supplementary Table 1.

SNV/
Indel

ASC
Published

ASC
New

SSC SPARK Total

Proband 4,027 1,579 2,422 7,008 15,036

Sibling 347 263 1,850 3,032 5,492

Mother 3,853 1,597 2,449 6,363 14,261*

Father 3,853 1,597 2,449 6,363 14,261*

Case 5,591 5,591

Control 8,597 8,597

Total 26,268 5,036* 9,170 22,766* 63,237**

Supplementary Table 1. We aggregated samples from four independent cohorts, including
previously published ASC samples, SSC samples, unpublished ASC samples, and SPARK
samples. Count summation discrepancies: * Family Utah_1574 is also in SPARK with a different
offspring. **1 mother was also a proband in the new ASC data.

Across these consortia datasets, samples were processed and jointly genotyped in four
batches. The first two batches included the published and unpublished ASC and SSC cohorts:
1) ASC B14 - ASC samples through consortium sequencing batch 14 plus the SSC (N = 24,099,
4,632 new), 2) ASC B15-16 - ASC batches 15 and 16 (N = 832, all new). The latter two batches
included two independent releases of the SPARK cohort: 3) SPARK Pilot initial release (N =
1,379), 4) the SPARK.27k.201909 release (N = 21,387). Finally, raw data was not available for
1,404 and their family members that were reported in Satterstrom et al., and these variants were
lifted over directly to GrCH38 (Supplementary Table 1).

https://paperpile.com/c/QW2OON/n1PR+aoJl
https://paperpile.com/c/QW2OON/cpsE+n1PR
https://paperpile.com/c/QW2OON/2Xks


SNV/
Indel

ASC B14
SSC

ASC B15_B16 SPARK Pilot SPARK Satterstrom et
al. Lifted Over

Total

Proband 7,287 283 465 6,543 458 15,036

Sibling 2,348 11 0 3,032 101 5,492

Mother 7,233 269 457 5,906 397 14,261*

Father 7,232 269 457 5,906 398 14,261*

Case 5,591 5,591

Control 8,597 8,597

Total 24,192 832* 1,379 21,385 15,542* 63,327**

Supplementary Table 2. We curated and applied GATK to VCFs for de-duplicated samples in
ASC+SSC and SPARK columns for SNVs/indels calling in a uniform pipeline. ASC+SSC totals
include the "ASC B14" data10 and new samples from "ASC B15_B16" VCFs. SPARK totals
include the "SPARK Pilot" and "SPARK.27k.201909" VCFs. Count summation discrepancies: *
Family Utah_1574 is also in SPARK with a different offspring. ** 1 mother was also a proband in
the new ASC data.

ASC+SSC
The de-duplicated set of 24,932 samples of the ASC+SSC cohort was processed identically,
with raw sequencing outputs aligned to the GRCh38 reference genome and variants jointly
called using GATK75. Briefly, samples were called individually using local realignment by GATK
HaplotypeCaller in gVCF mode, such that every position in the genome is assigned likelihoods
for discovered variants or for the reference. Individual gVCF outputs were then post-processed,
assigning "blocks" of homozygous reference calls one of three qualities: no coverage/evidence,
genotype quality < Q20, or genotype quality >= Q20. These compressed per-sample gVCF
genotype data, alleles, and sequence-based annotations were then merged using GenomicsDB
(https://github.com/Intel-HLS/GenomicsDB), a datastore designed for genomics that takes
advantage of a cohort’s sparsity of variant genotypes. Samples were jointly genotyped for high
confidence alleles using GenotypeGVCFs on all autosomes. Variant call accuracy was
estimated using Variant Quality Score Recalibration (VQSR) as in the GATK Best Practices.

SPARK
For the SPARK Pilot, we accessed GRCh38-aligned bam files for 1,379 samples from SFARI via
the /SPARK/Pilot/BAM/ directory in the Globus file sharing platform. The bam files were
subsequently realigned to the GRCh38 reference and fed into the same GATK pipeline as
outlined above for the ASC+SSC data. For the SPARK main freeze, 27,270 individual
GATK-produced gVCFs were downloaded from SFARI via the
/SPARK/Regeneron/SPARK_Freeze_20190912/Variants/GATK/ directory in Globus. Per

https://paperpile.com/c/QW2OON/aoJl
https://paperpile.com/c/QW2OON/Mizx
https://github.com/Intel-HLS/GenomicsDB


provided documentation, the gVCFs were generated with GATK v4.1.2.0 HaplotypeCaller with
default thresholds for calling, using the GRCh38 reference and target files provided by
Regeneron (genome.hg38rg.fa & xgen_plus_spikein.b38.bed, respectively). New quality scores,
lenient processing of VCF files, and 100bp padding for intervals were also used. We carried out
subsequent joint calling of all 27,270 sample gVCFs via GATK to produce one unified VCF.

Previously published variants
De novo variants from 559 samples were directly carried over from Satterstrom et al.; they had
been curated from a number of previously published studies5–9. The genes that each variant
impacted as well as the type of impact (PTV, missense, etc) were retained.

SNV/indel filtering

Creation of working datasets
VCF processing was carried out in Hail 0.2 (https://hail.is) to create a working dataset for each
of the four batches of samples. After VCF import, multi-allelic sites were split and variants were
annotated using the Variant Effect Predictor (VEP)76. Hail's ibd() function was used to verify
reported pedigrees and check for duplicate samples within and across datasets. Annotations
such as gene and functional consequence were assigned to each variant by prioritizing coding
canonical transcripts in the VEP output. Low-complexity regions (using
https://github.com/lh3/varcmp/blob/master/scripts/LCR-hs38.bed.gz) were removed. Sexes were
imputed with the impute_sex() function in Hail, after which several genotype filters were applied.

Genotypes were filtered to remove calls with a depth below 10 (except for male hemizygous
regions, where calls were removed if depth was below 7) or above 1000. Homozygous
reference calls were filtered if the genotype quality (GQ) was below 25, while heterozygous and
homozygous variant calls were filtered if the phred-scaled likelihood of the call being
homozygous reference (PL[HomRef]) was below 25. Additionally, heterozygous calls were
dropped if they were in a hemizygous region in a male sample, and any call apparently on the Y
chromosome in a female sample was dropped.

Genotypes were further filtered if the allele balance (that is, the number of reads supporting the
alternate allele divided by the depth) of a heterozygous call was below 0.25; if the probability of
the allele balance (based on a binomial distribution with mean 0.5) was below 1e-9; or if the
number of informative reads supporting a heterozygous call (counting reads supporting either
the reference or alternate allele) or homozygous call (counting reads supporting the alternate
allele) was less than 90% of the depth. Variants were then dropped if they had a call rate below
10% or a Hardy-Weinberg p value less than 10-12, and a working dataset was written.

https://paperpile.com/c/QW2OON/rne6+cpsE+pK4a+0dSy+d60C
https://paperpile.com/c/QW2OON/FEOH


De novo variant calling and quality control
To call de novo variants from the working datasets, a filter requiring a GQ of at least 25 was
applied to every genotype, and Hail's de_novo() function was called with variant frequencies
from the non-neuro subset of gnomAD GRCh38 exomes v2.1.1
(gs://gnomad-public/release/2.1.1/liftover_grch38/ht/exomes/gnomad.exomes.r2.1.1.sites.liftove
r_grch38.ht) used as priors. After calling, putative de novo variants were dropped if they were
present within this gnomAD subset at a frequency greater than 0.1%, or if they were present
within their own dataset at a frequency greater than 0.1%. Variants were also dropped if they
contained "ExcessHet" in the Filters field, had a proband allele balance of less than 0.3, or had
a depth ratio (child read depth divided by the sum of parental read depth) of less than 0.3.

The following filtering steps were dataset-specific. For the ASC v17 dataset, variants were kept
only if the calling algorithm marked them as "HIGH" or "MEDIUM" confidence, with the
medium-confidence calls limited to a maximum allele count in the dataset of 3. SNPs with a
VQSLOD below -20 were dropped, as were indels with a VQSLOD below -2. The proband allele
balance threshold was raised to 0.4 for variants from cell line-derived samples, and variants that
appeared more than three times in the remaining set were dropped (this dropped two different
synonymous variants in OR13C2). For the ASC B15-B16 dataset, only "HIGH" confidence
variants with a VQSLOD at least -3.2 were kept. The call rate threshold was raised to 0.9, and
one call was dropped that had reads supporting the alternate allele in a parent's homozygous
reference genotype. No variant appeared more than once in the remaining set. For the SPARK
Pilot dataset, only "HIGH" confidence variants were kept. SNPs were dropped if they fell in a
VQSR tranche above 99.5, and indels were dropped if they fell in a VQSR tranche above 96.0.
As with the B15-B16 dataset, the call rate threshold was raised to 0.9, one call was dropped that
had reads supporting the alternate allele in a parent's homozygous reference genotype, and no
variant appeared more than once in the remaining set. For the SPARK main freeze, only "HIGH"
or "MEDIUM" confidence variants were kept, with the medium-confidence calls limited to a
maximum allele count in the dataset of 3. Variants with a VQSLOD below -11.6 were dropped.
The call rate threshold was raised to 0.5, and variants that appeared more than three times in
the remaining set were dropped (this dropped one intronic variant in THBS2 and another in
HLA-A).

Following these dataset-specific steps, one variant was selected per person per gene,
prioritizing variants with more severe consequences. Finally, for each dataset, samples were
dropped if their count of coding de novo variants was significantly greater (i.e. p < 0.05/n) than
expected based on a Poisson distribution with the dataset's observed mean number of coding
variants per sample (in ASC v17, this dropped 28 samples with more than 9 coding de novo
variants; in both ASC B15-16 and the SPARK Pilot, this would have dropped any samples with
more than 7, but there were none; in the SPARK main freeze, this dropped 3 samples with more
than 9).



Case-control variants
ASC case-control samples consisted of Danish iPSYCH samples and Swedish PAGES
samples. Rare variant counts for 4,863 autism and 5,002 control samples from the iPSYCH
cohort were available from the supplement of Satterstrom et al., where rare variants were
defined as those with an allele count no greater than 5 in the combination of the iPSYCH data
with non-Finnish Europeans from the non-psychiatric subset of gnomAD (a total of 58,121
people). In addition to samples labeled as "Autism", samples labeled as "Both" in that study
(meaning that an individual had both autism and ADHD diagnoses) were used as autism cases
for our purposes.

Rare variant counts for 728 autism and 3,595 control samples from the PAGES cohort were
taken from Satterstrom et al., where rare variants were defined as those with an allele count no
greater than 5 in the 18,153 combined parents, cases, and controls in the dataset, as well as an
allele count no greater than 5 in the non-psychiatric subset of ExAC r0.3 (45,376 people).
Counts were removed for 17 cases for whom parental sequences became available, so that
they are now included in our family-based data instead.

Inherited variants
Counts of transmitted and non-transmitted alleles were produced starting from each of the four
working datasets described above. First, variants were dropped that had been marked
"ExcessHet" in the Filters field by GATK or had allele frequencies greater than 0.1% in either
their own dataset or the non-neuro subset of gnomAD GRCh38 exomes v2.1.1. In addition, a
filter requiring a GQ of at least 25 was applied to every genotype. Hail's
transmission_disequilibrium_test() function was then called to count transmitted and
untransmitted alleles for each variant in family-based data.

From these raw results, dataset-specific filters were applied: VQSLOD thresholds required
variants to possess a VQSLOD value of at least 5.13 in the ASC v17 dataset, 24.12 in the ASC
B15-B16 dataset, and 6.01 in the SPARK main freeze. In the SPARK Pilot, all variants that did
not pass VQSR were dropped. These thresholds were based on identifying the VQSLOD values
necessary to balance the transmission/non-transmission of singleton synonymous SNVs from
the parents or the transmission/non-transmission of non-coding indels, and selecting the more
stringent VQSLOD value. For the ASC v17 dataset in particular, additional filters were applied to
standardize data from samples originally sequenced across a span of several years.
Specifically, variants were retained only if they possessed a strand odds ratio no greater than 3,
a Read Position Rank Sum of at least -8, and a quality by depth of at least 1 (for SNVs) or 3 (for
indels). After application of these filters, final counts of transmitted and non-transmitted alleles
were produced for variants of different classes (e.g., PTV, MisB, MisA).



CNV processing

For the subset of samples with available raw genomic data (Supplementary Table 3), we
employed GATK-gCNV for exome CNV detection, along with an additional supplement of 7,832
general research use (GRU) controls. GATK-gCNV is specifically designed to adjust for known
bias factors of exome capture and sequencing (e.g GC content), while automatically controlling
for other technical and systematic differences. Briefly, raw sequencing files were compressed
into read counts over the set of annotated exons and used as input, and a PCA-based approach
(see below) was implemented on observed read counts to distinguish differences in capture kits
(Supplementary Fig. 1), followed by a hybrid density and distance based clustering approach
to curate batches of samples for parallel processing. Filtering metrics derived from the
underlying Bayesian model were included for each detected variant, and were then tuned to
balance between sensitivity and specificity.

CNV ASC
SSC

SPARK GRU
Control

Total

Proband 6,827 6,867 13,964

Sibling 2,024 2,983 5,007

Parents 12,600 13,803 26,403

Case 608 608

Control 3,480 7,832 11,312

Total 25,539 23,653 7,832 57,294

Supplementary Table 3. Number of samples for each cohort that passed our exome CNV
calling pipeline quality control.

Cluster curation by PCA analysis

A set of 7,981 target regions were chosen from among 7 popular exome enrichment kits
(Agilent_V4, Agilent_V5, Agilent_V6r2, Agilent_V7, NimbleGen SeqCap EZ2, NimbleGen
SeqCap EZ3, Illumina TruSeq), such that each chosen region is uniquely targeted by 1 of the 7
kits. Depth of coverage was collected over the 7,981 regions for all samples, and a primary PCA
analysis was conducted to identify samples that were prepared with different enrichment kits
(Supplementary Fig. 1). After kit determination, a secondary PCA analysis was conducted for
samples on the same enrichment kits to determine final cluster assignment via a hierarchical
clustering approach.



Supplementary Fig. 1. PCA of read counts from exome sequencing data of 7,981 specially
chosen regions. Clear capture kit and technical artifacts can be observed. The first 3 PCs of the
chosen target regions clearly differentiate the capture kits used to enrich each sample. Red
corresponds to Illumina, black Agilent, blue Agilent 1.1, and green with Nimblegen. Secondary
clustering in 3d space of each of the determined capture clusters was carried out to create
batches for GATK-GCNV to process for CNVs.

Curation of bins and exons modeled

Due to the differential exon targeting and differences in transcriptome annotation, we
standardized the set of intervals/bins/exons over which GATK-gCNV queried for CNV events to
better homogenize our cohort. To construct this list of bins, we took all exons from the Gencode
V33 annotation and collapsed them to non-overlapping intervals. Collapsed intervals longer than
800bp were evenly split into subdivisions less than 1,600bp, in an attempt to increase the
number of intervals/data points for GATK-gCNV to identify copy number events. The resulting
intervals were padded by 100 basepairs in a non-overlapping, equal manner. Intervals over
which <50% of samples were covered by 10 reads, >50% segmental duplication content, < 90%
mappability, or GC content outside of the interval (0.1, 0.9), were excluded from further
processing.

Cluster processing with GATK-gCNV

GATK-gCNV can be run in 2 modes: cohort, case. Cohort mode takes the set of input samples,
constructs a model on the copy number states of each input region that passes filtering metrics,
and subsequently makes determinations of the copy number events in those samples. Case
mode takes a pre-computed model output from cohort mode, and proceeds to directly determine
copy number events in a set of supplied samples, offering time and cost savings if the samples



are similar enough. Cohort mode was run for every cluster determined by PCA analysis, using
200 samples per cluster. As most PCA-defined clusters consisted of more than the 200 samples
used to create the model in GATK-gCNV cohort mode, the remaining samples from each cohort
were analyzed with GATK-gCNV using case mode with their respective cohort mode models.

GATK-gCNV parameters included:
num_interval_scatter = 12500
gcnv_interval_psi_scale = 0.01
gcnv_max_bias_factors = 6
gcnv_p_active = 0.1
gcnv_o_alt = 0.0005
gcnv_sample_psi_scale = 0.01

Variant compilation, quality control, and annotation

For each sample processed using GATK-gCNV, we extracted non-reference copy number
events from the output. All calls with quality score (QS) >= 20 were considered for
defragmentation (concatenation). Each candidate call was translated onto the interval-space
and extended by 50% in width on both ends; calls that had consistent copy number and overlap
when extended were merged into a single call.

All calls for samples and clusters were compiled into a single table. Then single-linkage
clustering requiring 80% reciprocal overlap on the interval-space was used to determine when
multiple calls were the same variant. Site frequencies were assigned to each variant as the
proportion of samples that had either a deletion or duplication of this variant in both an overall
and cluster-specific manner. We annotated the number of callable exons that each variant
overlaps by counting the number of exons from Gencode V33 protein-coding canonical
transcripts that passed filtering during the bin curation process detailed above.

For quality control of variants, we used sample, variant, and call-level metrics. Variants were
retained if the site-frequency of the variant was rare (less than 1%), spanned 3 or more callable
exons, and less than 50% of the intervals that compose the variant had maximum
cluster-specific site frequency greater than 2.5%. Individual call-level filters required that
homozygous or copy number 0 deletions attain QS >= 400, heterozygous or copy number 1
deletions had QS >= 100, or duplications had QS >= 50. For sample-level quality control,
samples passed if their number of raw CNV calls detected by GATK-gCNV did not exceed 200
and the number of calls with QS>=20 did not exceed 35.

We annotated a deletion to impact a gene if >=10% of the non-redundant exon-basepairs were
overlapped by the deletion; for a duplication, it impacted a gene if >=75% of the non-redundant
exon-basepairs were overlapped by the duplication. CNVs were annotated against a list of 75
curated genomic disorder (GD) loci (Supplementary Table 4.8). A call was considered a
genomic disorder CNV if it shared 50% reciprocal overlap with the annotated GD.



Familial CNV delineation

For samples from a family fully characterized for CNVs (all 3 members), we further determined
inheritance and de novo status of CNVs. High-quality CNVs in the offspring for which more than
30% of the callable exons overlapped a called CNV from either parent were deemed inherited.
CNVs that had less than 30% of their intervals in such matching calls underwent secondary
screening. They were considered de novo only if three criteria were met: average normalized
copy number was within 0.3 of the reported copy number; if the minimum normalized copy
difference between the child and either parent was > 0.7; and less than 50% of the normalized
copy number of the constituent intervals had median absolute deviation across samples greater
than 0.5. Variants were considered inherited from a mosaic parent if the normalized copy
number of the parents across that site shows skew towards the offspring’s copy number. The
threshold for the skew was determined as a function of the number of intervals the CNV spans.

Gamete-of-origin determination

De novo CNVs were evaluated for gamete-of-origin where possible using the SNP/indel
joint-called VCF. For each de novo deletion in the child, the region was queried for variants in
the offspring and both parents. For each variant in the child within that region that is either 0/1 or
1/1, we recorded which parent had the corresponding variant and which had the reference.
For de novo duplications, we recorded variants for which the child was 0/1 and had B-allele
frequency > 60%. For those variants, we then recorded if one parent was homozygous
reference, while the other parent harbored the 0/1. A binomial test of the number of variants that
are consistent with the mother versus the father was carried out for binomial parameter p=0.5.
Rejection of equality by this test allows assignment of the variant’s origin to the parent with the
higher number of consistent variants.

CNV Benchmarking

We had access to 7,165 samples for which matching genome (WGS) and exome sequencing
data were available for benchmarking comparisons. The ground truth data was considered to be
the CNVs called from WGS using the ensemble machine learning method GATK-SV47.
For GATK-gCNV, we benchmarked the performance of the full 7,165 samples against the WGS
ground truth (Supplementary Figs. 2, 3). Sensitivity was measured by the proportion of CNVs
called from WGS data that have a match in the GATK-gCNV callset. Specifically, for each
variant, if at least 75% of the samples that have that CNV in the WGS data also had a
GATK-gCNV CNV call with a consistent direction (deletion or duplication) that overlapped at
least 30% of the callable exons, this was considered a success. For CNVs called by
GATK-gCNV, their positive predictive value (PPV) was measured by requiring that 75% of the
GATK-gCNV samples with that call have a match to the WGS calls (ground truth) with at least
30% exon overlap.

https://paperpile.com/c/QW2OON/VtCt


We also benchmarked two other popular exome CNV calling methods, XHMM77 and CoNIFER78

in comparison to GATK gCNV (Supplementary Fig. 2) and found that GATK gCNV achieved
the highest sensitivity and PPV relative to WGS ground truth.

Supplementary Fig. 2. For comparison of exome CNV methods, we benchmarked
approximately 1,000 samples with GATK-gCNV, XHMM, and CoNIFER, following available best
practices for each of the respective methods. Sensitivity and PPV evaluation criteria directly
mirror those described above for comparing GATK-gCNV to the ground truth, with substitution of
XHMM and CoNIFER for GATK-gCNV as appropriate. Sensitivity of each exome CNV method
to capture the ground truth genome calls were measured as a function of the exon sizes through
2 different exon sets: the callable exon set dictated by each caller, and the intersection of all 3
call-able exon sets. PPV for each method is measured as a function of callable exons reported
by each method. GATK-gCNV greatly outperformed the other methods, achieving higher
sensitivity while maintaining greater PPV.

https://paperpile.com/c/QW2OON/Gfhf
https://paperpile.com/c/QW2OON/YJWG


Supplementary Fig. 3. Using a set of 7,165 samples for which we have matching WES data
and gold-standard WGS CNV calls47, we benchmarked the performance of CNVs derived from
WES data using GATK-gCNV as a function of the number of callable exon of canonical
transcripts. (A) Sensitivity: using rare WGS CNVs (site frequency < 1%) as ground truth, we find
that GATK-gCNV achieves 87% and 78% sensitivity at recapitulating gold-standard WGS calls
for rare deletions and duplications that span 3 or more such exons. (B) PPV: given rare WES
CNVs (site frequency < 1%), we looked for corroborating calls from the gold-standard WGS
callset. We find that GATK-gCNV achieves 97% and 98% PPV for WES deletions and
duplications that span 3 or more exons.

TADA Bayesian Framework for Gene Association

TADA is a Bayesian framework that produces gene-level measures of evidence for association
that can be transformed into a false discovery rate41. Broadly speaking, for a given variant type
at gene, TADA produces a Bayes Factor (BF) to measure statistical evidence, taking as input
the count of variant events, mutation rate, number of samples, and a prior on the risk of a
variant in this gene. BF can be readily combined across different variant types for the same
gene through multiplication, to arrive at a total measure of association for a given gene. This
total BF can then be directly transformed into a FDR and the appropriate statistical threshold
can be applied to extract a candidate gene list. In the previous TADA study10, evidence was
aggregated for de novo PTV, misB, and misA variants, as well as case/control PTVs to find 102
genes significant at the FDR < 0.1 threshold.

https://paperpile.com/c/QW2OON/VtCt
https://paperpile.com/c/QW2OON/b4uO
https://paperpile.com/c/QW2OON/aoJl


Modes of evidence included

We have expanded evidence integration to all of the following combinations, comprising a full
5x3 combination of variant types by inheritance classes (PTV, MisB, MisA, DEL, DUP) x (de
novo, case-control, inherited).

Preparing CNVs for TADA Integration

Due to the challenge in pinpointing driver genes within large, recurrent CNVs, we opted to
exclude NAHR-mediated CNVs and focus on modeling smaller CNVs that impact 8 or fewer
constrained genes (defined by LOEUF < 0.6).

Prior Elicitation for TADA using Empirical Bayes

PTVs
We used an empirical Bayes approach, borrowing information across genes, to estimate the
prior relative risk (gamma) for ASD association of each gene. This consists of combining 2
components: (1) calculate the relative risk of PTVs for each inheritance type and (2) the
estimated fraction of genes that substantially influence risk ASD. Gamma for each gene is then
calculated as (1) divided by (2), smoothed over a measure of constraint. In Satterstrom et al.
Cell 2020, the smoothing is conducted over pLI, which is now superseded by the updated
loss-of-function observed/expected upper bound fraction (LOEUF) 39. In 10, the fraction of genes
that substantially influence risk ASD is assumed to be constant over the entire pLI range. We
relaxed this assumption because ASD associated genes are heavily concentrated among the
constrained rather than the unconstrained genes. We used equations in the supplement of 41 to
estimate the proportion of genes that are risk genes, specifically methods of moments
estimation for the proportion of risk genes by solving for the following equations:

C = the observed number of LOF events in all genes
M = the number of genes with more than 1 LOF event
m = the number of genes
N = the number of probands
k = the number of ASD genes

= the relative risk

(33) is [number of multi-hit genes under alt] + [number of multi-hit genes under risk=1]

https://paperpile.com/c/QW2OON/VgjD
https://paperpile.com/c/QW2OON/aoJl
https://paperpile.com/c/QW2OON/b4uO


Using equations (29) and (33) and by using a sliding window of 20% of the genes, ordered by
LOEUF, we computed a rolling-average estimate for the fraction of risk genes (Supplementary
Fig. 4).

For the de novo prior, (1) is estimated as the relative enrichment of variants in affected versus
unaffected offspring; for case-control prior, (1) is estimated as the relative enrichment of variants
in cases versus controls; while for the inherited prior, (1) is estimated as the relative enrichment
of transmitted versus untransmitted variants. The estimated prior relative risks all decrease with
lower genic constraint as expected, with de novo prior being the strongest, followed by
case-control then inherited respectively. We averaged the priors between our ASC/SSC cohort
and the SPARK cohort.

Missense variants
Similar to the approach in Satterstrom et al.10, the prior relative risks of de novo misA and misB
variants, separately, were estimated as (R-1)/0.05+1, where R is the enrichment ratio of the
variant class, and 0.05 is the proportion of risk genes across the genome. We adopted the same
approach. For de novo, R is the ratio of observed counts from affected versus unaffected
offspring; for case-control, R is the ratio of observed counts from cases versus controls; and for
inherited, R is the ratio of observed counts of transmitted to untransmitted variants from parents
to their affected offspring. All priors are floored at 1.05x relative risk.

CNVs
To estimate the prior relative risk of de novo deletion CNVs, we use the estimated prior risk for
de novo PTVs falling in constrained genes within the CNV. Specifically, the estimated prior risk
of a CNV is the summation of the estimated PTV prior risk for constrained genes that are
annotated for that CNV. For de novo duplications, we first computed the same sum, then
downweighted the sum proportional to the observed ratio of de novo deletions/duplications. This
accounted for decreased penetrance of duplications compared to deletions. For inherited and
case/control CNVs, we followed the same approach, substituting the corresponding prior PTV
risk estimate.

https://paperpile.com/c/QW2OON/aoJl


Supplementary Fig. 4. Based on our prior elicitation procedure, we computed separate priors
for the risk of de novo, case/control, and inherited variants in our ASD dataset. Increasing risk
trends strongly with increasing constraint, as measured by LOEUF; while de novo variants
represent more risk compared to case/control, and inherited counterparts given the same
constraint.

BF calculation using TADA

De Novo - PTV/MisA/MisB

For each gene, PTV, MisA, and MisB BFs were calculated per previously described
implementation of TADA10,41, taking into account sample size and using updated mutation rates
and prior relative risk. Mutation rates for PTVs were updated using gnomAD (v.2.1.1) released
LOF mutation rates, scaled so that the expected number of de novo PTVs matched the
observed number in unaffected siblings. MisA and MisB mutation rates were carried over from
Satterstrom et al., and genes previously missing MisA or MisB mutation rates were given
estimates using gnomAD (v.2.1.1) missense mutation rate scaled by the average missense to
MisA or MisB mutation ratio respectively. MisA and MisB mutation rates were scaled so that
expected and observed de novo counts matched that of unaffected siblings.

BFs for de novo PTV/MisA/MisB variant types were calculated separately for our ASC/SSC
sub-cohort and the SPARK cohort, to facilitate direct comparisons to de novo PTV/MisA/MisB
evidence from the DDD study.

De Novo - CNVs
BFs were estimated per CNV, analogously to the per gene calculation of BFs for
PTVs/MisA/MisB variants and separately for deletions and duplications. We excluded from
modeling CNVs that were NAHR-mediated GD events, and focused on the contribution of
constrained genes within CNV segments. Mutation rates of deletions and duplications were

https://paperpile.com/c/QW2OON/b4uO+aoJl


estimated using data from the unaffected siblings, where the rate was approximated as the
number of observed de novo deletions or duplications that span X constrained genes, divided
by the total number of sequences of X constrained genes. Given the prior relative risk and the
mutation rate, each unique CNV had a total BF estimate, which was then distributed to the
constituent constrained genes relative to their LOEUF measure. For example, if a CNV had a
total BF=10 and it spanned two constrained genes, A and B with LOEUF 0.1 and 0.4
respectively, we distributed BF=8 to gene A and BF=2 to gene B, consistent with the 4:1 relative
constraint ratio estimated by LOEUF.

Case/control - PTV/MisA/MisB
For each gene, PTV, MisA, and MisB BFs were calculated per previously described
implementation of TADA10,41, taking into account case/control sample sizes and updated priors
for case/control variants.

Case/control - CNV
Like de novo CNVs, BFs were estimated per CNV using the case/control PTV/MisA/MisB
framework described previously, with prior relative risk estimated as the sum of the prior
case/control PTV relative risk of the constituent constrained genes. For duplications in this
setting, we also used a downweighting factor for prior relative risk compared to a deletion of the
same gene, analogous to the de novo CNV setting. The BF for each CNV was then distributed
to the genes that constitute the CNV, proportional to LOEUF, as in the de novo setting.

Inherited - PTV/MisA/MisB
For each gene, PTV, MisA, and MisB BFs were calculated per previously described
implementation of TADA for case/control data10,41, using updated priors for inherited variants as
described above, and using a sample size of all affected offspring in trio settings.

Inherited - CNV
For inherited CNVs, BFs are estimated per CNV, using the case/control PTV/MisA/MisB
framework described previously, with prior relative risk estimated as the sum of the prior
inherited PTV relative risk of the constituent constrained genes. Duplications also used a
downweighting factor for prior relative risk compared to a deletion of the same gene, analogous
to the de novo CNV setting. The BF for each CNV was then distributed to the genes that
constitute the CNV, proportional to LOEUF.

BF integration using TADA

For each variant class (PTV, MisB, MisA, deletion, and duplications), we set a floor to the BF of
1, so that evidence against association based on one variant type does not degrade evidence
for association of another variant type. For example, in some genes, PTVs dominate the signal
for association and they are somewhat or strongly depauperate in signal from missense
variation; for others, the pattern is reversed. We believe such patterns trace to how allelic

https://paperpile.com/c/QW2OON/b4uO+aoJl
https://paperpile.com/c/QW2OON/b4uO+aoJl


architecture relates to risk for ASD. Setting a floor for the BF preserves signals related to allelic
architecture.

Within each variant class, however, we allowed the BF evidence to offset each other when
appropriate. For instance, BF > 1 in unaffected siblings, arising from non-zero de novo counts in
siblings, are used to offset the BF of that same gene in affected siblings. Operationally, this is
achieved by calculating the BF for a certain gene contributed by PTVs as: BF_PTV =
floor(BF_PTV_probands / BF_PTV_siblings, 1).

Finally, the total gene-level BF was calculated as the product of the BFs across the 5 variant
classes: BF = BF_PTV * BF_MisA * BF_MisB * BF_deletion * BF_duplication. Of note, to ensure
no gene was nominated from CNV evidence alone, we set BF_deletion and BF_duplication to 1
if the total BF evidence of PTV/MisA/MisB did not exceed 5.

All BFs are subsequently converted to a posterior probability, which is in turn used to compute a
FDR to nominate genes of relevance.

Applying TADA to DD data

We accessed the summary tables released by the DDD in Kaplanis et al., detailing de novo
variants detected and gene-level variant counts in 31,058 trios where the offspring is diagnosed
with developmental disorders. To calculate the number of PTVs per gene, we aggregated
Kaplanis et al. released variants with annotated consequences of (  "frameshift_variant",
"splice_donor_variant", "splice_acceptor_variant", "stop_gained"). For synonymous counts, we
aggregated (“synonymous_variant”, “stop_retained_variant”)-labeled variants. We annotated
missense variants (“missense_variant”) with MPC scores, and using those MPC scores, we
assigned misB and misA status, and aggregated counts per gene.

To create TADA-DD, we supplied the per-gene counts of PTVs, misA, and misB variants to
TADA, in the same manner as we supplied our ASD cohort counts. TADA-DD BFs are combined
with those from the ASD cohort on a per-gene basis, allowing us to estimate FDR on a
combined NDD super-cohort (TADA-NDD).

Comparison of TADA-DD and denovoWEST from Kaplanis et al.

Kaplanis et al. reports 19,654 genes, of which 285 are significant at an exome-wide threshold.
Of the 18,128 autosomal genes investigated by our study, 17,919 (99%) have a match from
Kaplanis et al, including all 252 autosomal genes significant in Kaplanis et al. 237/252 (94%) of
the Kaplanis et al. denovoWEST exome-wide significant genes also appear in the TADA-DD
FDR ≤ 0.001 list.

We also measured the concordance of the Bayesian TADA-DD FDR with the frequentist
denovoWEST estimates of gene significance reported in Kaplanis et al. by transforming the



Kaplanis p-values (denovoWEST_p_full) into FDRs (FDR denovoWEST) using the R function
p.adjust(method=”fdr”). A pairwise plot of TADA-DD FDR with transformed Kaplanis FDR
reveals high concordance (cor=0.95) on the log scale, signaling convergence in evaluation of
gene-level evidence between our studies, and allowing us to integrate the Kaplanis variant data
in our Bayesian framework.

Supplementary Fig. 5. By using the provided per-gene p-values supplied by Kaplanis et al.
(denovoWEST_p_full), we can transform the p-values into a FDR (FDR denovoWEST).
Comparing the FDRs from TADA-DD and denovoWEST yields strong concordance between
significance measures from the two approaches, attaining a correlation coefficient of 0.95 on the
log10 scale. The points in red are genes for which their TADA-DD BF evidence of association is
so large that they exceed computational precision, and their FDR computationally returned 0.
For these genes, the smallest, non-zero TADA-DD FDR was substituted as a proxy for this
figure.



Supplementary Fig. 6. For the set of 373 TADA-NDD genes with FDR ≤ 0.001, we also
examined the concordance of BF evidence between the DD cohort and the subcomponents of
the ASD cohort. The ASD cohort is composed of two halves of roughly equal sample sizes - the
ASC+SSC portion, and the SPARK portion. We considered only evidence from de novo PTVs,
MisB, and MisA variants for calculating BF evidence such that the modes of evidence
considered can be identical between the ASD cohort and the DD cohort. The DD cohort was
down-sampled to match in size to the total ASD cohort. Pairwise comparison of log10 BF
between ASC+SSC and SPARK were plotted for the 373 genes, and achieved a correlation of
0.78; while pairwise comparison of log10 BFs between the combined ASD cohort and the DD
cohort only achieved a correlation of 0.42.

Cross-validation relation of FDR with relative risk

To relate the estimated FDR to a relative risk measure of de novo variants, we conducted
cross-validation. We randomly subset the data into 10 equal subsets, taking turns to estimate
the TADA model using 9 folds while holding the remaining shard out. For each model fit, we
calculated the FDR of each gene, and examined the empirical relative risk of variant types and
inheritance class between affected and unaffected individuals for differing FDR thresholds. We
repeated this process 1,000 times, randomly assigning samples to the 10 subsets during each
iteration. Aggregating over shards and iterations, we estimate that genes with FDR ≤ 0.001
exhibit relative risk of 15-20 for de novo PTVs and most damaging missense variants (misB).

Conditional analysis of cross-cohort association.

For the ASD and DD cohorts, separately, we first converted the set of 18,128 genes q-values
into p-values using the following R command: pval = qval * rank(qval) / (max(qval) *
length(qval)). Next, we selected genes meeting FDR ≤ 0.05 from the TADA-ASD and TADA-DD
cohorts, treating the derived lists separately. For the set of 183 identified TADA-ASD genes, we



evaluated the distribution of their p-values from the TADA-DD cohort using the q-value function
in R 79 to estimate pi0 and pi1=1-pi0, which is the estimated fraction of the number of genes
associated in the DD cohort. (pi0 is the estimated fraction of genes that have no association and
for which their p-values would be uniformly distributed on the interval 0-1.) We then did the
converse: choosing the set of 477 identified TADA-DD genes, we evaluated the distribution of
their p-values from the TADA-ASD cohort to estimate pi1.

ASD-DDD heterogeneity analysis

We analyzed the ASD and DD cohorts separately using TADA with a goal of assessing
the nature of heterogeneity between the cohorts. We used only PTV and MisB de novo
variants to make the data sets strictly comparable. These analyses yielded a total of
464 genes with q-value < 0.05 for at least one cohort; call these the signal genes. Of
these, 120 passed the threshold for ASD, 428 for DD and 84 for both cohorts. Tallying
PTV and MisB de novo mutations per gene, we obtained a two-way contingency table of
gene-by-disorder (ASD/DD) for the 464 signal genes. In a previous analysis
(Satterstrom et al.) of earlier versions of these cohorts, we found highly significant
heterogeneity, but this was computed over all genes. Noting that there were now 84
genes significant in both cohorts and therefore each of these genes had a substantial
count of mutations in each cohort, we decided to restrict a new heterogeneity analysis
solely to those 84 overlapping genes. Even for this set of genes, we observed
significant heterogeneity (X2=317.6, DF = 83, p=3.75x1023).

Next, we asked which of the signal genes was more tightly connected with either ASD
or DD than expected by chance. To do so we formulated an approach that builds on the
familiar chi-statistic residual. Before computing the residuals, we needed to overcome
the far larger number of mutations present in the DD sample because the standardized
residual performs best when the total count of events, per cohort, was equal. To do so,
we down-sampled the DD mutations in signal genes to obtain a count of 1001
mutations, which matches the count of mutations in the ASD cohort. This was repeated
for 100 repetitions.

C statistic. For the C statistic we used a standard log-linear model analysis by
conditioning on the row (gene) and column totals (over ASD or DDD). We asked if the
residual for ASD was substantially different from that expected under the null. The
residual for gene i was defined as

where:

https://paperpile.com/c/QW2OON/CUTN


with the average over the 100 down-sampling repetitions was recorded as the
C-statistic for each gene.

Mixture modeling
If genes were independent of cohort, then the C-statistic would be distributed as a
standard normal statistic, but this was clearly not true (Figure 5E). Genes with
unusually few mutations in the ASD cohort produced a negative C statistic and those
with unusually many mutations in the ASD cohort produced a positive statistic.
Assuming the genes split into two classes, one favoring DD mutations and the other
favoring ASD mutations, we fitted a two-component normal mixture model. This
calculation was performed using the normalmixEM function in the R library 80. We
restricted the model to have a common standard deviation for both components (option
arbvar=F), which was estimated to be 0.527. Although the C statistics varied
continuously across the spectrum of values observed, we can estimate the posterior
probability a gene is from the DD or ASD component to determine likely group
membership. Genes with posterior probability greater than 0.99 for either class were
labeled by that class.

Tree analysis
To understand in which cell types in early development these genes were expressed,
we analyzed two datasets using a new approach called cFIT, the Common Factor
Integration and Transfer learning algorithm 66. cFIT relies on a linear model assuming a
common factor matrix shared among datasets, as well as gene-wise location and scale
shifts unique to each dataset. It estimates the shared and batch specific parameters
through iterative nonnegative matrix factorization and then recovers the batch-free
expression for each dataset based on the common factor and factor loadings.

Applying cFIT to fetal cells from two studies, which we will call “Nowakowski”64 and
“Polioudakis”65, we obtained integrated factor loadings and gene expression for all
measured cells (Supplementary Fig. 7). The algorithm was applied to a subset of
informative genes, including 3,790 genes selected using the Seurat function
FindMarkers 81. To ensure we included all informative ASD and DD risk genes, we also
included 676 for which the TADA analysis yielded a q-value < 0.05 for at least one of the
three cohorts: ASD, DD, and ASD+DD. After removing genes expressing in less than
5% of cells in either data set, 454 risk genes remained. In total, we identified 3938
genes, which are the only genes included in the downstream analyses.

https://paperpile.com/c/QW2OON/hBp4
https://paperpile.com/c/QW2OON/CLG3
https://paperpile.com/c/QW2OON/Zxys
https://paperpile.com/c/QW2OON/DKNs
https://paperpile.com/c/QW2OON/BZoT


Supplementary Table 5. This table details the data aggregated for our single-cell analyses.

Supplementary Fig. 7. UMAP of scaled factor loadings obtained from data integration. In Left,
only cells from the Polioudakis data are colored into 16 major cell types. Similarly, in Right, only
cells from Nowakowski data are colored according to the 48-cell-type label. See SI Appendix,
Tabel S2 (66) for detailed cell-type annotations from respective studies.

https://paperpile.com/c/QW2OON/CLG3


With the integrated data, we applied unsupervised clustering to identify cell subtypes.
While it is typically impossible to definitively determine the right number of clusters, it is
clear that cell types should follow a hierarchical structure: major clusters should develop
into minor more specialized subtypes. Our MRtree method67 was developed based on
this idea. (Remark: MRtree constructs a hierarchical cluster tree from multiresolution
clustering to recover levels of specification among cell clusters. The method relies on a
stability measure to cut the tree to obtain stable clustering.) To obtain the flat clustering
required by MRtree, we used Seurat v4, with resolution varying from 0.05 to 2. By
further increasing the resolution, functionally more specialized cell types were
separated. After applying the stability criterion to determine the finest stable resolution,
the algorithm produced 21 terminal clusters and most exhibited a good mix of cells from
each source (Supplementary Fig. 8a). The exceptions were two clusters (newborn IN
and MGE RG/IPC) derived entirely from Nowakowski cells, which were from a region of
the brain not sampled in the Polioudakis study, and one small cluster labeled as ExN,
which derived entirely from Polioudakis, which appears to be problematic based on the
UMAP (Supplementary Fig. 8b). This cluster was removed from downstream analyses.
(Remark: To avoid the tree growing too large, we excluded undefined types and well
separated clusters from tree construction, including 939 cells with missing labels or
labeled as U1, U2, U3, U4, Choroid, End, Endothelial, Per, Glyc, Microglia, Mic, and
Mural from two studies.)

Enrichment analysis
We next performed enrichment analysis for each cluster in the resulting tree to
determine if any clusters expressed an unusual number of ASD-predominant or
DD-predominant risk genes. Before performing the enrichment analysis, i.e., creating a
2x2 table for expressed gene (yes/no) by risk gene (yes/no), we needed to first identify
the set of genes to be included in the analysis, which is defined as the set of genes
“expressed” in at least one cell type. Because the integration process often replaces
zero values in the gene expression matrix with small positive values, we considered any
integrated expression value less than 0.5 to be non-expressed. A gene was considered
“expressed” for a particular cell type if its expression was greater than 0.5 for at least
25% of the cells in the terminal clusters. Within this list of genes, we then determined if
a gene was expressed or not for a particular cluster.

https://paperpile.com/c/QW2OON/MLpb


Supplementary Fig. 8. (a) Results of MRtree applied to the integrated data, resulting in 21
clusters. Nodal labels are spelled out in Figure 5. From the colors of nodes the fraction of cells
from the Nowakowski data is apparent. (b) The cluster indicated in blue was considered an
outlier and removed from downstream analysis. This small, outlying cluster, originally labeled as
ExN by Polioudakis, did not cluster with the other ExN cell types.

We partitioned this list genes according to whether they were DD or ASD-predominant
(posterior probability < 0.01 and > 0.99), which yielded 82 and 36 genes, respectively.
For each cluster, we compute the odds ratio from the 2x2 table to determine
enrichment. The enrichment analysis was performed for the ASD and the
DD-predominant risk genes sets (Figure 5c).



Supplementary Fig. 9. Top 13 enriched genes from the ASD-predominant and DD-predominant
gene lists with expression data in the single-cell dataset. Geres are ordered visually from
neuron-enriched (top) to progenitor-enriched (bottom).



Supplemental information on Statistical Tests

Page 2
Figure 1b,c,e,f: Due to the fact that many individuals harbor more than one inherited variant, we
chose to calculate and display the excess of mutations in each inheritance category using a
difference in rates (instead of odds ratios) so that all measures are on a comparable scale
across de novo, case/control, and inherited. For de novo variants, the binomial test statistic is
the ratio of the de novo variants in the affected offspring divided by the rate of de novo variants
in all offsprings, with the null probability equal to the number of affected offspring over all
offsprings. For case/control, the test statistic and null probability are constructed with the
equivalent case/control numbers. For the inherited variants, the binomial test statistic is the
proportion of transmitted variants, and the null probability is 0.5.

Page 3
Comparing odds ratio of deletions and PTVs over first decile of LOEUF: We set the null
hypothesis to be that the enrichment of deletions is the same as the enrichment in PTVs. We
then randomly generate the number of deletions observed in affected offsprings using the null
hypothesis enrichment, multiplied by the base observed rate of mutations in unaffected
offsprings to calculate an odds ratio. This process is repeated 107 times, and the p-value is
calculated as the number of iterations where the odds ratio exceeded the observed odds ratio.

Logistic regression: For each comparison noted with a logistic regression comparison, we
modeled ASD status (or male versus female where appropriate) as the outcome variable, and
the two variables of interest as input variables. Regression outputs are then reported.

Page 4
Correlation tests: R function `ggpubr::cor.test` was used to evaluate the significance of
correlation coefficients where reported.

Data and Code Availability

The data used in this study are available at:
Repository/DataBank Accession: NHGRI AnVIL
Accession ID: phs000298
Databank URL: https://anvilproject.org/data

Repository/DataBank Accession: Simons Foundation for Autism Research Initiative SFARIbase
Accession ID: SPARK/Regeneron/SPARK_WES_2/
Databank URL: https://www.sfari.org/resource/spark/

The R code used to generate TADA association results will be made available upon reasonable
request to authors.


