
Supplementary Methods: ClinCNV 

Data Normalization 

ClinCNV utilizes coverage depth values measured within those regions targeted by exome capture 

prior to sequencing, corrected for library size, GC content and length of targeted regions using 

rolling median as an estimator for normalization values. A squared root transformation is applied for 

variance stabilization. Furthermore, ClinCNV removes regions with coverage patterns that show a 

very low raw read coverage across the cohort or regions with extreme GC content. Taking into 

account various technical factors that appear to influence the genome-wide coverage distribution, 

ClinCNV subdivides the cohort into groups of samples with similar coverage profile. UMAP 

dimension reduction and further DBSCAN is used with the distance defined as Pearson correlation 

between coverage profiles smoothed by averaging of 10 adjacent regions. The optimal number of 

clusters has been selected in order to maximize similarity within groups, while having at least 50 

samples within each cluster required for accurate estimation of statistical model parameters. Finally, 

ClinCNV normalizes the corrected coverage of each tile within each group with its mode found by 

kernel density estimation for multi-allelic CNVs (defined as more than 5% of samples are not diploid 

at the site of multi-allelic CNV) calling.  

Statistical model inference 

For each window we constructed one statistical model for each of the expected copy-number states. 

Since the mode of coverage used on the final normalization step estimates the expected value of the 

major allele’s coverage, the coverage of samples having the major allele genotype will be centred on 

1. For each particular CN change we know the expected location shift (i.e. sqrt(0.5) for heterozygous 

deletions within a normally disomic region). We assume that the variance of a region’s coverage is 

equal for all copy numbers except homozygous deletions, since we used variance-stabilized counts. 

Thus we estimate the variance for each window using robust estimators and model different copy 

numbers as normally distributed random variables with different, but a priori known expected 



values. For windows that have a non-diploid major allele we make the additional assumption that 

minor allele frequency (MAF) is greater than 5%, since location shifts of copy number changes in 

case of high copy number major alleles become small and indistinguishable from the natural 

variability. Hence, we can detect such deviations only if they are supported by sufficient number of 

samples. We used constrained mixture modelling analysis for variants with MAF>5% and additionally 

assumed that the majority of samples show a copy-number of 0 to 16 at such sites. 

CNV Calling 

Subsequent to statistical model estimation we calculate matrices of likelihoods for all tiles in all 

samples and all CN models. Thus, we will have a matrix of likelihoods of size (number of distinct copy 

number states * number of targeted regions). First, we select the most probable state (e.g. the state 

that models the most common copy number state with the assumption that other copy numbers are 

present with MAF<2.5%) as the baseline. Then, we search the segment (group of adjacent tiles) with 

the largest evidence of an alternative state within the borders of the investigated interval.  Initially 

we start with a full chromosome arm as such interval.  To this end we subtract the interval tile’s log-

likelihoods under the baseline model log(L(Mb)) from the log-likelihoods under the alternative state’s 

models log(L(Ma)). The log-likelihood difference becomes negative if the observed data is more likely 

under the assumptions of the baseline model and positive if the data supports the alternative 

model. Thus we solve the maximum sub-array problem (1) for each alternative state Ma0, Ma1, etc., 

separately and find the segment with the maximum positive log-likelihood difference for each state.  

After choosing the state with the maximum logarithm of likelihood ratio 

2log(LR(Ma,Mb))=2(log(L(Ma)) - log(L(Mb))) we obtain coordinates of one potential CNV with the 

maximum alternative model evidence and its score. Next, we segment the interval into 3 sections, 

an upstream region, a downstream region, and the segment itself. We change the baseline state for 

the discovered segment (Mb:=Ma) and continue searching for CNVs in the three regions as long as 

the log-likelihood ratio between alternative and base states remains large enough. We discard loci 



not meeting the empirically chosen thresholds and report the identified segments as a CNV if their 

state is different from the baseline.  For more details of these methods, please refer to 

http://hdl.handle.net/10803/668208.   

 

Supplementary Results: Benchmarking 

Given the challenges associated with robust calling of CNVs genome-wide, we first set out to assess 

the reliability of our CNV calls. As a positive control, we compared calls at the CCL3L1 locus, a 

challenging multi-allelic CNV that was one of the 189 loci that passed our stringent QC, with directly 

measured copy number from a previous study of approximately 5000 UK Biobank participants of 

European ancestry (2).  These 5000 participants exhibited copy numbers ranging from 0 to 5, as is 

typical for individuals of European ancestry (Additional file 2: Table S1).  A similar distribution of 

copy numbers was inferred by ClinCNV in 49,953 participants from the first release of exome 

sequencing (Additional file 2: Table S1, Figure S1).  Some of these individuals exhibited copy 

numbers greater than 5, but all but 15 were non-European (including 191 individuals of African 

ancestry, 33 of Chinese ancestry, 23 of mixed ancestry, and 8 of South Asian ancestry).  In 412 

individuals present in both the previous experimental study and the current ClinCNV stage 1 cohort, 

we found 100% concordance between copy numbers for the CCL3L1 locus (Additional file 2: Table 

S1).   

To assess false negative rates, we ascertained common CNVs that overlapped exome capture regions 

in phase 3 of the 1000 genomes project.  Of the 96 common CNVs identified, 60 were overlapped by 

a ClinCNV call of the same type and frequency (+/- 5%) (Additional file 2: Table S2). 
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Figure S1 

 

Multi-allelic CNV encompassing the CCL3L1 gene (chr17: 36195285- 36212569).  The top panel 

shows a scatterplot of normalised coverage (y-axis) for each individual (indexed along the x-axis), 

and colour-coded by ClinCNV-assigned copy number.  The bottom panel is a density plot of coverage 

values equal to sqrt( observed copy number / most frequent copy number ). So if 2 is the most 

frequent copy number (as is the case here), we see clustering around 0, sqrt(½), 1 and so on. 

  



Figure S2 

A: chr2:178432096-178444500 (stage 1 and additional stage 2 samples) 

 

 

 

 

 

 

 

 

 

 

B: chr6:31026054-31027714 

 

 

 

 

 

 

 

 

 

 

C: chr6:32641971-32666607 

 

 

 

 

 

 

 



D: chr6:32827709-32828045 

 

 

 

 

 

 

 

 

 

 

 

E: chr12:132507235-132511952 

  



Figure S3 

 



IGV images of the MUC22 and TAP2 CNV regions in an individual with no deletion (wild-type) and an 

individual homozygous for the deletion (del/del).  Grey mounds in the top panels indicate read depth 

and grey lines in the bottom panels indicate reads from exome sequencing. 

  



Figure S4 

 

IGV images of the HLA-DQA1/DQB1 CNV region in an individual with no deletion (wild-type) and an 

individual homozygous for the deletion (del/del).  WES = whole-exome sequencing.  WGS = pilot 

whole-genome sequencing.  Grey mounds in the top panels indicate read depth and grey lines in the 

bottom panels indicate sequencing reads. Colours indicate mismatches from the reference 

sequence. 

  



Figure S5 

 



IGV images of the PRKRA and FBRSL1 CNV regions in an individual with no duplication (wild-type) 

and an individual carrying the duplication.  Grey mounds in the top panels indicate read depth and 

grey boxes joined by lines indicate read pairs from exome sequencing. 


