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Abstract

It is critical that we maximize vaccination coverage across the United States so that SARS-CoV-2
transmission can be suppressed, and we can sustain the recent reopening of the nation. Maximizing
vaccination requires that we track vaccination patterns to measure the progress of the vaccination
campaign and target locations that may be undervaccinated. To improve efforts to track and char-
acterize COVID-19 vaccination progress in the United States, we integrate CDC and state-provided
vaccination data, identifying and rectifying discrepancies between these data sources. We find that
COVID-19 vaccination coverage in the US exhibits significant spatial heterogeneity at the county
level and statistically identify spatial clusters of undervaccination, all with foci in the southern US.
Vaccination progress at the county level is also variable; many counties stalled in vaccination into
June 2021 and few recovered by July, with transmission of the Delta variant rapidly rising. Using
a comparison with a mechanistic growth model fitted to our integrated data, we classify vaccina-
tion dynamics across time at the county scale. Our findings underline the importance of curating
accurate, fine-scale vaccination data and the continued need for widespread vaccination in the US,
especially in the wake of the highly transmissible Delta variant.

Introduction

The rapid development of multiple effective vaccines for COVID-19 has been an essential pharmaceu-
tical response to the COVID-19 pandemic, reducing transmission and severe disease. However, vac-
cine development is but a single step in achieving COVID-19 suppression which requires widespread
vaccination. As of August 1, 2021, on average, one in every two Americans has full vaccine pro-
tection against SARS-CoV-2. However, a highly decentralized approach to mass vaccination led
by individual states has created a patchwork of vaccine uptake, leading to a highly heterogeneous
landscape of vaccine immunity [1, 2, 3]. Alongside the relaxation of social distancing restrictions
and other non-pharmaceutical interventions, the rising prevalence of the highly transmissible Delta
(B.1.617.2) variant has significantly raised the threat posed by COVID-19, causing a surge in cases
and mortality especially in areas with low vaccination rates [4, 5]. Additionally, while vaccination
offers strong protection against serious illness, breakthrough infections associated with the Delta
variant can occur in vaccinated individuals [6, 7], placing even greater urgency on increasing vacci-
nation levels in the US [8, 9]. These factors emphasize the need to closely monitor US vaccination
progress and characterize variation in vaccination rates across both geography and time.

A variety of COVID-19 vaccination trackers exist, presenting both state and county-level informa-
tion [10, 11, 12] based on data from the Centers for Disease Control and Prevention (CDC), which
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in turn relies on data reported by state and local health departments. Granular vaccination data
were not available from the CDC until four months into the US COVID-19 vaccination campaign,
and significant data missingness and incompleteness persist in these data a year into the campaign.
These issues lead to misleading estimates of vaccination distribution and impede efforts to measure
vaccination progress and identify target locations that may be undervaccinated.

In addition to tracking the vaccination campaign, a better understanding of the spatiotemporal dis-
tribution of historical COVID-19 vaccination coverage is critical to quantify population immunity
[13] and estimate future transmission potential [1]. Spatial heterogeneity in vaccination can enable
outbreaks, as clusters of unvaccinated individuals can cause resurgence despite high overall vaccina-
tion rates (e.g., in the case of measles [14, 15, 16, 17] and pertussis [18, 19]), despite high vaccination
coverage at the national level. Given the importance of spatial heterogeneity, tracking vaccination
at a fine spatial scale is also critical as vaccine uptake can vary widely within and between large
geographical areas (e.g., in the case of influenza [20]) and large-scale aggregation of vaccination
metrics can mask local vulnerabilities [14, 21, 22, 23].

A spatiotemporal characterization of US COVID-19 vaccination remains limited. Previous work has
investigated temporal trends up to May 2021 in US vaccination rates among adults, finding that
vaccination lagged in younger age groups even when timing of vaccine eligibility was accounted for
[24]. Studies have also found evidence for county-level spatial disparities in vaccination and have
linked them to social vulnerability, with some studies showing counties of lower socioeconomic status
having lower vaccination coverage [25, 26], while others show higher vaccination rates in counties
with high educational attainment and high proportion of minority residents [27]. While these studies
provide a large-scale, early analysis of COVID-19 vaccination patterns in the US, they suffer from
data missingness, analyze partial vaccination patterns in some cases, or they do not capture the
entire trajectory of the vaccination campaign, particularly in light of Delta transmission.

Here, we characterize the US COVID-19 vaccination landscape at the county scale over time. We
integrate state and local vaccination data with CDC-provided data to improve data coverage and
accuracy. We find spatial clusters of low vaccination counties and examine these clusters across
time. Additionally, we characterize the temporal dynamics of vaccination at the county scale, and
compare the observed dynamics to a null model to describe the processes underlying vaccination
progress. Our findings retrospectively provide an understanding of the arc of vaccine uptake to guide
decision-making on sustaining vaccine confidence, and prospectively inform timely decisions about
outbreak risk and variant emergence.

Methods

Data collation and cleaning
To characterize US county-level COVID-19 vaccination patterns accurately we integrate data from
the CDC with data provided by state health departments. We collect data on complete vaccination–
the number of county residents that were vaccinated fully (with one dose of the Jannsen vaccine or
two doses of the Moderna or Pfizer vaccine).

The CDC reports vaccination data in the COVID Data Tracker Integrated County View [28, 29].
County-level complete vaccination data are available for all 50 states except Texas and Hawaii;
additionally, there are counties with no data available in California, Virginia, and Massachusetts.
The state vaccination data come from each state’s health department and have been downloaded
in a machine-readable format, scraped from the health department website, or scraped from data
aggregators [30]. We also supplement with data collection from other academic researchers [31] and
verify against available state data. (See Supplementary Table S1 for details.)
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We compare the CDC-reported vaccination counts to those provided by state health departments to
identify discrepancies. For states where the CDC-reported counts are smaller than those reported
by the state, we use the state-reported data for the corresponding dates (Supplementary Table S1)
as advised by the CDC. We also identify counties where the CDC-reported vaccination counts are
higher than those reported by the state. Most of these discrepancies can be explained by the pres-
ence of federally-serviced populations for which the CDC reports data but the state does not. In
these cases, we use the CDC-reported data for the county in question (Supplementary Table S2).
For more details, see the Supplement.

We collate these disparate data sources to produce a single estimate of cumulative vaccination counts
for every county. We use population estimates from the 2019 American Community Survey of the
US Census to produce vaccination coverage estimates as cumulative vaccination counts divided by
total population size for each county. This is important as it makes our vaccination coverage esti-
mates (a) comparable across the entire country (in contrast to coverage measures based on a variety
of population size estimates used by each state); and (b) epidemiologically-relevant as we capture
the entire susceptible population size (in contrast to coverage measures reported as a proportion of
eligible population sizes of different ages).

Spatial heterogeneity & clustering
To characterize the spatial structure in vaccination patterns, we analyze our collated vaccination
coverage estimates with standard spatial statistic techniques. First, we calculate Moran’s I to char-
acterize the spatial autocorrelation in county-level vaccination coverage for each week of 2021.

Second, we use Kulldorff’s Poisson spatial scan statistic (SaTScan v10.0) to detect clusters of low
vaccination US counties [32, 33]. Complete vaccination counts for the week ending August 1, 2021 in
each county are assumed to be Poisson distributed, with county locations defined by their centroids.
For each county, expected vaccination counts are calculated as the product of the overall vaccina-
tion rate and county population, forming the null hypothesis. For each county, a circular spatial
window (scanning window) centered at that location is constructed and the expected vaccination
case counts are compared to the observed counts. If there is a lower number of cases than expected
within the window, the likelihood ratio is calculated (or defined as 1 otherwise). The radius of the
scanning window is then incrementally increased, to include neighboring locations, up to a user de-
fined limit (which we set to 1% of the US population size). This process is repeated for all considered
counties and window sizes. The reported clusters are chosen to have no geographical overlap with
each other. For each cluster, p-values are calculated via Monte Carlo hypothesis testing, generating
replicates of the data under the null hypothesis of uniform probability of vaccination across counties.

To examine how low vaccination clusters persist or change over time, we repeat the above spatial
analysis for the first complete week of each month from January 2021 to August 2021, for a total of
eight weeks.

Temporal dynamics
To identify periods of stalling in vaccination rates before the predominance of the Delta variant, we
use a threshold of 0.4% on the weekly growth rate of observed vaccination coverage (amounting to
40 new vaccinated individuals per week in rural counties ∼ 10, 000 population). We focus on the
period from the week of May 30, 2021 (week 21) to the week of June 27, 2021 (week 25).

To identify vaccination growth following widespread outbreaks of the Delta variant, we estimate the
average growth rate during the period of week 26 to week 30. Growth is considered significant if it
is larger than 0.4% of the population size.

3

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 17, 2021. ; https://doi.org/10.1101/2021.10.04.21263345doi: medRxiv preprint 

https://doi.org/10.1101/2021.10.04.21263345
http://creativecommons.org/licenses/by-nc-nd/4.0/


Model-based comparison
We use a simple growth model as a reference point against which to compare county vaccination
patterns across the country. We fit partially pooled county-level logistic growth models to observed
vaccination rates from the week of January 10, 2021 (week 1) to the week of June 27, 2021 (week 25),
for a total of 25 weeks. The logistic growth model is a classic ecological model representing initial ex-
ponential population growth, a gradual decrease in the growth rate, and, in the limit, the approach
to an asymptotic maximum population size. The partial pooling structure allows for systematic
county-level deviation from overall state trends, while still sharing information across counties. We
fit these nonlinear mixed-effects models with a Bayesian approach. Each county-specific parameter-
ization is drawn from a hierarchical state-level distribution, such that information is shared across
counties within states.

In county i within state S at time t, we estimate complete vaccination rate yit, asymptotic vaccina-
tion rate αi, intrinsic growth rate of vaccination βi, and inflection time point γi. (For more details,
see the Supplement).

To determine if a weekly observation deviates from our model during the second stage of the vac-
cination campaign (defined as beyond week 15), we identify if the observation is part of the latest
and longest period of consecutive observations of at least two weeks that falls outside of the 95%
prediction interval.

Results

To track US COVID-19 vaccination progress at a fine scale over time, we integrate county-level vac-
cination data from the CDC and state health departments, allowing us to account for and correct
discrepancies between data sources. Using these data, we characterize the spatiotemporal het-
erogeneity in complete vaccination coverage. We perform a clustering analysis using spatial scan
statistics to highlight geographical areas of lower-than-expected vaccination coverage and analyze
the time-varying patterns of growth in vaccination coverage. We then fit partially pooled county-
level logistic growth models to observed vaccination rates over time to better understand vaccination
trajectories and progress across the country.

US county-level vaccination data vary in quality
Comparison of the state-reported vaccination data and CDC-reported data shows large discrep-
ancies. In particular, the complete vaccination coverage for the counties in Texas, Georgia, West
Virginia, Virginia, and Colorado, as well as some counties in New Mexico, California, Vermont, North
Carolina, Minnesota and a number of other states are significantly underestimated in CDC reports
(Figure S1). On the other hand, states tend to under-report vaccination in locations with large
federally-serviced populations (i.e., military bases, Indian reservations, veterans, and incarcerated
populations). We have integrated these two data sources to produces a more accurate understanding
of the distribution of vaccine protection across the US at a fine spatial scale. (More information is
available in Methods and Supplementary Figures).

Importantly we measure vaccination coverage for complete vaccine protection and account for the
total population size of a county. In contrast to the varying metrics used by states, this metric
provides a consistent numerator and denominator and so is directly comparable across counties.
The numerator–complete vaccination coverage (i.e., one dose of a one-dose schedule or two doses of
a two-dose schedule)–is the most epidemiologically-relevant metric in the context of the Delta variant,
which severely impairs partial vaccine protection [34]. Likewise, the denominator considers the entire
susceptible population, not just those eligible for vaccination, which is the most informative metric
for infectious disease transmission. These choices in measurement have important implications for
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public health; for example, the state of Vermont has been touted as having carried out the most
successful COVID-19 vaccination campaign and reached a target of "80% coverage" on June 14,
2021 [35]. However, this target was only for partial vaccination coverage in individuals aged 12 years
and above, and as of August 1, 2021, only 43-65% of the total populations have complete vaccine
protection in Vermont counties.

COVID-19 vaccination in the US demonstrates high spatial het-
erogeneity
The resulting distribution of COVID-19 vaccination at the US county scale shows significant geo-
graphic variability (Figure 1). By the week of August 1, 2021 (week 30), US counties vary from 9% to
90% complete vaccination protection against COVID-19. Additionally, there is significant variation
in vaccination coverage across counties within a state, particularly in the western US (Figure S2),
emphasizing the need to characterize vaccination at a fine scale. We also find significant spatial au-
tocorrelation (Moran’s I = 0.57 during week 30) in vaccination distribution (Supplementary Figure
S3).

0.1

0.2

0.3

0.4

0.5

0.6

Complete vaccination 
coverage (Wk. 30)

Figure 1: The COVID-19 county-level vaccination landscape. We show complete vaccination cov-
erage for each US county using our integrated data set for the week ending Aug 1, 2021. There is
significant heterogeneity across the country and within each state. Coverage levels vary from 9% to
90%, with a mean of 39%.

To identify vulnerable regions of lower than expected vaccination, we use the spatial scan statistic to
identify spatial clusters of undervaccination. As of August 1, 2021, a total of 146 spatial clusters with
fewer vaccination cases than expected are detected. We provide the top five clusters, ordered by their
likelihood ratios (Figure 2 and Table S3), all of which have p-values < 1× 10−17. Cluster 1 is found
in eastern Texas/western Louisiana, Cluster 2 is found in eastern Alabama/western Georgia, Cluster
3 is found in northern Arkansas/southern Missouri, Cluster 4 is found in northern Texas/eastern
New Mexico/southwestern Oklahoma, and Cluster 5 is found in northern Mississippi/northern Al-
abama/southwestern Tennessee. Moreover, these clusters are all found in the southern US, have
populations of at least 2.2 million people, and are made up primarily of rural counties (with popu-
lations smaller than 10,000 individuals).

Repeated analyses on the first complete week of each month from May-August yield a similar geo-
graphical distribution in clusters of undervaccination (Figure S4).
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Figure 2: Clusters of COVID-19 undervaccination. The five spatial clusters with the highest likeli-
hood of having lower than expected COVID-19 vaccination rates are concentrated in the southern
US. Clusters span counties primarily in Louisiana, Texas, Alabama, Mississippi, Arkansas, and
Missouri, but do not respect state borders.

US COVID-19 vaccination patterns are characterized by surges
and stalls
County-level vaccination progress shows significant variation between and within states (Figure 3).
All counties exhibit a similar sigmoid-shaped trajectory, but vary in their initial vaccine uptake rates,
the time it takes for the vaccination campaign to decelerate, and the rate at which uptake stabilizes.
Notably, while vaccination uptake has slowed throughout the country, vaccination coverage remains
far from reaching 100% of the eligible population (12+ years of age) in most communities.

The stagnation we observe in COVID-19 vaccination rates represents a lost opportunity to increase
vaccination immunity in populations, particularly in the face of recent surges in cases spurred on by
the Delta variant [4]. The majority of US COVID-19 cases were caused by the Delta variant after
week 25 of 2021 [36]. Thus, we consider the period preceding this time (week 21, ending May 30, to
week 25, ending June 27) to identify counties that stalled in their vaccination efforts. Nearly half of
US counties saw some period of stalling vaccination rates during this period, with longer periods of
low growth concentrating in the South and the Plains area of the country (Figure 4a).

We then examine the impact of increasing Delta variant prevalence in July on vaccination rates
[36]. Because the Delta variant has increased the risk of infection and subsequent hospitalization
(see [37, 38]), we consider the hypothesis that vaccination rates would increase in response to the
increased risk [39]. We consider the county-level average growth rate of vaccination from the week
of July 4, 2021 (week 26) to the week of August 1, 2021 (week 30). We find that average growth rate
during this period is elevated in about a third of counties (Figure 4b). These counties are hetero-
geneously distributed throughout the country, largely clustered along the east and west coasts, and
tend to have larger populations (with the average population of growth counties being more than
twice as large as the average US county population). Importantly, when compared with the counties
in which vaccination rates stalled, the two groups are largely non-overlapping. Indeed, the growth
rate in the stalled counties during weeks 26-30 is only 0.0033, on average, meaning that vaccination
rates in these communities continue to stall despite increased Delta transmission.
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Figure 3: COVID-19 vaccination progress over time. Vaccination progress in each county generally
follows a sigmoid shape through time, with an initial period of accelerated growth followed by a
deceleration. Vaccination growth rate in most counties slows after June 2021, despite low coverage
levels. Counties are colored by the complete vaccination coverage they reach by week 30, with lighter
shades denoting lower coverage and darker shades denoting higher coverage. The average eligible
population size (aged 12 years and above) for each state is denoted by the dashed black line, with
a range of one standard deviation shaded in gray.

Lastly, we fit the observed data on vaccination over time from week 1 to week 25 to a simple model of
growth and use comparison with this model to identify unusual vaccination dynamics post-week 25.
In particular, we fit county-level vaccination coverage time series to models of logistic growth. We
find that the model characterizes the observed data well (Figure S6 & Figure S7), with a first stage of
rapid growth in vaccination, separated by an inflection point (Figure S8) from a second stage during
which growth in vaccination slows. Rather than interpret model coefficients directly, we treat the
logistic growth models as null models and examine deviation of observed county-level vaccination
rates from these null models. In particular, we focus on deviations from modeled expectations
during the second stage of the US vaccination campaign (i.e., week 15 and beyond). Based on these
deviations, we find that counties may be grouped into four classes of dynamics (Figure 5 & Figure
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Figure 4: The missed opportunities and efforts to catch up on variant transmission mitigation. (a)
In the weeks preceding the predominance of the Delta variant (week 21 to week 25), almost 50%
of US counties experienced stalling in vaccination progress. Counties in the Plains exhibit longer
periods of stalling. (b) With widespread circulation of the Delta variant (week 26 to week 30), the
average vaccination growth rate is significant in approximately a third of US counties, but not in
many of the previously stalled communities. (We note that Utah is omitted from panel (b) due to
data issues introduced during weeks 28-30.)

S9): a) counties that display strong adherence to our logistic growth model (e.g., Allegany County,
MD). This is the most common outcome with 73% of all US counties in this class; b) counties in
which the observed vaccination coverage begins to overshoot our model predictions in June or July
of 2021 (e.g., Cochise County, AZ ); c) counties in which growth rate is faster than expected during
the second stage of vaccination, overshooting model expectations (e.g., Durham County, NC); and
d) counties in which vaccination grows rapidly in the first stage of the pandemic, and abruptly slows
at the end, falling below expectations (e.g., Essex County, VT).

Discussion

The US COVID-19 vaccination landscape has shaped the population health impacts of SARS-CoV-2
[9], structured the potential for local elimination alongside natural immunity and behavioral contain-
ment [1], and will drive the transition out of the pandemic to endemic circulation of SARS-CoV-2
[40]. However, the tracking of vaccination progress at a fine geographical scale and through time
has not been a US public health priority.

Official vaccination data from public health agencies at the state and federal level are the gold
standard for monitoring vaccination progress. However, we find that vaccination data reported by
state health departments and the Centers for Disease Control and Prevention have discrepancies,
and each captures different subsets of the total population. While states are responsible for allo-
cating federally-allotted vaccination doses as well as tracking and reporting progress, the federal
government is responsible for tracking vaccine administration within federally-serviced populations
throughout the state. These separately serviced populations create the potential for states’ reported
vaccination counts to be lower than those at the federal level as not all states integrate the data
from these special populations. On the other hand, certain states do not share county-level vacci-
nation data with the CDC due to privacy and other concerns (e.g., for all counties in Texas, and
for small counties in Virginia, California and Massachusetts) [41]. These data issues impede efforts
to accurately measure and track fine-scale vaccination progress and to identify target locations that
may be undervaccinated. COVID-19 vaccination tracking is currently done through a network of
immunization information systems designed to be a centralized data repository for vaccination infor-
mation within each state. However, together they make up a disconnected patchwork of 64 software
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Figure 5: Vaccination dynamics compared to a simple model of growth. We provide examples of
counties with the comparison of the vaccination data against the model fit from the logistic growth
model. Weekly observations are colored by whether they fall inside (green) or outside (purple) the
95% prediction interval. The vertical dashed line marks week 15 (week ending April 18, 2021), the
week after which deviations are identified. (a) The vaccination rates in Allegany County, MD show
close adherence to the model expectation. All observations fall within the 95% prediction interval.
(b) The vaccination rates in Cochise County, AZ rise above model expectations in late June. (c)
The vaccination rates in Durham County, NC exceed model expectations beginning in mid-April.
(d) The vaccination rates in Essex County, VT are lower than model expectations starting in late
June.

systems of varying data capacity and data quality [42]. Combined with significant inconsistencies in
state policies on vaccination administration and data reporting, this has created a disordered data
landscape which undermines planning for the next phase of the pandemic, and erodes an already
crumbling public health data infrastructure in the US [43].

Although vaccination against COVID-19 has helped to dramatically lessen transmission rates in
the US, cases have once again surged due to the more transmissible Delta variant [44, 4, 5]. The
most affected states–in terms of daily case counts and hospitalizations–are found in the south-
ern/southeastern US [4]. These hard hit states contain high-risk subpopulations with low vaccination
coverage, as identified by our spatial clustering results. Importantly, the undervaccination clusters
we identify make up a subset of communities within the states to which they belong, highlighting
the need for fine-scale vaccination data and analysis to capture these vulnerabilities. Using metrics
such as state averages obscures this county-level heterogeneity, yielding an inaccurate measure of
local risk. Surges in these mostly rural areas run the risk of quickly overwhelming the local health
care systems, which are often unequipped for a sudden influx of serious COVID-19 hospitalizations,
and leading to increases in COVID-19-related mortality [44, 45]. Our clustering results also main-
tain a similar geographical pattern from May 2021 into August 2021 suggesting a persistence in low
vaccination throughout the vaccination campaign. Notably, recent data estimate vaccine hesitancy
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to be limited to 10-20% of the population in these states (see e.g., [46]), suggesting that vaccine hes-
itancy explains only part of the remaining undervaccination. This result implies that there remains
a substantial proportion of the unvaccinated population that is willing to be vaccinated but has not
yet been able to do so; systemic issues of inaccessibility and inequality in healthcare are the likely
culprit [47, 48].

Our results highlight that vaccination rates across the US significantly slowed during the period prior
to the Delta variant’s predominance, resulting in a missed opportunity to prepare for the coming
surge. In fact, public risk perception of COVID-19 appears to decrease and maintains its lowest
levels during this period (Figure S5). In the weeks following the predominance of the Delta variant,
vaccination rates have seen small increases, but these increases are heterogeneously distributed–
rarely occurring in stalled counties with lower vaccination rates.

Our model-based fits to the observed vaccination data provide a reference with which to classify
county-level vaccination dynamics. In particular, we hypothesize that vaccination growth dynamics
follow logistic growth dynamics in which the vaccinated population grows in a positive acceleration
stage while vaccine acceptance is high followed by a deceleration stage of increasing vaccine resis-
tance. The structure of the vaccination phases in the US COVID-19 vaccination campaign prioritized
individuals at high clinical risk and individuals in high transmission-risk occupations, followed by the
general population [49]. We find that the inflection point (the transition between the two stages of
growth) in our model fits corresponds to the shift in vaccination from the high-priority populations
to the general population around mid-April (Figure S8), agreeing with our hypothesis.

We find that most counties are highly consistent with the model dynamics and focus on the locations
in which the observed dynamics deviate from model expectations to further understand vaccination
progress. One group of communities surges in vaccination in June after reaching a plateau previously.
For these locations, we speculate that the closing of mass vaccination sites in June resulted in a shift
of resources towards community vaccination and mobile vaccination sites and the increased access
may be responsible for this growth [50]. Another set of counties surges in vaccination in July after
previously stalling. We hypothesize that this increase is driven by an increase in COVID-19 risk
perception following reports of increased Delta transmission around this time (Figure S5). Other
communities, primarily in North Carolina, saw a larger surge in the second stage of vaccination
than model expectations. While North Carolina largely adhered to the guidelines of the Advisory
Committee on Immunization Practices [51] for vaccine distribution, it did not prioritize adults with
high-risk medical conditions or adults over 60 years of age [49]. Thus we hypothesize that this
difference in vaccine prioritization led to these vulnerable groups urgently getting vaccinated at the
first opportunity, producing a large deviation from the expected dynamics around week 14 (which
then persists given the cumulative nature of the data). The last group of communities, primarily in
Vermont, plateaus at a lower vaccination rate than the model expectations. This behavior could be
due to a more rapid acceleration during the first stage of vaccination than in other states, owing to a
strong community effort to reach vaccination goals. Alternatively, we suggest that reaching targets
set by the state (e.g., 80% partial vaccination coverage in the 12+ population–which was reached
on June 14, 2021 [35])–may have dampened the momentum of the ongoing campaign.

Despite the influence of vaccination on SARS-CoV-2 transmission dynamics and associated mor-
bidity, spatiotemporal heterogeneity in COVID-19 vaccination in the US has never before been
systematically characterized. Indeed, systematic issues in data quality have impaired earlier analy-
ses: ignoring federally-serviced populations, missing small counties, or underestimating coverage in
entire states. The vaccination heterogeneity we identify not only increases local disease transmis-
sion, but also elevates risk across entire geographic regions; persistent clusters of undervaccination in
the southeastern United States lead to increased transmission all over the country–including break-
through infections in vaccinated individuals. However, undervaccination cannot be solely attributed
to vaccine hesitancy. Systematic healthcare inequality has deprived many of the protection afforded
by vaccination against COVID-19, and undervaccination continues to persist in the most vulnerable
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parts of the nation, despite recent surges of transmission and mortality. A sustained commitment to
increasing vaccination–including expanded vaccine access and vaccine mandates–are necessary steps
on a path toward local suppression of COVID-19. Significant investment in strengthening the US
public health data infrastructure is urgently needed to handle the next public health crisis.
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Supplementary Information

Supplementary Methods

Data collation and cleaning
We choose complete vaccination data over partial vaccination data because the latter have more
gaps, making analysis challenging. We also note that our county-level vaccination estimates only
capture those records for which county residence information has been provided and the vaccinated
individuals live in the state that they are vaccinated in. For states which provide the proportion of
records without county residence information or out of state, we find that these uncounted vacci-
nations make up less than 10% of all vaccinations in most states. (See Supplementary Table S1 for
details.)

When our integration of the CDC-reported and state-reported data across time results in disconti-
nuities in the data due to a discrepancy between the two data sources, we scale vaccination coverage
for the earlier time period so it is continuous with the later data.

Logistic growth model
The Bayesian logistic growth model is defined as:

yit ∼ N(µit, σ
2
y)

µit =
αi

1 + e−βi(t−γi)

αi ∼ N(µα,S , σ
2
α,S)

βi ∼ N(µβ,S , σ
2
β,S)

γi ∼ N(µγ,S , σ
2
γ,S)

µα,S ∼ N+(0.5, 0.04)

µβ,S ∼ N(10, 9)

µγ,S ∼ Beta(2, 2)

σα,S ∼ Exp(5)

σβ,S ∼ t+(3, 0, 2.5)

σγ,S ∼ Exp(15)

σy ∼ Exp(15)

where N+ and t+ refer respectively to normal and student-t distributions truncated at 0 to maintain
positive real support only.

We fit these Bayesian models in Stan with brms version 2.15.0 [52, 53] and the cmdstanr version
0.4.0.9000 backend [54] using Hamiltonian Monte Carlo with 4 chains. For each chain, we use 5,000
warmup iterations and 5,000 sampling iterations, for a total of 20000 post-warmup samples. For each
model, R̂ statistics are less than or equal to 1.01 and there were no divergences reported, suggesting
unbiased numerical sampling and convergence between chains.
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Supplementary Figures

Figure S1: Incomplete CDC-reported vaccination data: We compare CDC-reported data to state-
reported vaccination data for week 30, and identify the states for which the CDC data is incomplete.
The map shows the difference between the complete vaccination coverage reported by the state and
that reported by the CDC.
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Figure S2: County-level variation in vaccination: For each state, we measure the standard deviation
in vaccination coverage at week 30 across all counties within that state

Figure S3: Spatial autocorrelation in county-level complete vaccination coverage as measured by
Moran’s I for every week of data through 2021.
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(a) May (b) June

(c) July (d) August

Figure S4: Persistence of spatial clusters across time. The most likely clusters of less-than-expected
COVID-19 vaccination are found in the same general area across time from May to August of 2021.
Specifically, we perform spatial clustering on the first week of each of these months.
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Figure S5: Evolving COVID risk perception through 2021: We evaluate information-seeking behavior
based on Google Trends searches for the term "COVID" as a measure of COVID-19 risk perception.
Values for search interest have been normalized so that a value of 100 denotes peak popularity for
a given search term. The light gray, shaded area represents the period from week 21 to week 25.
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(a) Florida model fits
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(b) FL model residuals
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(c) Maryland model fits
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(d) Maryland model residuals

Figure S6: Selected model fits and residuals. We provide here the model fits and raw residuals for (a
& b) Florida and (c & d) Maryland, respectively, within the modeled period (the week of January
10, 2021 to the week of June 27, 2021). In each state’s pair of panels, observed data are compared
with the model estimates (solid black line), with the 95% prediction interval shaded in light gray.
The dashed horizontal line represents the model-estimated asymptote for each county. Here, the
observed vaccination coverage data over time closely follow our model predictions.
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Figure S7: Density plots for marginal posterior distributions of main model parameters. We provide
here a selection of marginal distributions for the four state models referenced in Figure 5. α represents
the asymptote parameter, β represents the rate parameter, and γ represents the inflection point
parameter. Univariate marginal distributions are along the diagonal. Bivariate distributions are
represented by the off-diagonal scatterplots.
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Figure S8: Transitions in vaccination We show the relationship between [x-axis] the model-fitted
timing (week of 2021) of the inflection point (i.e., the transition between acceleration and deceleration
in vaccination progress) for each state, with the standard deviation across counties and [y-axis] the
week at which the state opened vaccination eligibility to the general public. The two outliers are
NH and VT and NH has a significant discontinuity in its data making the model fit less accurate.
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Figure S9: US counties may be grouped into four classes based on model deviations. We group
counties by how they deviate from our logistic growth model–representing our expectations. Counties
in green show close adherence to our models and represent the majority of cases. Counties in lavender
overshoot our model predictions beginning in June 2021, while counties in orange do so beginning
in July 2021. Counties in yellow overshoot our model predictions as early as April 2021. Counties
in blue undershoot our model predictions. Note: Utah is omitted from this map due to structural
issues in the data from weeks 28 to 30 which would affect their grouping.
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State State data source CDC data compared to state Compiled data sources Unaccounted vaccina-
tion counts

Alabama State health dept CDC data consistent with state or
higher

CDC 1.90%

Alaska State health dept CDC data consistent with state or
higher

CDC 3.75%

Arizona State health dept CDC data consistent with state or
higher

CDC 5.41%

Arkansas No county-level data avail-
able from state

No comparison possible CDC 1.98%

California State health dept, Validated
data aggregator

CDC Data missing for some counties State since April 1 for all counties; CDC be-
fore for all counties

1.02%

Colorado State health dept CDC Data incomplete for all coun-
ties

State since April 8 for all counties; CDC be-
fore for all counties

-7.44%

Connecticut State health dept CDC data consistent with state or
higher

CDC 1.85%

Delaware State health dept CDC data consistent with state or
higher

CDC 3.53%

District of
Columbia

State health dept CDC data consistent with state or
higher

CDC 2.75%

Florida State health dept CDC data consistent with state or
higher

CDC 1.80%

Georgia State health dept CDC data incomplete for most coun-
ties, CDC counts >state counts for
some counties

State for most counties; CDC for 13039,
13053, 13179

1.57%

Hawaii No county-level data avail-
able from state

No comparison possible CDC 0.47%

Idaho State health dept CDC data consistent with state or
higher

CDC 1.90%

Illinois State health dept CDC data consistent with state or
higher

CDC 1.32%

Indiana State health dept CDC data consistent with state or
higher

CDC 1.97%

Iowa State health dept CDC data consistent with state or
higher

CDC 1.23%

Kansas State health dept CDC data consistent with state or
higher

CDC 3.83%

Kentucky No county-level data avail-
able from state

No comparison possible CDC 3.82%

Louisiana State health dept CDC data consistent with state or
higher

CDC 2.83%

Maine State health dept CDC data consistent with state or
higher

CDC 5.09%

Maryland State health dept CDC data consistent with state or
higher

CDC 1.56%

Massachusetts State health dept Data missing for some counties CDC for most counties; State for 25019,
25007, 25023 since June 28

2.94%

Michigan State health dept CDC data consistent with state or
higher

CDC 3.47%

Minnesota State health dept CDC data consistent with state or
higher

CDC 3.50%

Mississippi State health dept CDC data consistent with state or
higher

CDC 5.04%

Missouri State health dept CDC data consistent with state or
higher

CDC 1.67%

Montana State health dept CDC data consistent with state or
higher

CDC 2.46%

Nebraska No county-level data avail-
able from state

No comparison possible CDC -0.02%

Nevada State health dept CDC data consistent with state or
higher

CDC 2.38%

New Hamp-
shire

No county-level data avail-
able from state

No comparison possible CDC 6.30%

New Jersey State health dept CDC data consistent with state or
higher

CDC 3.92%

New Mexico State health dept, Validated
data aggregator

Data incomplete for many counties State since April 1 for most counties; CDC
before for most counties; CDC for entire pe-
riod for 35031, 35045

4.98%

New York State health dept CDC data consistent with state or
higher

CDC 6.72%

North Car-
olina

State health dept Data incomplete for many counties;
CDC counts >state counts for some
counties

State for most counties; CDC for 37133,
37173, 37051, 37117

3.33%

North Dakota State health dept CDC data consistent with state or
higher

CDC 2.31%

Ohio State health dept Data incomplete for some counties State for all counties 2.17%
Oklahoma State health dept CDC data consistent with state or

higher
CDC 3.65%

Oregon State health dept CDC data consistent with state or
higher

CDC 1.65%

Pennsylvania State health dept CDC data consistent with state or
higher

CDC 4.08%

Rhode Island State health dept CDC data consistent with state or
higher

CDC 4.12%

South Car-
olina

No county-level data avail-
able from state

No comparison possible CDC 3.35%

South Dakota State health dept CDC data consistent with state or
higher

CDC 8.45%

Tennessee State health dept, Validated
data aggregator

Data incomplete for some counties State since April 5 for all counties; CDC be-
fore for all counties

2.06%

Texas State health dept Data missing for all counties State for all counties 1.82%
Utah State health dept No comparison possible CDC 2.11%
Vermont State health dept, Validated

data aggregator
Data incomplete for many counties State since May 14 for all counties; CDC

before for all counties
10.54%

Virginia State health dept Data incomplete for many counties,
CDC counts >state counts for some
counties

State for most counties; CDC for
51001,51105,51520,51740, 51710

7.97%

Washington State health dept CDC data consistent with state or
higher

CDC 2.93%

West Virginia State health dept Data incomplete for all counties State since June 28 for all counties; CDC
before for all counties

2.08%

Wisconsin State health dept CDC data consistent with state or
higher

CDC -2.49%

Wyoming State health dept CDC data consistent with state or
higher

CDC 1.97%

Table S1: Details on the data source and consistency for each state. The unaccounted vaccination
counts lists the vaccination counts (as a proportion of the state population size) for which we do not
have county residence information.
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County State FIPS Special population
Lassen CA 06035 FCI Herlong -Federal Prison
Siskiyou CA 06093 Quartz Valley Reservation
Chattahoochee GA 13053 Fort Benning - Army Base
Liberty GA 13179 Fort Stewart - Army Base
Camden GA 13039 Kingsbay Naval Submarine Base
Jo Daviess IL 17085 Part of tri-state area with Wisconsin and Iowa
Carroll IL 17015 USP Thomson - Federal Prison
Stephenson IL 17177 Micropolitan Statistical Area
Hancock IL 17067 Part of a tri-state area with Iowa and Missouri
Martin IN 18101 Naval Service Warfare Center
Fillmore MN 27045 Unknown
Mahnomen MN 27087 Population is 45.57% Native American & White Earth Reservation
Wabasha MN 27157 Contains the Wabasha Reservation
Mille Lacs MN 27095 Mille Lacs Reservation
Platte MO 29165 Part of a bi-state metropolitan area with
Clay MO 29047 Part of a bi-state metropolitan area with Kansas
Pulaski MO 29169 Fort Leonard Wood - Military Base
Buchanan MO 29021 Part of a bi-state metropolitan area with Kansas
Johnson MO 29101 Whiteman Air Force Base
St Louis City MO 29510 Part of a bi-state metropolitan area with Illinois
Martin NC 37117 Unknown
Cumberland NC 37051 Fort Bragg Army Base
Onslow NC 37133 Camp Lejeune Marine Base
Swain NC 37173 Population 29.93% Native American
McKinley NM 35031 Population 75.5% Native American
San Juan NM 35045 Population 84.97% Native American
Jefferson NY 36045 Contains significant veteran population
Tioga NY 36107 Contains significant veteran population
Steuben NY 36101 Contains significant veteran population
Orange NY 36071 United States Military Academy - West Point
Franklin NY 36033 St. Regis Mohawk Reservation
Lawrence OH 39087 Part of a tri-state area with Kentucky and West Virginia
Greene OH 39057 Wright Patterson Air Force Base
Montgomery TN 47125 Contains significant veteran population
Whatcom WA 53073 Contains Lummi Nation
Pierce WA 53053 Fort Lewis Army Base
Okanogan WA 53047 Colville Indian Reservation
Kitsap WA 53035 Naval Base Kitsap
Spokane WA 53063 Fairchild Air Force Base
Stevens WA 53065 Contains significant veteran population
Island WA 53029 Naval Air Station Whidbey Island
Bayfield WI 55007 Red Cliff Reservation
Accomack VA 51001 Surface Combat systems Wallpos Island
Lee VA 51105 USP Lee - Federal prison
Bristol VA 51520 Part of a bi-state metropolitan area with Tennessee
Portsmouth VA 51740 Naval Medical Center Portsmouth

Table S2: Counties for which special populations (such as Native American reservation populations,
military personnel, veterans, and incarcerated populations) are not counted by the state but are
included in vaccination counts reported by the CDC. We also include counties that are split between
multiple states on this list; Additionally there are two counties for which we have not yet identified
a reason for their underestimation in the state data; however we still include the CDC data for these
locations.
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Cluster Number of counties Population Radius (km) LLR p-value

1 58 2,852,991 192.71 124944.04 <1× 10−17

2 43 2,246,570 212.21 110727.10 <1× 10−17

3 80 2,846,312 204.44 97984.33 <1× 10−17

4 121 2,853,720 337.69 90749.10 <1× 10−17

5 57 2,859,518 167.53 67629.86 <1× 10−17

Table S3: Additional information on the five most likely undervaccinated clusters. We provide data
on the size and general reach of the clusters. We also give the log-likelihood ratio (LLR) and p-values.
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