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Abstract 16 

Recent work has found increasing evidence of mitigated, incompletely penetrant phenotypes in 17 

heterozygous carriers of recessive Mendelian disease variants. We leveraged whole-exome imputation 18 

within the full UK Biobank cohort (N~500K) to extend such analyses to 3,481 rare variants curated from 19 

ClinVar and OMIM. Testing these variants for association with 57 quantitative traits yielded 103 20 

significant associations involving variants previously implicated in 35 different diseases. Notable 21 

examples included a POR missense variant implicated in Antley-Bixler syndrome that associated with a 22 

1.76 (s.e. 0.27) cm increase in height, and an ABCA3 missense variant implicated in interstitial lung 23 

disease that associated with reduced FEV1/FVC ratio. Association analyses with 1,257 disease traits 24 

yielded five additional variant-disease associations. We also observed contrasting levels of 25 

recessiveness between two more-common, classical Mendelian diseases. Carriers of cystic fibrosis 26 

variants exhibited increased risk of several mitigated disease phenotypes, whereas carriers of spinal 27 

muscular atrophy alleles showed no evidence of altered phenotypes. Incomplete penetrance of cystic 28 

fibrosis carrier phenotypes did not appear to be mediated by common allelic variation on the functional 29 
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haplotype. Our results show that many disease-associated recessive variants can produce mitigated 30 

phenotypes in heterozygous carriers and motivate further work exploring penetrance mechanisms. 31 

 32 

Introduction 33 

 34 

Since the advent of next generation sequencing, the number of variants identified as contributing to 35 

Mendelian disease has grown rapidly1. Roughly 20% of all protein-coding genes in humans have been 36 

associated with at least one Mendelian disease2. Increasingly, studies of recessive disease variants 37 

have begun observing that these variants can sometimes cause mitigated phenotypes in heterozygous 38 

carriers, thereby contributing to population variation in complex traits and disease susceptibility3–11. 39 

However, the rarity of most such variants together with their unavailability in most SNP-array-based 40 

genotyping studies has limited attempts to explore this phenomenon at scale. Early work focused on 41 

smaller cohorts recruited for specific diseases, such as a series of studies that demonstrated increased 42 

risk of male infertility12,13, bronchiectasis14–16, and asthma15,17 among other phenotypes in cystic fibrosis 43 

carriers. More recently, larger data sets have enabled extending the breadth of such analyses to more 44 

phenotypes4,5 and to more recessive disease variants3.  45 

 46 

With increasing exome sequencing of population biobank cohorts18–20, a new opportunity to search for 47 

carrier phenotypes in a phenome-wide, exome-wide manner has emerged. Furthermore, biobank data 48 

sets present an opportunity to ameliorate ascertainment biases by assessing phenotypes in population 49 

cohorts, complementing analyses of patients and their families. Family-based studies have been 50 

observed to be susceptible to ascertainment biases that inflate observed effects21, while the opposite 51 

“healthy volunteer” phenomenon has been observed in biobank cohorts22. Genome-wide genotyping 52 

and imputation in biobank data sets also provide opportunities to investigate potential genetic modifiers 53 

of incompletely penetrant carrier phenotypes23.    54 
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 55 

Here we leveraged exome-wide imputation within the UK Biobank cohort24 to power a broad 56 

investigation of quantitative and disease phenotypes amongst carriers of recessive disease variants. 57 

Next, we performed a focused analysis of two relatively more common severe recessive Mendelian 58 

diseases, using the power afforded by high carrier frequencies to characterize carrier phenotypes or 59 

establish a truly recessive pattern of phenotypes. Finally, we considered the molecular mechanisms 60 

underlying incomplete penetrance observed amongst carriers, evaluating a previously proposed model 61 

of modified penetrance23. 62 

 63 

Subjects and methods 64 

 65 

Imputed carriers of recessive Mendelian disease variants in UK Biobank 66 

We previously used the first tranche of whole exome sequencing data released by the UK Biobank 67 

(N=49,960)18 to impute coding variants into SNP-array data available for N=487,409 participants in the 68 

full UK Biobank cohort25, achieving accurate imputation of rare variant genotypes at minor allele 69 

frequencies (MAF) down to ~0.0000524. Here, we analyzed a subset of imputed variants that were 70 

annotated in ClinVar26 as “pathogenic” or “likely pathogenic” for diseases annotated in OMIM2 as 71 

“autosomal recessive”. We further restricted to rare variants (MAF < 0.01) with a minimum MAF of 72 

0.00001 and estimated imputation accuracy of R2 > 0.5, leaving 3,481 variants for analysis. 73 

 74 

Association tests with quantitative traits 75 

We tested imputed genotype dosages for association with 57 quantitative traits using linear mixed 76 

models implemented in BOLT-LMM v2.3.4. These traits included the 54 quantitative traits we previously 77 

analyzed24 and three additional traits (skin pigmentation, tanning ability, and hair color). We performed 78 

quantitative trait association analyses on N=459,327 UK Biobank participants who reported European 79 
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ancestry and had not withdrawn from the study at the time of analysis. We did not attempt to filter 80 

homozygotes or compound heterozygotes from these analyses, reasoning that such individuals would 81 

account for negligible numbers of carriers of the rare variants we analyzed (both based on allele 82 

frequencies and on the “healthy volunteer” ascertainment bias of UK Biobank).  83 

 84 

Association tests with binary traits 85 

We tested the same imputed variants for association with 1,139 binary disease phenotypes curated by 86 

UK Biobank. These consisted of the complete set of “first-occurrence” of disease traits in the UK 87 

Biobank converted to simple case and control status as well as the set of 8 “algorithmically defined 88 

health outcomes” disease categories provided by the UK Biobank. We tested variants for association 89 

with binary traits using the BinomiRare test27 to obtain p-values robust to case-control imbalance while 90 

adjusting for age (stratified into five-year tranches) and sex. For computational efficiency, we re-91 

implemented the BinomiRare test and applied a binomial approximation when the number of observed 92 

cases among carriers exceeded 100. We estimated odds ratios as xw / yz, where x, y, z, w denote 93 

ratios of observed versus expected cases among carriers, cases among noncarriers, controls among 94 

carriers, and controls among noncarriers, respectively. We estimated 95% confidence intervals using a 95 

normal approximation, i.e., converting p-values to z-scores and then taking the 95% CI of the log odds 96 

ratio (OR) to be log(OR) ± 1.96 * logOR / z. We performed association analyses on an unrelated 97 

subset of N=415,291 UK Biobank participants who reported European ancestry and had not withdrawn 98 

from the study28. 99 

 100 

Analyses of cystic fibrosis carriers 101 

We identified cystic fibrosis carriers in UK Biobank using SNP-array genotypes for the Phe508del 102 

variant and (in auxiliary analyses) the missense SNP rs78655421, excluding participants with a cystic 103 

fibrosis report (according to the “first occurrences” data field). We applied the same analysis pipeline as 104 
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above to test for associations with the 1,139 binary traits and applied a significance threshold of FDR < 105 

5% (q-value < 0.05).  106 

 107 

Analyses of spinal muscular atrophy carriers 108 

We identified spinal muscular atrophy carriers in the UK Biobank N=200K exome sequencing release 109 

as individuals with evidence of only one functional copy of SMN1. We estimated the number of 110 

functional copies of each of SMN1 and SMN2 based on depth of coverage of exome sequencing reads 111 

that mapped uniquely to the exon 7-intron 7 region of each gene (chr5:70,951,800-70,952,600 for 112 

SMN1 and chr5:70,076,400-70,077,100 for SMN2 in hg38 coordinates; these regions contain four 113 

paralogous sequence variants that distinguish the highly homologous genes and were captured by 114 

exome sequencing). This approach accounted for deletions of exons 7-8 that commonly inactivate 115 

copies of SMN2 and occasionally SMN129. We computed exome sequencing read-depth using 116 

mosdepth v0.3.130 and normalized each sample’s read-depth measurements against corresponding 117 

measurements from other samples with similar exome-wide sequencing depth profiles using a pipeline 118 

we recently described28. 119 

 120 

We analyzed SMA carriers for evidence of changes in three traits related to neuromuscular function: 121 

walking speed, hand grip strength (maximum of left- and right-hand measurements), and FEV1 / FVC 122 

ratio (a measure of lung function). Using age, age squared, and sex as covariates, we performed linear 123 

regressions to test for an association between SMA carrier status and each trait.  124 

 125 

Testing a model of modified penetrance in carriers of loss-of-function variants 126 

To further investigate potential molecular mechanisms underlying why some recessive variant carriers 127 

display mild phenotypes but others do not, we considered a model of modified penetrance proposed by 128 

Castel et al. (2018)23. This model proposes that the penetrance of a deleterious variant can be affected 129 

by variants on the allele on the homologous chromosome, particularly in the case of common cis-130 
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eQTLs that modulate expression of the functional copy of the gene. To evaluate this model, we 131 

analyzed heterozygous carriers of relatively common disease variants in two genes, FLG and CFTR. 132 

To perform association tests on variants carried on the haplotypes opposite the disease variants, we 133 

imputed variants from the Haplotype Reference Consortium panel (r1.1) using Minimac3 v2.0.1 (run on 134 

genomic windows including 3 Mb flanks of each gene) and analyzed these variants together with the 135 

variants we previously imputed from whole-exome sequencing24. Next, we extracted the genotypes for 136 

these carriers at variants within 1 Mb up- and downstream of each gene. We then recoded the 137 

genotypes for each carrier to be hemizygous for the alleles sitting on the haplotype opposite from the 138 

deleterious variant. We performed association tests on these recoded hemizygous variants using the 139 

Fisher’s exact test implemented in plink (v1.9)31 (--fisher-midp) (which could perform this analysis after 140 

we recoded the chromosome as “X” and coded all individuals as male). We assessed the power of 141 

these analyses to detect associations between common variants on the opposite haplotype using the 142 

wp.logistic function in the WebPower R package. 143 

 144 

Results 145 

 146 

Quantitative phenotypes in carriers of recessive disease variants 147 

Testing 3,481 rare recessive disease variants for association with 57 quantitative traits measured in the 148 

UK Biobank identified 103 significant (p < 2.52 x 10-7; Bonferroni-corrected) variant-trait associations 149 

(Fig. 1 and Table S1). These associations involved variants reported to be pathogenic for 35 distinct 150 

recessive diseases. For many of these diseases (19/35 diseases), carriers exhibited significant 151 

deviations in multiple quantitative traits. Some of these multiple associations partly reflected correlated 152 

measurements of blood, lipid, or pigmentation traits, such as associations between a variant believed to 153 

cause Bernard-Soulier syndrome type C (a recessive bleeding disorder) and mean platelet volume 154 

(0.68±0.03 SD), platelet distribution width (0.54±0.03 SD), and platelet count (-0.65±0.03 SD). 155 
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However, others pointed to distinct manifestations of pleiotropy such as associations of a variant for 156 

McArdle disease (a recessive glycogen storage disorder that interferes with muscle function) with both 157 

increased urate levels (0.15±0.02 SD) and increased waist-hip ratio (0.10±0.02 SD).  158 

 159 

For some of the diseases, carriers exhibited traits that might be expected based on the known 160 

biological mechanisms of the disease, supporting the validity of our analytical approach. For example, 161 

when considering Mendelian disorders where the production of a particular protein or compound is 162 

altered, one might expect a carrier to have reduced levels of that same molecule. We observed this 163 

phenomenon with infantile hypophosphatasia, which is defined by errors in alkaline phosphatase32. In 164 

UK Biobank, carriers of several variants in the ALPL gene reported as pathogenic for recessive 165 

hypophosphatasia exhibited decreased alkaline phosphatase (ranging from -2.63±0.20 SD to -166 

0.71±0.12 SD) and increased phosphate, as might be expected. Another example involved two 167 

variants in ANGPTL3 that have been implicated in hypobetalipoproteinemia 2, a recessive disorder in 168 

which individuals experience low levels of several lipid biomarkers33. Carriers showed decreases in 169 

apolipoprotein A levels (-0.56±0.04 SD; -0.63±0.07 SD), cholesterol levels (-0.52±0.04 SD; -170 

0.52±0.07 SD), and triglyceride levels (-0.67±0.04 SD; -0.52±0.07 SD).  171 

 172 

Other diseases with more complex biological mechanisms yielded less straightforward carrier 173 

phenotypes. Here we highlight three such examples. First, a missense variant in POR implicated in 174 

Antley-Bixler syndrome34, a recessive skeletal disorder in which bones fuse prematurely, associated 175 

with a 0.27±0.04 SD increase in height (i.e., 1.76±0.27 cm). Second, a frameshift variant in 176 

ADAMTSL4 implicated in ectopia lentis 2, a recessive disorder of the fibers in the eyes that can lead to 177 

vision problems, associated with a 0.13±0.02 SD (0.84±0.12 cm) decrease in height. Decreased height 178 

has been observed in patients with ectopia lentis 2, but the mechanism by which ADAMTSL4 causes 179 

this change has not been extensively examined35. Third, a missense variant in ABCA3 implicated in 180 
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pulmonary surfactant metabolism dysfunction 3, a recessive interstitial lung disease caused by 181 

disruptions in the surface tension of lung surfactant36, associated with a 0.12±0.01 SD decrease in 182 

FEV1/FVC ratio, a measure of lung function. These examples add to the growing body of evidence that 183 

rare variants that cause severe disease in homozygotes or compound heterozygotes can often produce 184 

mild, subclinical phenotypes in heterozygous carriers3,4. 185 

 186 

Disease phenotypes in heterozygous carriers of recessive variants 187 

We next tested the same set of 3,481 rare recessive disease variants for association with 1,139 binary 188 

traits in UK Biobank, identifying five associations that reached significance (p < 1.26 x 10-8; Bonferroni-189 

corrected) (Table 1). As with the quantitative traits, some associations were expected from previous 190 

literature. Carriers of a frameshift variant in HBB exhibited increased risk of thalassemia37, and carriers 191 

of a stop gain variant in COL4A4 implicated in Alport syndrome 2, a recessive disorder that involves 192 

kidney dysfunction, exhibited increased risk of hematuria (OR=10.5; 95% CI, 5.2-21.2)38,39, as we and 193 

others have recently reported24,40,41. Carriers of a missense variant in TYR (tyrosinase) implicated in 194 

recessive oculocutaneous albinism type IA exhibited increased risk of disorders of aromatic amino-acid 195 

metabolism (OR=63.3; 95% CI, 16.3-245.1)42. A missense variant in TG (thyroglobulin) implicated in 196 

recessive thyroid dyshormonogenesis 3 increased risk of hypothyroidism in carriers (OR=2.20; 95% CI, 197 

1.68-2.88)43,44. 198 

 199 

A more intriguing association involved a splice donor variant in IFT140 previously implicated in 200 

recessive short-rib thoracic dysplasia 9 and retinitis pigmentosa 80, often with accompanying renal 201 

disease45,46. Carriers of this variant exhibited increased risk of cystic kidney disease (OR=18.4; 95% CI, 202 

8.5-40.1), corroborating recent findings from analyses of directly-sequenced individuals and imputation 203 

using the TOPMed reference panel47,48. Loss-of-function of both copies of IFT140 appears to be 204 

inviable based on murine studies49, such that this canonical splice variant has been observed in cases 205 

of recessive disease only in compound heterozygotes with partial function of the other copy of the 206 
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gene50. While retinitis pigmentosa 80 primarily manifests in visual symptoms and recessive short-rib 207 

thoracic dysplasia 9 in skeletal symptoms, IFT140 encodes a protein related to cilia function that also is 208 

expressed in the kidney, and renal symptoms have been noted in both diseases. The observed 209 

association between carriers of the splice variant and cystic kidney disease suggests partial 210 

haploinsufficiency of IFT140 in its role in the kidney. 211 

 212 

Contrasting recessiveness of cystic fibrosis and spinal muscular atrophy 213 

In light of the diversity of autosomal recessive Mendelian diseases for which we observed mitigated 214 

phenotypes in carriers, we decided to more closely investigate two relatively common recessive 215 

Mendelian diseases to ask whether mitigated phenotypes were a ubiquitous feature of recessive 216 

disease carriers. To do so, we identified diseases with sufficiently high carrier frequencies in UK 217 

Biobank that we would be well-powered to identify mitigated carrier phenotypes or lack thereof. The two 218 

diseases we identified based on these criteria were cystic fibrosis (CF) and spinal muscular atrophy 219 

(SMA).  220 

 221 

Previous studies have identified mitigated phenotypes in carriers of cystic fibrosis variants related to 222 

phenotypic manifestations of the disease4,5. To further explore the extent of this phenomenon utilizing 223 

the deep phenotyping of UK Biobank, we tested our full set of quantitative and binary traits for 224 

associations with carriers of the most common CF mutation, CFTR Phe508del (MAF=1.6%), which was 225 

directly genotyped by UK Biobank SNP-arrays. Carriers of this variant showed significant associations 226 

(q-value < 0.05) with asthma (OR=1.12; 95% CI,1.06-1.17), aspergillosis (OR=2.60; 95% CI,1.63-4.13), 227 

bronchiectasis (OR=1.40; 95% CI,1.20-1.61), and duodenal ulcer (OR=1.30; 95% CI,1.15-1.45) (Fig. 228 

2a and Table S2). Four additional associations reached significance at a relaxed FDR threshold of 229 

10%: COPD (OR=1.17; 95% CI 1.07-1.27), cholelithiasis (OR=1.13; 95% CI 1.06-1.22), male infertility 230 

(OR=2.10; 95% CI,1.40-3.15), and other prostate disorders (OR=1.39; 95% CI 1.15-1.67) (Table S2). 231 
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We also tested carriers of the next most common cystic fibrosis mutation, CFTR Arg117His 232 

(MAF=0.2% in UK Biobank) but concluded that power was insufficient (Table S2). 233 

 234 

The odds ratios we calculated for carriers of Phe508del, while significant, were much smaller than 235 

those recently reported in an analysis of CF carriers ascertained from a database of insurance claims 236 

from individuals who had been tested for carrier status4 (Fig. S1). Furthermore, several reported 237 

associations did not replicate in our analysis of UK Biobank. For example, whereas the claims analysis 238 

showed a strong association between carrier status and short stature4, we did not observe an 239 

association between Phe508del carrier status and height in UK Biobank despite ample power (effect 240 

size = -0.000 ± 0.006 SD). The odds ratios we computed were more consistent with those reported by 241 

Çolak et al. (2020) using Phe508del genotyping in the Copenhagen General Population Study5. These 242 

results underscore the importance of understanding issues of ascertainment bias when studying 243 

penetrance in population studies51–53. 244 

 245 

In contrast to CF, potential phenotypes of SMA carriers have not (to our knowledge) previously been 246 

explored, in part because of the difficulty of genotyping SMA carrier mutations, most of which arise from 247 

structural variation at the SMN1–SMN2 locus29,54. SMA is usually caused by loss-of-function mutations 248 

in both copies of the SMN1 gene, with disease severity then determined by the number of functional 249 

copies of the paralogous SMN2 gene. The availability of whole-exome sequencing (WES) data for 250 

N~200K UK Biobank participants19 enabled us to estimate the number of functional copies of SMN1 251 

and SMN2 in each sequenced sample from WES depth-of-coverage (Fig. 2b). We ascertained 3,462 252 

SMA carriers (i.e., individuals likely to carry only one functional copy of SMN1) in this way from the set 253 

whole-exome sequenced individuals of European-ancestry (N=187,720). Interestingly, we found no 254 

significant associations between SMA carrier status and potential manifestations of muscle weakness – 255 

walking speed, grip strength, and FEV1/FVC ratio (Fig. 2c) – even when stratifying for SMN2 copy 256 

number (Table S3). These results suggest that SMA is a truly recessive disease in which muscle 257 
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weakness phenotypes only manifest in individuals who carry two SMN1 alleles inactivated by loss-of-258 

function variants. 259 

 260 

Testing a model of modified penetrance  261 

In all the instances in which we observed mitigated phenotypes in carriers of recessive disease 262 

variants, the associated phenotypes exhibited variable penetrance in heterozygotes. We therefore 263 

sought to explore the possible molecular mechanisms underlying this incomplete penetrance. 264 

 265 

Castel et al. (2018) previously proposed a model of modified penetrance in which the haplotype 266 

arrangement of loss-of-function and expression-modifying variants in an individual might affect overall 267 

phenotype (Fig. 3a)23. In this model, the phenotypic impact of a deleterious variant inactivating one 268 

copy of a gene is mediated by the amount of expression of the functional copy (on the opposite 269 

haplotype), such that a common cis-eQTL influencing expression of the functional allele can influence 270 

the severity of the phenotype. Explicitly, if the cis-eQTL increases expression of the functional, wildtype 271 

protein, this could partially ameliorate the loss of the other copy; in contrast, if the cis-eQTL decreases 272 

expression of the functional copy, one might expect the carrier to have a more severe phenotype.  273 

 274 

To explore this hypothesis, we considered two genes, FLG and CFTR, in which variants known to 275 

cause both recessive disease and produce mitigated phenotypes in carriers are sufficiently common to 276 

power analysis. Loss-of-function variants in FLG are known to cause ichthyosis vulgaris in 277 

homozygotes or compound heterozygotes, and carrier status has been associated with asthma and 278 

atopic dermatitis55,56. In UK Biobank, 10.3% of participants carried a loss-of-function variant in FLG that 279 

was associated with asthma or atopic dermatitis in heterozygotes. As discussed in the previous section, 280 

mutations in CFTR are responsible for cystic fibrosis, as well as several mitigated phenotypes in 281 

carriers. Approximately 3.1% of individuals in the UK Biobank are carriers for the Phe508del mutation in 282 

CFTR that we considered for this analysis.  283 
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 284 

To determine whether variants on the opposite (putatively functional) haplotype in carriers might affect 285 

their susceptibility to mitigated phenotypes, we restricted our analysis just to carriers of these 286 

deleterious variants (Fig. 3b). For each nearby variant at each locus, we then ran an association test 287 

between opposite-haplotype genotypes and mitigated phenotypes. No tested variant at either locus 288 

significantly associated with phenotype (Fig. 3c). Given that we were well-powered to detect common 289 

variant associations with an odds ratio >1.2 in both scenarios (Fig. 3d), these results suggest that the 290 

modified penetrance model is unlikely to underlie incomplete penetrance of these carrier phenotypes. 291 

 292 

Discussion 293 

 294 

Our results demonstrate that for a wide range of Mendelian diseases, variants traditionally considered 295 

to be recessive can cause milder phenotypes in heterozygous carriers. We also observed that entirely 296 

recessive effects do exist: heterozygous carriers for spinal muscular atrophy exhibited no evidence of 297 

even a subtle effect on phenotypes related to muscle strength. These observations suggest a spectrum 298 

of recessiveness that is now becoming visible in very large population cohorts. 299 

 300 

Our study did have several limitations. First, even with the large sample size provided by exome 301 

sequencing in UK Biobank, we still lacked power to assess potential effects of many very rare variants 302 

that are known to cause Mendelian recessive diseases. Second, our examination of potential 303 

interactions between variants on opposite haplotypes was even more power-constrained, such that we 304 

could only assess this model for two diseases involving common variants. Third, the effects we 305 

estimated are likely to be influenced by the “healthy volunteer” ascertainment bias observed in analyses 306 

of population biobank cohorts22.  307 

 308 
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As even larger, well-phenotyped cohorts with whole-exome or whole-genome sequencing become 309 

available, our ability to determine the extent of mild carrier phenotypes will increase. More 310 

comprehensive phenome-wide and genome-wide studies will allow for an assessment of how common 311 

the phenomenon of incomplete recessivity is amongst severe Mendelian diseases and the spectrum of 312 

phenotypes that can manifest. Moreover, the higher power afforded by extremely large studies will also 313 

enable more extensive exploration of potential interactions between variants that could help to explain 314 

incomplete penetrance and shed light on the molecular mechanisms that underlie mitigated 315 

phenotypes.  316 

  317 
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Supplemental data include one figure and three tables. 318 
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Figures 509 
 510 
Figure 1. Carriers of recessive Mendelian disease variants display quantitative phenotypes. 511 
Mendelian diseases and their associated genes are listed to the left in each column, and the mean 512 
effect size is plotted on the right for each associated quantitative trait in units of standard deviation 513 
(error bars, 95% CIs). Positive-effect variants are shown in red, negative-effect variants in blue, and 514 
variants not Bonferroni-significant for one of the displayed traits in gray. Marker shapes correspond to 515 
effects on the gene and gene product as reported in ClinVar.   516 
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Figure 2. Cystic fibrosis carriers show mitigated phenotypes, but spinal muscular atrophy 517 
carriers do not. (a) Carriers with the CFTR Phe508del inframe deletion exhibit increased risk of 518 
several mitigated disease phenotypes (data points, odds ratios; error bars, 95% CIs). (b) Genotyping 519 
for SMA carrier status using exome sequencing data from the UK Biobank. SMN1 and SMN2 copy 520 
numbers were estimated based on sequencing read depth, and SMA carriers (orange) were identified 521 
as those individuals estimated to have one functional copy of SMN1 (with a deletion allele on the 522 
homologous chromosome). (c) SMN1 deletion carriers did not display evidence of changes in any of 523 
three traits related to neuromuscular function (data points, mean values in units of standard deviations; 524 
error bars, 95% CIs). 525 
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Figure 3. Common variants on haplotypes opposite recessive alleles in carriers of two 527 
Mendelian diseases do not appear to modify penetrance of carrier phenotypes. (a) The “modified 528 
penetrance” model of Castel et al. (2018) posits that cis-eQTLs can increase or decrease severity of a 529 
deleterious variant by modulating the quantity of functional protein produced by the opposite haplotype. 530 
(b) To test this hypothesis, we examined opposite haplotypes (blue chromosomes) in heterozygous 531 
carriers of recessive disease variants (orange star on yellow chromosome). We tested variants carried 532 
on these opposite haplotypes for association with mitigated phenotypes observed in carriers. (c,d) 533 
Manhattan plots showing association test results for variants on the opposite haplotype of deleterious 534 
variants in FLG and CFTR with asthma (the phenotype most strongly associated with carrier status in 535 
each case). No association reached Bonferroni significance (red line). (e,f) Power analyses for the tests 536 
conducted in c,d indicate that these tests were well-powered to detect common variant effects with 537 
odds ratios >1.2. 538 
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Tables 540 
 541 
Table 1. Carriers of Mendelian recessive disease variants exhibit increased risk of less-severe 542 
disease phenotypes. Odds ratios and p-values are reported for the five associations that reached 543 
Bonferroni significance. 544 
 545 

Recessive 
disease 
association 

ClinVar reported variant 
Disease 
association in 
carriers Trait category OR (95% CI) P-Value Gene Variant 

Variant 
impact MAF 

Alport 
syndrome 2 COL4A4 2:227917083:G:C stop 

gained 6.16E-04 
Recurrent and 
persistent 
haematuria (N02) 

Genitourinary 
system 
disorders 

10.47 (5.17-
21.2) 6.75E-11 

Thyroid 
dyshormono-
genesis 3 

TG 8:133894854:C:T stop 
gained 6.38E-04 

Other 
hypothyroidism 
(E03) 

Endocrine, 
nutritional and 
metabolic 
diseases 

2.20 (1.68-
2.88) 9.72E-09 

Sickle cell 
anemia   HBB 11:5248233:CAG:C frameshift 2.15E-05 Thalassaemia 

(D56) 

Blood, blood-
forming organs 
and certain 
immune 
disorders 

3,183 (440-
23,030) 1.36E-15 

Albinism, 
oculo-
cutaneous, 
type IA 

TYR 11:88961072:C:A missense 1.10E-03 

Disorders of 
aromatic amino-
acid metabolism 
(E70) 

Endocrine, 
nutritional and 
metabolic 
diseases 

63.27 (16.33-
245.10) 1.94E-09 

Retinitis 
pigmentosa 
80 & short rib 
thoracic 
dysplasia 9 

IFT140 16:1607935:C:A splice 
donor 5.11E-04 Cystic kidney 

disease (Q61) 

Congenital 
disruptions and 
chromosomal 
abnormalities 

18.42 (8.47-
40.05) 1.98E-13 
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