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Genome-wide association study and multi-trait analysis of opioid use disorder identifies novel 
associations in 639,709 individuals of European and African ancestry. 
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Abstract 

Background: Despite the large toll of opioid use disorder (OUD), genome-wide association 

studies (GWAS) of OUD to date have yielded few susceptibility loci.  

Methods: We performed a large-scale GWAS of OUD in individuals of European (EUR) and 

African (AFR) ancestry, optimizing genetic informativeness by performing MTAG (Multi-trait 

analysis of GWAS) with genetically correlated substance use disorders (SUDs). Meta-analysis 

included seven cohorts: the Million Veteran Program (MVP), Psychiatric Genomics Consortium 

(PGC), iPSYCH, FinnGen, Partners Biobank, BioVU, and Yale-Penn 3, resulting in a total 

N=639,709 (Ncases=20,858) across ancestries. OUD cases were defined as having lifetime OUD 

diagnosis, and controls as anyone not known to meet OUD criteria. We estimated SNP-

heritability (h2
SNP) and genetic correlations (rg). Based on genetic correlation, we performed 

MTAG on OUD, alcohol use disorder (AUD), and cannabis use disorder (CanUD).  

Results: The EUR meta-analysis identified three genome-wide significant (GWS; p≤5x10-8) lead 

SNPs—one at FURIN (rs11372849; p=9.54x10-10) and two OPRM1 variants (rs1799971, 

p=4.92x10-09 ; rs79704991, p=1.37x10-08; r2=0.02). Rs1799971 (p=4.91x10-08) and another 

OPRM1 variant (rs9478500; p=1.95x10-8; r2=0.03) were identified in the cross-ancestry meta-

analysis. Estimated h2
SNP was 12.75%, with strong rg with CanUD (rg=0.82; p=1.14x10-47) and 

AUD (rg=0.77; p=6.36x10-78). The OUD-MTAG resulted in 18 GWS loci, some of which map to 

genes or gene regions that have previously been associated with psychiatric or addiction 

phenotypes. 

Conclusions: We identified multiple OUD variant associations at OPRM1, single variant 

associations with FURIN, and 18 GWS associations in the OUD-MTAG. OUD is likely 

influenced by both OUD-specific loci and loci shared across SUDs. 
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Introduction 

Opioid use disorder (OUD) has a serious negative impact on public health and is a 

leading cause of preventable death(1). Although opioid misuse and progression to OUD(2) are 

influenced by heritable factors, discovery of OUD risk loci has been limited(3-7). Difficulties in 

advancing OUD genetic discovery are largely due to lack of adequately powered cohorts of 

genetically informative samples(8,9).  

 Genome-wide association studies (GWAS) of OUD have been underpowered(8,9). 

Nevertheless, recent progress in GWAS of OUD include the identification and confirmation of a 

genome-wide significant (GWS) functional variant (rs1799971) in OPRM1(7). Earlier OUD 

GWAS identified associations with variation in several genes including KCNG2, KCNC1, 

APBB2, CNIH3, RGMA, and OPRM1(3-6), but the validity of those associations remains largely 

untested due to the lack of statistically powerful independent OUD cohorts. In addition to 

specific genetic loci, OUD GWAS have also demonstrated genetic correlations (rg) with other 

substance use disorders (SUDs) (e.g. alcohol use disorder [AUD]; rg=0.73) and psychiatric 

disorders (e.g. attention-deficit hyperactivity disorder; [rg=0.36])(7). 

Large-scale GWAS meta-analytic techniques have proven valuable in advancing 

discovery of novel loci for other SUDs (e.g., AUD, problematic alcohol use (PAU), cannabis use 

disorder (CanUD)(10-12). This study applies similar meta-analytic methods for OUD by 

combining GWAS effects across multiple studies and two ancestral groups. 

 Multi-trait methods (e.g., MTAG; Multi-trait analysis of GWAS)(13) have the potential 

to increase power for OUD gene discovery. MTAG capitalizes on the rg between genetically-

related traits (e.g., rg >0.70) to increase the equivalent sample size. MTAG is an attractive option 
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for boosting power for sets of similar traits (e.g., SUDs)(11,14), and holds particular promise for 

disorders such as OUD for which only a limited number of cases are available for analysis. 

MTAG can generate estimates of trait-specific effects that leverage information from multiple 

GWAS summary statistics while accounting for both known and unknown sample overlap across 

the discovery samples(13). Thus, MTAG can maximize the genetic information available for 

OUD by leveraging the statistical power of GWAS of non-opioid SUDs, to advance our 

understanding of the genetic etiology of OUD and shared genetic liability across SUDs.  

 We conducted a large-scale GWAS meta-analysis of OUD in samples of African (AFR) 

and European (EUR) ancestry individuals. We maximized the informativeness of the available 

samples by performing a multi-trait analysis that incorporates SUDs that are highly genetically 

correlated with OUD.  

 

Methods 

Data and Participants 

 The GWAS meta-analysis includes summary statistics across seven cohorts examining 

OUD case vs. OUD control status in AFR and EUR ancestry individuals. We included both 

published and unpublished OUD GWAS. Previously published GWAS include data from Yale-

Penn(3,6,7), PGC-SUD(6), and the Partners Biobank(15). For MVP Releases 1 and 2 (the data 

releases used in the present analysis), a previous GWAS of OUD cases vs. opioid-exposed 

controls was reported(7). MVP data included in the current meta-analysis use a different control 

definition (unscreened controls) to align better with the control definitions available in most 

other samples included in the meta-analysis. GWAS summary data for FinnGen(16) was 
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accessed via a publicly available repository (https://r5.finngen.fi/). GWAS of OUD from 

iPSYCH(17), BioVU(18), and newly-available data from Yale-Penn subjects (Yale-Penn 3), 

previously unpublished, were performed by analysts at their respective study sites 

(Supplemental Note). We thus had a total AFR sample of 84,877 (Ncase=5,435 Neffective=20,032), 

a total EUR sample size of 554,832 (Ncase=15,423; Neffective=56,991), and an overall sample of 

639,709 (Ncase=20,858; Neffective=77,023). Other than Yale-Penn, this study involved de-identified 

data. The work was approved as appropriate by the Central VA institutional review board (IRB) 

and site-specific IRBs, including Yale University School of Medicine and VA CT, and was 

conducted in accordance with all relevant ethical regulations. Cohort-specific summaries of 

OUD cases and controls across AFR and EUR ancestry individuals are presented in Table 1. 

Additional phenotyping considerations are described in Supplemental Note.  

 

Ancestry-specific and cross-ancestry GWAS meta-analysis   

 GWAS samples were combined using an effective sample-size weighted meta-analysis in 

METAL (19). Ancestry-specific and cross-ancestry meta-analyses were performed. Measures of 

cross-sample heterogeneity (Cochran’s Q, I2) and genomic inflation (λGC) were used to evaluate 

whether results were unduly influenced by heterogeneity between cohorts or by population 

stratification. GWAS summary statistics included in the meta-analysis were limited to variants 

present in at least 80% of the analysis-specific effective sample size (e.g., 80% of EUR 

Neffective=45,593). The 80% effective sample size inclusion threshold ensured that variant effects 

present only in smaller cohorts did not disproportionately influence the overall results. This 

effectively meant that a variant needed to be present in MVP, PGC-SUD, and at least one 

additional cohort for it to be included in the meta-analysis. (Figure 1).  
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Data from the 1000 Genome Project (1000G) phase 3(20) was used as a reference panel 

to determine EUR and AFR linkage-disequilibrium (LD) structure. Variants were mapped to the 

nearest gene based upon physical position (<10 kb from assigned gene). Conditional analyses 

were conducted using GCTA-COJO(21) to examine the conditional independence of genome-

wide significant (GWS; p=5.00x10-08) of OPRM1 variants in low LD (r2<0.1). 

 

SNP-heritability and Linkage-Disequilibrium (LD) Score Regression 

GWAS summary statistics from the EUR OUD GWAS were used to estimate SNP-

heritability (h2
SNP) and to characterize OUD genetic correlations (rg) using LD score regression 

(LDSC)(22). LDSC analyses were restricted to HapMap3 variants(23). Effective sample-size 

was used in all LDSC-based analytic steps. Genetic correlations were estimated between OUD 

and other SUDs, traits related to substance use, psychiatric traits, chronic pain outcomes, 

sociodemographic factors, and additional traits of interest (Supplemental Tables). LDSC 

analyses were not performed in AFR and cross-ancestry meta-analyses because of the inability to 

use an LD reference panel for recently-admixed populations (e.g, African-Americans) and for 

analyses integrating datasets from diverse ancestry groups(22).  

 

Multi-trait analysis of GWAS summary statistics (MTAG) 

 Based on LDSC estimates of genetic correlations with OUD, a joint-analysis that 

included the EUR OUD GWAS and GWAS summary statistics for AUD(11) and CanUD(12) 

was conducted using MTAG(13). The AUD GWAS summary statistics used in the present 

analysis were made available as part of a broader GWAS of problematic alcohol use(11). MTAG 
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was performed using study-specific effective sample sizes for the respective GWAS. Study-

specific effect sizes were transformed to Z-scores so as to be on a uniform scale across the three 

GWAS included in the MTAG analysis. Genetic variants included in the MTAG analysis were 

filtered using default MTAG parameters(13). Briefly, variants were restricted to those common 

to all three of the GWAS, with a minor allele frequency (MAF) >0.01, and present in at least 

75% of the 90th percentile of the study-specific SNP sample sizes. These MTAG parameters 

guard against heterogeneity in the distribution of common vs. rare variant effects, ensuring that 

SNP effects generated from relatively small subsets of the contributing discovery GWAS do not 

bias the effect estimates across traits(13). 

 

Phenome-wide Association Study (PheWAS)  

 To examine phenome-wide relationships for the EUR OUD GWAS and the OUD-MTAG 

analysis, and to compare their relationships with other clinically-relevant outcomes, we 

performed phenome-wide association studies (PheWAS) in BioVU(18). Briefly, BioVU is a 

cohort of >66,000 genotyped patients, with phenotypic data currently available for 1338 clinical 

outcomes from EHRs(18). Polygenic scores (PGS) for the EUR OUD GWAS and the OUD-

MTAG analysis were computed using PRS-CS(24), excluding the subset of BioVU participants 

included in the EUR OUD GWAS. The respective PGS were then included in individual logistic 

regression models regressed on 1,291 clinical outcomes with case counts ≥100, covarying for 

sex, age, and the first 10 genetic PCs. Statistical significance for the PheWAS was defined as 

p=3.87x10-05 (0.05/1,291). 

Results 
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Ancestry-specific and cross-ancestry GWAS meta-analyses  

In the ancestry-specific analyses, there were three GWS risk variants (Figure 2) in the 

EUR GWAS. The top association was with a locus (rs11372849; p=9.54x10-10) located at the 

FURIN gene on chromosome 15, one of two GWS SNPs in that gene (rs17514846; r2=0.91). The 

second strongest association was with the ORPM1 functional variant (rs1799971; p=4.92x10-09). 

An additional OPRM1 variant was also identified (rs79704991; p=1.11x10-08; r2=0.02)(OPRM1 

regional plots—Supplemental Figure S1). GCTA-COJO (21) was used to conduct a conditional 

analysis of the two GWS OPRM1 variants demonstrating low LD (rs1799971 conditioned on  

rs79704991 and vice versa). In these analyses, each variant fell below GWS when conditioning 

on the effect of the other (conditioned rs1799971-pconditioned=1.66x10-06; rs79704991-

pconditioned=3.71x10-06); although, there were no statistically significant differences in effect 

estimates for the respective OPRM1 variants conditioned vs. unconditioned effects. No GWS 

variants were identified in the AFR GWAS (Supplemental Figure S2).  

The cross-ancestry OUD GWAS identified two GWS risk variants mapping to OPRM1 

(Supplemental Figure S3). The top association was with rs9478500 (p=1.95x10-08), an intronic 

variant. Rs1799971 was also GWS in the cross-ancestry meta-analysis (p=4.91x10-08), and is not 

in strong LD with rs9478500 (EUR r2=0.03; AFR r2=0.002; ALL r2=0.04). The top FURIN 

association in EUR (rs11372849) was uninformative in three of four AFR ancestry cohorts and 

did not meet the threshold (80% of Neffective) we set to be included in the analysis. The second top 

FURIN association (rs17514846) fell just below GWS in the cross-ancestry GWAS (p=6.00x10-

08).   

Gene and gene-set analysis  
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 Gene and gene-set analyses are described in Supplemental Note. Both FURIN 

(p=3.09x10-07) and OPRM1 (p=3.59x10-07) were significant in EUR gene-based analyses 

(Supplemental Figure S4). The EUR gene-set analysis resulted in a statistically significant set 

of 5 genes (ANXA2,  APOE, FURIN, MYLIP, and PCSK9) involved in the regulation of the low-

density lipoprotein (LDL) particle receptor catabolic process (p=2.79x10-06)(Supplemental 

Tables). No genes or gene-sets were GWS in the smaller AFR-specific analysis. In the cross-

ancestry gene-based analysis, FURIN (p=6.00x10-08) and OPRM1 (p=1.12x10-07) were 

significant (Supplemental Figure S5).  

 

SNP-heritability and Linkage-Disequilibrium (LD) Score Regression 

For the EUR OUD GWAS, the liability scale SNP-heritability (h2
SNP) estimate was 

12.75% (s.e.=0.011) using effective sample-size adjusted prevalence rates and a population 

prevalence of 0.021(25). Genome-wide inflation was mild with respect to sample size and 

favored OUD polygenicity as indicated by the LDSC inflation factor (λGC=1.18), intercept=1.01 

(s.e.=0.011), and attenuation ratio=0.05 (s.e.=0.049). 

In the EUR OUD GWAS, OUD showed statistically significant genetic correlations with 

substance use and SUDs, psychiatric traits, pain outcomes, physical health, and 

sociodemographic characteristics (Figure 3). The OUD trait in the current study was strongly 

genetically correlated with the largest published GWAS of OUD to date (rg=1.02; p=2.38x10-

214)(7), suggesting that OUD is being captured consistently across the studies, as might be 

expected given the substantial overlap in OUD cases between the two studies, although the 

control definitions differed between analyses. OUD was also strongly genetically correlated with 
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other SUDs, including CanUD (rg=0.82; p =1.14x10-47)(12) and AUD (rg=0.77; p = 6.36x10-

78)(11). Modest genetic correlations were found for measures of substance use (e.g., the 

quantity/frequency alcohol use measure AUDIT-C) (rg=0.14; p=8.15x10-03)(10).  

OUD also demonstrated statistically significant genetic correlations with many mental 

health, pain, physical health, and sociodemographic traits. The strongest positive correlations 

across the respective domains were with Generalized Anxiety Disorder (rg=0.52; p=2.89x10-18) 

and PTSD (rg=0.52; p=3.87x10-19), lower back pain (rg=0.61; p=1.22x10-09), inability to work 

due to being sick or disabled (rg=0.57; p=1.31x10-20), and scores on the Townsend Deprivation 

Index (rg=0.56; p=1.13x10-25). OUD was negatively genetically correlated with measures of 

sexual reproductive behavior (age of first sexual intercourse [rg=-0.64; p=4.43x10-76]), indices of 

educational attainment (age of school completion [rg= -0.54; p=9.41x10-28]) and cognitive 

performance (rg= -0.38; p=1.54x10-20), and levels of past month “Heavy Do It Yourself” physical 

activity (rg= -0.38; p=7.37x10-13), amongst others (Supplemental Tables).  

 

Multi-trait analysis of European GWAS summary statistics (MTAG) 

A multi-trait analysis using MTAG was supported by strong genetic correlation for OUD 

with CanUD (rg=0.82; p =1.14x10-47) and AUD (rg=0.77; p = 6.36x10-78) in EUR individuals. 

The OUD-MTAG analysis resulted in an increase in effective sample size from the original EUR 

OUD GWAS Neffective=56,991 (GWAS mean �2=1.18) to an equivalent sample size of 

N=128,748 (GWAS mean �2=1.40). The increase in equivalent sample size and detection power 

from MTAG resulted in the identification of 18 independent GWS risk loci (Figure 2), some 

previously associated at either the variant level, or that reside in genes associated with, 
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psychiatric and substance use outcomes in previous GWAS. The FURIN risk locus identified in 

the EUR OUD GWAS was GWS in the OUD-MTAG but OPRM1 was not.  

The top OUD-MTAG association was with rs11229119 (p=7.03x10-11) on chromosome 

11 mapping to both TMX2 and CTNND1. The second strongest was with NICN1 (rs77648866; 

p=1.82x10-10) on chromosome 3. Additional GWS associations included FOXP2 (rs1989903; 

p=2.47x10-10), PDE4B (rs7519259; p=2.68x10-10), SLC39A8 (rs13135092; p=3.60x10-10), 

NCAM1 (rs1940701; p=9.63x10-10), RABEPK (rs864882; p=1.24x10-09) , PLCL2 (rs55855024; 

p=7.89x10-09), and FTO (rs7188250; p=3.63x10-08). One of the FURIN variants identified in the 

EUR OUD GWAS was also GWS in the OUD-MTAG (rs17514846; p=2.30x10-08). The top 

OPRM1 association was with rs1799971 (p=1.39x10-06). Of the 18 GWS loci, three were GWS 

in the AUD GWAS and one was GWS in the CanUD GWAS (Table 4).  

The OUD-MTAG summary data was highly genetically correlated with the largest 

previously published GWAS of OUD to date at rg=0.98 (p=1.22x10-77)(7). All estimates of 

genetic correlation for the OUD-MTAG analysis can be found in Supplemental Tables. 

Phenome-wide Association Study (PheWAS)  

The top PheWAS association for OUD was with substance addiction and disorders 

(OR=1.53; p=2.12x10-69). Additional top OUD associations included Tobacco use disorder 

(OR=1.26; p=3.38x10-56), chronic pain (OR=1.25; p=2.32x10-28), alcohol-related disorders 

(OR=1.35; p=1.04x10-23), mood (OR=1.13; p=1.27x10-22) and anxiety (OR=1.14; p=1.00x10-21) 

disorders, viral hepatitis C (OR=1.33; p=3.04x10-20), and suicidal ideation or attempt (OR = 

1.49; p=2.17x10-19), amongst others (Figure 4).  
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Very similar patterns of association were found for the OUD-MTAG PheWAS. The top 

associations were with Tobacco use disorder (OR=1.30; p=1.37x10-68), substance addiction and 

disorders (OR=1.42; p=1.15x10-46), and alcohol-related disorders (OR=1.42; p=7.36x10-31). 

OUD-MTAG also demonstrated significant associations with mood (OR=1.12; p=7.76x10-21) 

and anxiety (OR=1.13; p=1.45x10-20) disorders, chronic pain (OR=1.20; p=2.51x10-20), viral 

hepatitis C (OR=1.32; p=1.73x10-18), and suicidal ideation or attempt (OR=1.47; p=4.52x10-18) 

(Figure 4). (Full description of PheWAS results: Supplementary Tables).  

 

Discussion 

 We present a large genetic study of OUD, with an overall sample size of 639,709 

(EUR=554,832; AFR=84,877) individuals (Ncases=20,858 [EUR=15,423; AFR=5,435]). This 

study is the first to provide evidence of a GWS single-variant GWAS association between 

FURIN and OUD. We also support findings from previous OUD GWAS implicating OPRM1 as 

a GWS risk factor for OUD(7), including the well-established OPRM1 coding variant 

(rs1799971) and additional OPRM1 associations that remained statistically significant in a cross-

ancestry analysis of EUR and AFR populations. We add evidence of gene and gene-set 

associations with OUD, and provide robust estimates of OUD SNP-heritability and genetic 

correlations with many etiologically-relevant traits. Further, we apply a multi-trait approach for 

OUD genetic discovery utilizing the high degree of genetic correlation across SUDs (OUD, 

AUD, CanUD) to increase power, yielding an equivalent sample size of 128,748 and 18 GWS 

OUD-MTAG risk loci. PheWAS of OUD and OUD-MTAG demonstrated similar patterns of 

clinical associations across the phenome, suggesting that these traits are capturing similar 

phenomenon. 
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Compared to other complex psychiatric traits, there are comparatively small samples 

available for genetic analysis of individuals with drug use disorders, particularly those involving 

illegal substances (heroin, cocaine)(8,9). Thus, a strategy that increases statistical power by 

incorporating other sets of samples—for example, from GWAS of closely-related but non-

identical traits such as other SUDs—could help advance our understanding of the genetic 

architecture of OUD. This study brought much more information to bear on the analysis of OUD 

risk variation, resulting in the identification of many more loci. These associations included three 

specific to OUD (OPRM1 and FURIN) based upon findings from the EUR OUD GWAS, and 18 

loci identified in the OUD-MTAG analysis (also including FURIN). The OUD-MTAG loci did 

not include any OPRM1 variants identified in the OUD-specific analysis. This is surprising given 

the assumption that MTAG should specifically isolate OUD-related variance. The absence from 

the MTAG analysis any association mapped to OPRM1, a locus that should be highly-specific to 

OUD, is unexpected. 

FURIN was associated with OUD risk in both SNP-based and gene-based analyses. 

FURIN (Furin, Paired Basic Amino Acid Cleaving Enzyme) encodes the endoprotease furin 

enzyme that serves a primary role in regulating synaptic neuronal activity, including the 

synthesis of brain-derived neurotropic factor and regulation of neurotrophin levels in the 

brain(26). Variation in FURIN has been associated with multiple psychiatric outcomes including 

schizophrenia(27,28) and studies examining genetic and phenotypic overlap between 

schizophrenia and bipolar disorder(29,30). The two top FURIN SNPs associated here with OUD 

are in strong LD (r2=0.91). The second strongest FURIN association in the current study, 

rs17514846, has been significantly associated with multiple cardiovascular and hypertension 

outcomes (31,32), and was also GWS in a GWAS of parents’ attained age (current age of parents 
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or parental age at death)(33). A statistically-significant FURIN gene-level association being 

driven by rs17514846 was reported between FURIN and opioid addiction(34). In a targeted 

follow-up in the FURIN gene region, they also reported significant association between 

rs11372849 (lead SNP in the current study) and opioid addiction. Accumulating evidence linking 

FURIN and opioid outcomes, including the FURIN GWAS associations reported in the present 

study along with evidence of gene-based associations with opioid addiction(34) reflect the high 

degree of co-morbidity between OUD and psychiatric and physical health traits. Further 

investigation into FURIN’s involvement in the genetic underpinnings of physical health, 

psychiatric outcomes, and OUD is needed.   

Our findings support previous OUD GWAS implicating OPRM1 genetic variation as a 

risk factor for opioid addiction and OUD(7,34) and extend GWS findings for OPRM1 as a risk 

factor in a cross-ancestry analysis of EUR and AFR populations. The top association in the EUR 

OUD GWAS was with the OPRM1 coding variant (rs1799971), with an additional OPRM1 

variant (rs79704991) in low-LD with rs1799971 (r2=0.02) also identified. Two OPRM1 variants 

were also found to be GWS in the cross-ancestry OUD GWAS (rs1799971 and rs9478500; 

r2=0.02). Rs9478500 was previously GWS for opioid addiction in EUR(34). There is well-

documented evidence of OPRM1’s complex haplotype structure and the potential for multiple 

independent OPRM1 risk loci influencing risk for OUD and SUDs(35). The conditional analysis 

of the top EUR OUD GWAS OPRM1 variants (rs1799971 and rs79704991; r2=0.02) 

demonstrated that these variants are not independent. Future studies of larger cohorts with 

diverse ancestral backgrounds will be important for disentangling the effects of OUD risk loci 

across the OPRM1 region, including those of the known-functional rs1799971 variant which 

may or may not be the variant motivating previous findings. 
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 Estimates of heritability and genetic correlation also provide insight into the genetic 

etiology of OUD. We found a h2
SNP=12.75% (Z=11.28); a larger and more statistically robust 

estimate to the estimate reported in Zhou et al., 2020 (h2
SNP=0.113; Z=6.27), as would be 

expected from a ~46% increase in EUR OUD cases. However, the comparison between these 

two studies is not direct: the largest previous GWAS(7) used opioid-exposed controls, while we 

used a broader control definition, including not only individuals who were opioid-exposed, but 

subjects with no OUD assessment. This was necessitated by the fact that many of the available 

datasets did not define exposed controls and would have been excluded had we used the exposed 

control definition. Findings from the current study do not establish whether the control definition 

impacted the detection of genetic loci or the genetic architecture of OUD.  

OUD was positively genetically correlated with other SUDs (e.g., CanUD, AUD) and 

psychiatric conditions (e.g., PTSD, depression, schizophrenia), with lower correlations for 

measures of substance use (as opposed to dependence; e.g., AUDIT-C), suggesting that OUD is 

more akin to measures of substance dependence than use per se. OUD was genetically related to 

multiple forms of chronic pain (e.g., lower back pain) and indicators of impairment (inability to 

work, decreased physical activity) and significantly genetically correlated with socioeconomic 

hardship (Townsend Deprivation Index) and lower levels of educational attainment.  These 

patterns of genetic correlation are consistent with high rates of co-occurrence of OUD with 

SUDs and psychiatric disorders in epidemiologic studies(36,37). Beyond epidemiologic 

estimates, SUDs and psychiatric disorders have also been demonstrated to be risk markers for 

severe opioid-related outcomes, such as opioid overdose(38). Educational attainment and 

economic hardship have also been associated with higher rates of opioid overdose and opioid 

overdose-related deaths(39). These patterns of genetic correlation are consistent with the 
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complex clinical presentation of OUD and underscore the need for prevention and intervention in 

underserved populations and individuals with chronic and severe OUD. 

 We examined the utility of using MTAG to increase the information available from the 

limited number of genotyped OUD samples currently available. The OUD multi-trait analysis 

was feasible given the high genetic correlations with CanUD (rg=0.82) and AUD (rg=0.77) and 

increased by an order-of-magnitude the number of GWS risk loci detected. While this provides 

proof-of-concept for this approach given that many of the loci identified via OUD-MTAG have 

previously been implicated with psychiatric and substance use outcomes, OPRM1 was not GWS 

in the OUD-MTAG analysis, so increased detection may have come at the cost of specificity for 

OUD. However, only 4 of the 18 OUD-MTAG GWS associations were GWS in the respective 

AUD and CanUD GWAS used as MTAG instruments, so the MTAG results did not simply 

reflect the findings from AUD and CanUD GWAS.  

A PheWAS across 1,291 clinical outcomes also demonstrated convergent patterns of 

association between OUD and OUD-MTAG with common comorbidities (e.g., SUDs, 

psychiatric traits, chronic pain, viral hepatitis C), supporting that these two analyses capture  

genetic factors that underlie similar clinical presentations and related impairment. Additionally, 

summary data from the OUD MTAG analysis was highly genetically correlated (rg=0.98) with 

OUD(7), so it appears that the OUD-MTAG did capture genetic information relevant to OUD 

risk, though measuring the risk for OUD through a genetic liability for SUDs more broadly. That 

is, genetic risk for OUD may be a combination of a broader addiction liability (OUD-MTAG risk 

loci) combined with the opioid-specific genetic effects (e.g., OPRM1) that were found in the 

OUD single-trait analysis that are also influencing risk.  
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 The distinction between substance-specific genetic effects and general SUD liability has 

long been of interest in genetic studies of SUDs. Quantitative genetic studies have demonstrated 

both substance-specific influences, as well as heritable factors that contribute to SUDs more 

broadly(40,41). Up to 38% of variation in opioid dependence was reportedly accounted for by 

opioid-specific factors that were not shared with other SUDs(42). Molecular genetic studies have 

begun to disentangle common vs. substance-specific genetic influences, reporting evidence to 

suggest the presence of a common unitary addiction factor that can account for risk across SUDs, 

in addition to substance-specific influences(43). Larger-scale studies of OUD will be needed to 

advance OUD genetic discovery and parse genomic influences specific to OUD from those 

underlying risk for SUDs more broadly. However, this will require many more genotyped OUD 

cases, because it cannot be accomplished via statistical methods alone.   

  The present study has limitations. Despite including all genotyped OUD subjects 

available to date, the OUD-only component of the present study is smaller than GWAS for other 

substance use behaviors (alcohol and nicotine use)(14) because OUD cases are underrepresented 

in available datasets. The MTAG analysis yielded a much larger sample, but at the apparent cost 

of a reduction in specificity marked by the non-significance of the OPRM1 locus in the OUD-

MTAG. To maximize sample size while maintaining OUD diagnosis to define case status in 

extant datasets, we used an unscreened control group, which although not optimal, allowed for 

the inclusion of additional cohorts that included OUD cases. Previous studies have provided 

evidence for important consideration being given to OUD control definitions(6,34). Additionally, 

an inadequate number of OUD cases and controls limited our ability to identify GWS variants 

contributing to risk of the disorder in population groups other than EUR. This must be addressed 

by purposeful recruitment of AFR and other non-EUR OUD subjects.  
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   In conclusion, we report novel findings from a large-scale GWAS meta-analysis of 

OUD and explore multi-trait approaches to advance discovery for understudied traits such as 

OUD. These identified genomic risk factors for the development of OUD and underlying 

biology, and highlight the need to assemble large OUD datasets that include individuals from 

diverse ancestral backgrounds. To advance our scientific understanding of OUD risk will require 

study of a range of human traits (e.g., clinically diagnosed OUD and prescription painkiller 

use)(44). This will be necessary to improve further our understanding of the genetic etiology of 

OUD and translation of genetic findings to help address the opioid public health crisis and 

reduce preventable deaths. 
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Table 1. Overview of samples included in GWAS meta-analysis of OUD cases vs. OUD controls  

Cohorts EUR cases EUR controls AFR cases AFR Controls Case definition Control definition 

MVP Releases 1-2 8,529 267,737 4,032 71,511 ICD-9/ICD-10 unscreened 

PGC-SUD* 3,444 25,911 1,231 7,063 DSM-IV unexposed 

Partners Biobank 1,039 20,271 - - ICD-9/ICD-10 no SUD diagnosis 

BioVU 933 3,732 - - ICD-9/ICD-10 unscreened 

FinnGen 651 214,999 - - ICD-9/ICD-10 unscreened 

Yale-Penn 3 448 1538 172 868 DSM-IV no OUD diagnosis 

iPSYCH 379 5221 - - ICD-9/ICD-10 no OUD diagnosis 

Ancestry-specific subtotals 15,423 539,409 5,435 79,442   

Overall total cases 20,858      

Overall total controls 618,851      

Overall total N 639,709 Total Neffective 77,023    

EUR total N 554,832 EUR Neffective 56,991    

AFR total N 84,877 AFR Neffective 20,032    

*The PGC-SUD OUD analysis included AFR and EUR participants from Yale-Penn 1 (N=3,922; Ncases=1,656) and Yale-Penn 2 (N=2,483; 
Ncases=846)—data from Yale-Penn supplied 67.4% of AFR cases and 51.1% of EUR cases for the overall PGC-SUD meta-analysis. Yale-Penn 
3 is included as a separate cohort in the current analysis. 



Table 2. Genome-wide significant (p=5.00x10-08) GWAS associations in EUR OUD analysis.  

Chr Position MarkerName A1 A2 Gene Z-score P-value Direction 

15 91419432 rs11372849 T TC FURIN 6.12 9.54E-10 +++???+? 

6 154360797 rs1799971 A G OPRM1 5.85 4.92E-09 ++++++++ 

15 91416550 rs17514846 A C FURIN -5.77 7.87E-09 ----+--? 

6 154319449 rs79704991 T G OPRM1 5.71 1.11E-08 ++++++++ 

6 154315310 rs12200046 T C OPRM1 5.64 1.70E-08 ++++++++ 

6 154309808 rs10499276 T C OPRM1 5.52 3.38E-08 ++++++++ 

6 154304242 rs34069531 T C OPRM1 5.51 3.67E-08 ++++++++ 

6 154377925 rs3778146 T C OPRM1 -5.50 3.84E-08 ---+---- 

6 154378223 rs9478500 T C OPRM1 -5.49 4.12E-08 ---+---- 

6 154379152 rs3823010 A G OPRM1 5.48 4.25E-08 +++-++++ 

6 154378739 rs3778147 A G OPRM1 5.46 4.83E-08 +++-++++ 

  bold = lead SNP    

 



Table 3. Genome-wide significant (p=5.00x10-08) GWAS associations in cross-ancestry OUD analysis. 

Chr Position MarkerName A1 A2 Gene Z-score P-value Direction EUR Zscore EUR P-value 

6 154378223 rs9478500 T C OPRM1 -5.616 1.95E-08 ---+-----+-+ -5.49 4.12E-08 

6 154379934 rs9285542 T C OPRM1 5.558 2.73E-08 +++-+++++-++ 5.43 5.61E-08 

6 154379152 rs3823010 A G OPRM1 5.527 3.26E-08 +++-++++++-- 5.48 3.26E-08 

6 154381012 rs3778148 T G OPRM1 5.523 3.34E-08 +++-++++++-+ 5.43 5.73E-08 

6 154355100 rs6936615 A G OPRM1 -5.52 3.38E-08 ---+--?---+- - - 

6 154377925 rs3778146 T C OPRM1 -5.512 3.54E-08 ---+------++ -5.50 3.84E-08 

6 154383658 rs3778150 T C OPRM1 -5.492 3.97E-08 ---+-----+-+ -5.38 7.31E-08 

6 154382139 rs3778149 c G OPRM1 -5.482 4.20E-08 ---+------++ -5.44 5.42E-08 

6 154382473 rs7772959 A G OPRM1 5.477 4.34E-08 +++-++++++-- 5.43 5.66E-08 

6 154362254 rs9322445 A G OPRM1 -5.468 4.54E-08 ---+------+- -5.44 5.49E-08 

6 154382367 rs7773995 T C OPRM1 5.459 4.78E-08 +++-++++++-- 5.42 5.84E-08 

6 154360797 rs1799971 A G OPRM1 5.455 4.91E-08 +++++++++-++ 5.85 4.92E-09 

  bold = lead SNP      

 

  



Table 4. Genome-wide significant (p=5.00x10-08) GWAS associations in OUD MTAG analysis.  

Chr Pos MarkerName Allele 1 Allele 2 Gene(s) Z P-value p-value in AUD p-value in CanUD 

11 57535966 rs11229119 T C TMX2-CTNND1 -6.5 7.03E-11 p = 2.60e-07 p=6.68e-05 

3 49469449 rs77648866 A G NICN1 6.33 1.82E-10 p = 5.90e-07 p = 5.89e-03 

7 114137940 rs1989903 A G FOXP2 -6.2 2.47E-10 p = 1.23e-03 p = 3.52e-09 

1 66434743 rs7519259 A G PDE4B 5.73 2.68E-10 p = 9.94e-08 p = 1.36e-05 

4 103198082 rs13135092 A G SLC39A8 6.51 3.60E-10 p = 4.898e-18 p  = 0.88 

11 112869404 rs1940701 T C NCAM1 -6.1 9.63E-10 p = 4.91e-06 p = 1.67e-03 

9 127968109 rs864882 T C RABEPK -5.6 1.24E-09 p = 2.45e-05 p = 0.064 

6 19076417 rs9350100 T C RP11-254A17.1 5.62 1.76E-09 p = 3.37e-05 p = 2.89e-03 

1 91208451 rs2166171 T C BARHL2 -5.88 4.80E-09 p = 1.18e-06 p = 2.76e-05 

3 16850764 rs55855024 A C PLCL2 5.73 7.89E-09 p = 1.50e-06 p = 0.20 

7 75622281 rs6467958 T C TMEM120A -5.5 1.06E-08 p = 2.24e-05 p = 4.02e-03 

11 113477081 rs11214677 T C TMPRSS5 -5.65 1.16E-08 p = 1.23e-04 p = 1.65e-05 

1 28989020 rs6667501 A G GMEB1 5.55 1.74E-08 p = 3.66e-04 p = 2.21e-03 

19 45453763 rs10422888 A G CTB-129P6.11 5.55 1.99E-08 p = 5.83e-05 p = 6.22e-03 

15 91416550 rs17514846 A C FURIN -5.59 2.30E-08 p = 2.85e-03 p = 0.092 

15 47645174 rs73403005 A G SEMA6D -5.69 2.46E-08 p = 6.06e-09 p = 2.38e-03 

13 96932868 rs2389631 A C HS6ST3 -5.61 2.53E-08 p = 8.72e-05 p = 0.055 

16 53834607 rs7188250 T C FTO 5.64 3.63E-08 p = 4.41e-12 p = 0.61 

        bold = GWS in MTAG sumstats 
 



Figure 1. Overview of European-ancestry opioid use disorder (OUD) genome-wide association study and OUD multi-trait analysis. 
 

 
 

 



Figure 2. Manhattan plots of (a) European-ancestry OUD GWAS results and (b) OUD-MTAG 
multi-trait GWAS results. 
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Figure 3. EUR OUD GWAS genetic correlations (rg) with mental health, pain, physical health, sociodemographic, and substance use traits of of interest.  

 



Figure 4. BioVU PheWAS results for EUR OUD GWAS (OUD-META; left panel) and OUD multi-trait analysis (OUD-MTAG; right panel).

 

Note. Phenome-wide association study (PheWAS) results for 1291 clinical outcomes in BioVU. Y-axis represents the -log10(p-value) multiplied by the dire
effect. Diameter of data point corresponds to magnitude of effect size (i.e., larger dot=larger effect size). Data points below and above lower and upper red
line, respectively, indicate significant PheWAS association exceeding Bonferroni correction (p=3.87x10-05). 
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