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Abstract 

Despite an estimated twin heritability of ~50%, genome-wide association studies 

(GWAS) of opioid use disorder (OUD) have revealed few genome-wide significant (GWS) loci, 

with replicated findings only in European-ancestry individuals. To identify novel loci, including 

those in non-European ancestries, and improve our understanding of the biology of OUD, we 

conducted a cross-ancestry meta-analysis using the Million Veteran Program (MVP). OUD 

cases in MVP had at least 1 International Classification of Diseases (ICD)-9 or ICD-10 code for 

opioid abuse or dependence (N=31,473). Opioid-exposed controls (N=394,471) had one or 

more outpatient opioid prescription fills. We conducted GWAS for each major ancestral group in 

MVP: African Americans (AAs; N=88,498), European Americans (EAs; N=302,585), and 

Hispanic Americans (HAs; N=34,861), followed by a cross-ancestry meta-analysis. Ten loci 

were GWS in the cross-ancestry meta-analysis, 8 of them novel. In addition to the known coding 

variant rs1799971 in OPRM1, which was the lead SNP genome-wide (p=6.78x10-10), and a 

recently reported exonic variant in FURIN, we identified intronic variants in RABEPK, FBXW4, 

NCAM1, and KCNN1. Ancestry-specific analyses identified an additional novel locus for each of 

the 3 ancestry groups. A supplementary meta-analysis within EAs that included MVP and other 

samples identified a locus in TSNARE1, which was also GWS in the cross-ancestry meta-

analysis of all datasets. Gene-based association analyses identified 1 gene in AAs (CHRM2) 

and 3 in EAs (OPRM1, DRD2, and FTO). Significant genetic correlations (rg’s) were identified 

for 127 traits, including positive correlations with schizophrenia, problematic alcohol use, and 

major depressive disorder. The most significantly enriched cell type group was the central 

nervous system with gene-expression enrichment identified in brain regions previously 

associated with substance use disorders. With a case sample 50% larger than that of the 

previous largest GWAS, we identified 14 loci for OUD, including 12 novel loci, some of which 

were ancestry-specific. These findings increase our understanding of the biological pathways 
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involved in OUD, which can inform preventive, diagnostic, and therapeutic efforts and thereby 

help to address the opioid epidemic. 
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Introduction 

Opioid use disorder (OUD) is a problematic pattern of opioid use that leads to significant 

impairment or distress1. In the United States, a 10-fold increase in opioid analgesic prescriptions 

between 1990 and 2010 contributed to an epidemic of opioid misuse, abuse, and overdose 

deaths2–4. By 2019, 3.7% of U.S. adults reported past-year opioid misuse and 0.6% met criteria 

for an OUD5. Overdose deaths, which continue to increase annually, have reached crisis 

proportions6, reflecting the limitations of available preventive and treatment efforts. 

Genetic studies can help inform our understanding of the biology underlying OUD. 

However, although the estimated heritability (h2) of OUD based on twin and family studies is 

~50%7, few genetic associations have been identified. Genome-wide association studies 

(GWAS) of OUD, opioid dependence (OD) or related phenotypes have yielded inconsistent 

results, likely due to the limited sample size of the discovery datasets and different case and 

control definitions8–11.  

The use of data from electronic health records (EHRs) linked to biobanks has permitted 

research consortia to assemble increasingly large GWAS samples. An EHR-based study of 

1,039 OUD cases and 20,271 controls identified two genome-wide significant (GWS) loci, with 

common SNPs explaining 6.0% of the phenotypic variation in OUD12. A meta-analysis of 

European Americans (EAs) (10,544 OUD cases and 72,163 opioid-exposed controls) and 

African Americans (AAs) (5,212 OUD cases and 26,876 opioid-exposed controls) based largely 

on data from the Million Veteran Program (MVP), identified a single GWS SNP, rs1799971 in 

OPRM1, in EAs only, with SNP-based heritability estimated at 11.3%13. There were no GWS 

findings in AAs or in a cross-ancestry meta-analysis. A study that combined data from multiple 

cohorts (20,858 OUD cases), including an earlier release of MVP data, identified 2 GWS loci – a 

variant within OPRM1 in a cross-ancestry analysis, and an additional variant in FURIN in a 

European-ancestry meta-analysis14. 
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Two recent GWAS have increased sample sizes for genetic discovery by examining 

opioid-related phenotypes other than OUD. A GWAS of prescription opioid misuse in an EA 

sample from 23andMe (27,805 cases) identified 2 novel GWS loci15. A meta-analysis of 

European-ancestry individuals included 23,367 cases ascertained using either Diagnostic and 

Statistical Manual of Mental Disorders diagnoses (DSM) or frequency of opioid use (FOU) and 

384,629 controls16. Using a latent trait [opioid addiction (OA)] generated from a genomic 

structural equation model to conduct GWAS, the group identified GWS SNPs in OPRM1 and, in 

gene-based analyses, PPP6C and FURIN. The SNP h2 for the DSM trait was 11% and 18% for 

the FOU trait.  

These studies also identified significant genetic correlations (rg’s) with traits well known 

to co-occur with OUD, suggesting widespread pleiotropy. The strongest positive rg’s were with 

substance-related traits (e.g., alcohol dependence/use disorder, cannabis use disorder, 

drinks/week, cigarettes/day)12,13,15,16, and psychiatric disorders (e.g., attention deficit 

hyperactivity disorder (ADHD), posttraumatic stress disorder (PTSD), major depressive disorder 

(MDD), schizophrenia, bipolar disorder, neuroticism)13,15,16. Although these traits are known to 

be genetically correlated, it is unknown whether there is a shared genetic structure between 

OUD, other substance use, and psychiatric disorders. Negative rg’s were seen for educational 

attainment13,15,16, cognitive performance13 and subjective wellbeing16. Causal effects on OUD for 

some of these traits were identified via Mendelian randomization (MR) analysis. Positive causal 

effects on OUD were found for the following exposures: regular tobacco smoking, depressed 

affect, neuroticism, and cognitive performance. A negative causal effect on OUD was also seen 

with cognitive performance as the exposure13. The causal effect of OUD on these traits was 

unable to be examined due to the limited number of GWS variants.  

The different phenotypes used in these studies reflect the difficulty of ascertaining a 

large, multi-ancestry, well-characterized sample for use in GWAS of opioid-related phenotypes. 

EHR-based traits generally use International Classification of Disease (ICD) diagnostic codes 
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for phenotyping OUD (e.g.,12,13). Cohorts recruited from some non-clinical biobanks rely on 

single-item, self-report questionnaires (e.g.,15) or have combined multiple case and control 

definitions derived as latent variables in genomic structural equation modeling16. A key 

consideration in selecting OUD cases, particularly given the high prevalence of opioid use in the 

United States, is the stringency of the definition. More stringent case definitions increase 

confidence in the specificity of the diagnosis and, by reducing heterogeneity, may increase 

statistical power. However, they also reduce the sample size and have the potential to reduce 

generalizability by not capturing a disorder’s full range of presentations (e.g., by misclassifying 

cases as subthreshold). 

Here, we conducted a cross-ancestry meta-analysis of OUD that included AA, EA, and 

Hispanic American (HA) subjects recruited from the MVP that maximized OUD cases by using a 

less stringent definition (requiring the presence of a single OUD diagnostic code) and compared 

them to opioid-exposed controls (N cases=31,473, N controls=394,471). In supplementary 

analyses, we compared our results to those using a stringent OUD phenotype in MVP, and 

performed a meta-analysis that combined data from the MVP, Yale-Penn (unpublished data), 

the Partners HealthCare Biobank12, and the Psychiatric Genomics Consortium (PGC)11. To 

elucidate the biology implicated by the variation that we identified through GWAS, we performed 

gene-based, gene-set enrichment and transcriptome-wide association analyses; examined rgs 

with a wide variety of phenotypes; calculated polygenic risk scores (PRS) and performed 

phenome-wide association studies (PheWAS) in independent samples; and conducted 

Mendelian randomization analyses and genomic structural equation modeling to evaluate the 

causal effect and shared genetic structure between OUD, substance-related traits, and 

psychiatric disorders. We identified GWS findings in AA, EA and HA individuals. Further, we 

obtained novel insights that implicate genes expressed in the central nervous system (CNS), 

including specific brain regions implicated in the biology of OUD. 
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Methods 

 

Overview of Analyses 

We conducted an ancestry-specific GWAS using a less stringent OUD case definition in 

AAs, EAs, and HAs from the MVP, followed by a cross-ancestry meta-analysis. Cases had 

received at least one lifetime ICD Ninth Revision (ICD-9) or Tenth Revision (ICD-10) diagnosis 

of OUD and control subjects were opioid exposed. Further details on phenotyping are described 

below. This GWAS was used for all subsequent downstream analyses. 

In a supplementary analysis, we performed within-ancestry meta-analyses for AAs and 

EAs from the MVP, Yale-Penn (unpublished data), the Partners HealthCare Biobank12, and the 

PGC11, followed by a cross-ancestry meta-analysis which included all samples. In a second 

supplementary analysis, we repeated the GWAS in MVP with the more stringent case definition 

used in the prior MVP OUD GWAS13. An overview of the analyses is provided in Supplementary 

Figure 1. 

 

Million Veteran Program Cohort 

As of September 2021, the MVP17 had recruited approximately 850,000 veterans at 63 

VA medical centers nationwide. All participants provide written informed consent and a blood 

sample for DNA extraction and genotyping and give permission to access their EHR for 

research purposes. The MVP was approved by the Central Veterans Affairs Institutional Review 

Board (IRB) and all site-specific IRBs. All relevant ethical regulations for work with human 

subjects were followed in the conduct of the study. 

 

Phenotypes 

OUD diagnostic codes based on ICD-9/10 were obtained from the VA EHR. The main 

GWAS used a less stringent definition of OUD (N = 31,473), which required the presence of 1 
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inpatient or outpatient ICD-9/10 diagnostic code for OUD (304.0, 304.7, 305.5, F11.1, F11.2) in 

the EHR. The stringent definition (N = 23,459), used in the supplementary GWAS, required at 

least 1 inpatient or 2 outpatient ICD-9/10 OUD diagnostic codes in the EHR. Controls (N = 

394,471) for all GWAS were defined as individuals with at least 1 outpatient opioid analgesic 

prescription fill [excluding prescriptions for OUD treatment (e.g., buprenorphine or methadone)] 

and no ICD-9/10 diagnosis code for OUD documented in the EHR (i.e., opioid-exposed). In all 

analyses, age at the time of MVP enrollment was used as a covariate. Demographics are 

presented in Supplementary Table 1. 

 

Genotyping and Imputation 

The genotyping of samples in the MVP is ongoing and, in this analysis, we used Release 

4 imputed data. MVP samples were genotyped with a custom Affymetrix Axiom Biobank Array. 

Quality control of genotype data and subsequent imputation were performed by the MVP 

Genomics working group. Duplicate samples were removed, as were those with a sex 

mismatch, 7 or more relatives in MVP, excessive heterozygosity or a genotype call rate <98.5%. 

Variants were removed if they were monomorphic, had a missing call rate <0.8, or a Hardy-

Weinberg equilibrium p<1x10-6 both in the entire sample using a PCA-adjusted method and 

within 1 of the 3 major ancestry groups (AA, EA, HA). Genotypes were phased with SHAPEIT4 

(v.4.1.3)18 and imputed using Minimac419, with biallelic SNPs imputed using the African Genome 

Resources (AGR) reference panel by the Sanger Institute, and non-biallelic SNPs and indels 

imputed in a secondary imputation using the 1000 Genomes Project phase 3, version 520 

reference panel. Indels and complex variants from the second imputation were merged into the 

AGR imputation.  

 Genome-wide association analyses were performed using PLINK 2.021. We removed 1 

individual from each pair of related individuals at random (kinship>0.08, N=31,010). Genetic 

ancestry was unified with self-identified race/ethnicity using the HARE (Harmonizing Genetic 
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Ancestry and Self-Identified Race/Ethnicity) method22. Quality control of imputed variants was 

performed within each ancestral group. Genetic variants were excluded based on minor allele 

frequency (MAF: AA<0.005; EA<0.001; HA<0.01), genotype call rate<0.95, and Hardy-

Weinberg equilibrium p<1x10-6 or a population-specific imputation quality (INFO) score <0.7. 

Covariates included sex, age at enrollment, and the first 10 genetic principal components (PCs) 

within each ancestry.  

  

Datasets for Meta-analysis 

 Supplementary Table 2 summarizes the datasets used for meta-analysis. Summary 

statistics for GWAS of OUD were obtained from two previously published datasets: 1) Partners 

HealthCare Biobank, which used the same less stringent case definition and opioid-exposed 

controls in European ancestry individuals12 2) PGC, which used a DSM-IV OD diagnosis and 

opioid-exposed controls in African and European ancestry individuals11. We also included the 

Yale-Penn 3 (YP3) unpublished dataset (Yale-Penn 1 and 2 were included in PGC analyses). In 

YP3, we conducted a GWAS using cases with a DSM-IV OD diagnosis and opioid-exposed 

controls. For AAs, there were 168 cases and 153 controls; for EAs, there were 578 cases and 

219 controls. We used GEMMA to conduct association analysis to account for relatedness 

between the individuals. Sex, age at recruitment, and the first 10 PCs were included as 

covariates. 

 

Meta-analysis and Independent Variants 

Meta-analyses were conducted using a sample-size-weighted method in METAL23. To 

compensate for the imbalance in the ratio of cases to controls, effective sample sizes were 

calculated using the formula: 4/[1/n_case + 1/n_control]. Effective sample sizes were used in all 

meta-analyses and all downstream analyses. Meta-analyses were conducted across the 

following datasets: 1) cross-ancestry (AA, EA, and HA) meta-analysis within MVP, 2) within-
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ancestry meta-analysis across datasets (AA: MVP, PGC, YP3; EA: MVP, Partners HealthCare 

Biobank, PGC, YP3), 3) cross-ancestry meta-analysis across all datasets (AA [MVP, PGC, 

YP3]; EA [MVP, Partners HealthCare Biobank, PGC, YP3]; HA [MVP]). 

To identify independent variants, we performed LD-clumping within each ancestry using 

a range of 3000 kb, r2 > 0.1, and the matched 1000 Genomes20 reference panel. Following 

clumping, variants that were located <1Mb apart were merged into a single locus. For loci that 

contained multiple variants, we conducted conditional analyses using COJO in GCTA24. Within 

each locus, we conditioned on the most significant variant. Upon conditioning, variants within 

the locus that remained significant (p < 5 × 10-8) were considered independent. 

 

SNP-based Heritability Analyses and Partitioning Heritability Enrichment 

We used LD score regression25 (LDSC) to estimate OUD SNP-based heritability (h2
SNP) 

in AAs and EAs for common SNPs mapped to HapMap326. To ensure matching of population 

linkage disequilibrium (LD) structure, we used pre-computed LD scores based on African and 

European 1000 Genomes Project Phase 320. SNPs in the major histocompatibility complex 

(MHC) region were excluded. Because of the high degree of genetic admixture in HAs and the 

smaller size of the sample, we did not estimate h2
SNP in that population group. 

We used LDSC to partition h2
SNP in the OUD EA dataset and examined the enrichment 

of the partitioned h2
SNP based on different functional genomic annotation models27,28. In the 

baseline model, we examined 53 overlapping functional annotations comprising genomic, 

epigenomic, and regulatory features. Next, we analyzed 10 overlapping cell-type groups derived 

from 220 cell-type-specific annotations. Finally, enriched cell-type categories were analyzed 

based on annotations obtained from H3K4me1 imputed, gapped peak data generated by the 

Roadmap Epigenomics Mapping Consortium29. For each h2
SNP partitioning model, multi-allelic 
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and MHC region variants were excluded, and Bonferroni-correction was applied to identify 

significant enrichment.  

 

 Gene-based, Functional Enrichment and Pathway Analyses 

We performed gene-based association testing for OUD in FUMA v1.3.6a30, using 

MAGMA v1.0831, which employs multiple regression models to detect multiple marker effects 

that account for SNP p-values and LD between markers, using the matched-ancestry 1000 

Genomes Project phase 320 panel as LD reference. We used a total of 18,707 protein-coding 

genes, with p < 2.67 × 10-6 (0.05/18,707) considered GWS. 

To identify gene sets enriched for OUD, we used MAGMA31 to curate gene sets; Gene 

Ontology terms (obtained from MsigDB c2); and GWAS-catalog enrichment, correcting for gene 

size, variant density, and LD within and between genes. We also used MAGMA to test the 

association between gene-set properties and tissue-specific gene expression profiles using 

GTEx (v.7) data from 53 tissues (Bonferroni-corrected p-value threshold = 9.43 x 10-4). 

 

Transcriptome-wide Association Analyses 

  We performed transcriptome-wide association analyses using the MetaXcan 

framework32 and the GTEx release v.8 eQTL MASHR-M models33. Forty-nine tissues from 

GTEx v.8 were analyzed comprising 12,951 samples. First, GWAS summary statistics were 

harmonized for the EA population based on the human genome assembly GRCh38 (hg38) and 

linked to the 1000 Genomes reference panel using GWAS tools 

(https://github.com/hakyimlab/summary-gwas-imputation/wiki/GWAS-Harmonization-And-

Imputation). A transcriptome-wide association analysis of 49 tissues was run using S-

PrediXcan32. A Bonferroni correction for statistical significance was applied within each tissue 

conditioned on the number of genes tested (Supplementary Table 14).  
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Because expression quantitative trait loci (eQTL) were correlated across tissues, we 

integrated gene expression signals for 49 tissue panels using S-MultiXcan34 and tested 10,552 

genes in total. Resulting p-values were Bonferroni corrected to identify significant gene 

associations (p-value threshold = 4.74 × 10-6). 

 

Drug Interactions 

To identify drugs that could potentially be repurposed to treat OUD, we examined genes 

identified in the variant or gene-level analyses using the Drug Gene Interaction Database35 

(https://www.dgidb.org). Medications were categorized using the Anatomical Therapeutic 

Chemical (ATC) classification system, retrieved from the Kyoto Encyclopedia of Genes and 

Genomics Kyoto Encyclopedia of Genes and Genomics (KEGG; 

https://www.genome.jp/kegg/drug/). 

 

Genetic Correlation 

We used LD score regression25 to calculate the rg between a) OUD or OD datasets used 

for meta-analysis (AA [MVP, PGC, YP3]; EA [MVP, Partners HealthCare Biobank, PGC, YP3]) 

and b) OUD (MVP EA) and 40 other published traits comprising psychiatric, substance use, 

cognitive, and anthropometric traits selected based on a priori hypotheses (See Supplementary 

Table 20 for a full list), using pre-computed LD scores for HapMap326 SNPs based on the 

matched-ancestry 1000 Genomes Project Phase 320 reference panel. To explore additional 

traits in a hypothesis-free manner, we also estimated the rg between OUD and 1,270 traits 

(comprising published and unpublished traits from the UK Biobank (UKBB) using the Complex-

Trait Genetics Virtual Lab (CTG-VL) (https://genoma.io). CTG-VL integrates publicly available 

GWAS summary statistics and utilizes the LDSC framework to calculate rg between complex 

traits and diseases of interest36. A Bonferroni correction was applied within each LDSC and 
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CTG-VL analysis, and traits with a corrected p-value < 0.05 were regarded as significantly 

correlated. 

 

Mendelian Randomization 

We performed Mendelian randomization (MR) analysis using the 

MendelianRandomization package in R. Causal relationships between OUD and other traits 

were tested bidirectionally using three methods: Weighted Median, Inverse Variance Weighted 

and MR-Egger. We tested for pleiotropy using the MR-Egger intercept test. Instrumental 

variants were those associated with the exposure at p < 1 × 10-5.  When the instrumental 

variants were not present in the outcome data, we identified the best-proxy variant (LD > 0.8). 

Variants with MAF < 0.01 or with no proxy with LD > 0.8 within 200 kb were removed. Each trait 

included more than 20 instrumental variables, which provides a robust estimate of causal 

effects. We considered causal effects as those for which at least 2 MR tests were significant 

after Bonferroni correction and that showed no evidence of violation of the horizontal pleiotropy 

test (MR-Egger intercept p > 0.05).  

 

Polygenic Risk Scores and Phenome-wide Association Studies  

We calculated PRS for OUD in two independent datasets (Yale-Penn and BioVU) using 

PRS-continuous shrinkage (PRS-CS)37, followed by phenome-wide association analyses 

(PheWAS). In each dataset, OUD summary statistics from the matched ancestry were used to 

calculate PRS. Details for the analysis in each dataset are below. 

Yale-Penn: We removed SNPs with INFO score < 0.7, MAF < 0.01 genotype call rate < 

0.95, or an allele frequency difference between genotyping batches > 0.4, which left a total of 

8,811,422 SNPs. We removed one individual from each pair of related individuals with pi-hat > 

0.25. To estimate genetic ancestry, we calculated PCs on common SNPs between Yale-Penn 

and 1000 Genomes Project Phase 320 using PLINK 1.921. Subjects were assigned to an 
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ancestry based on the distance of 10 PCs from the 1000 Genomes reference populations. The 

resulting data set included 4,922 AAs and 5,709 EAs. We excluded binary phenotypes with 

fewer than either 100 cases or 100 controls, and continuous phenotypes with fewer than 100 

individuals. We conducted PheWAS by fitting logistic regression models for binary traits and 

linear regression models for continuous traits. We used sex, age at recruitment, and the top 10 

genetic PCs as covariates. We applied a Bonferroni correction to control for multiple 

comparisons. 

BioVU: We used de-identified clinical data from Vanderbilt University Medical Center’s 

(VUMC) Biobank (BioVU). Details on the quality control process have been described 

elsewhere38. The genotyping information that we used was from the Illumina MEGEX array. 

Genotypes were filtered for SNP and individual call rates, sex discrepancies, and excessive 

heterozygosity using PLINK v1.921. Imputation of the autosomes was conducted using the 

Michigan Imputation Server19 based on the Haplotype Reference Consortium reference panel. 

PCA using FlashPCA2 combined with CEU, YRI and CHB reference sets from 1000 Genomes 

Project Phase 320 was conducted to determine participants of African and European Ancestry. 

The sample was then filtered for cryptic relatedness by removing one individual of each pair for 

which pi-hat>0.2. This resulted in 12,384 individuals of African ancestry and 66,903 individuals 

of European ancestry samples for analysis. We conducted PheWAS by fitting a logistic 

regression for each of the 1,335 disease phenotypes available in BioVU to estimate the odds of 

a diagnosis of that phenotype given the OUD PRS. Each disease phenotype (commonly 

referred to as “phecode”; https://phewascatalog.org/phecodes, Phecode Map 1.2) was classified 

using ICD 9 and 10 diagnostic codes to establish “case” status. For an individual to be 

considered a case, they were required to have two separate ICD codes for the index phenotype, 

and each phenotype needed at least 100 cases to be included in the analysis. The covariates 

included in the analyses were sex, median age of the longitudinal EHR measurements, and the 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 15, 2021. ; https://doi.org/10.1101/2021.12.13.21267480doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.13.21267480
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

 

14

top 10 genetic PCs. The project was approved by the VUMC Institutional Review Board (IRB #s 

160302, 172020, 190418).  

 

Genomic Structural Equation Modeling 

We performed Genomic Structural Equation Modeling39 for OUD, 3 other substance use 

traits (problematic alcohol use, cannabis use disorder, ever smoked regularly), and 7 psychiatric 

disorders (schizophrenia, bipolar disorder, major depressive disorder, autism spectrum disorder, 

attention deficit hyperactivity disorder, Tourette’s syndrome, and obsessive-compulsive 

disorder). We calculated a genetic covariance matrix using multivariable LDSC and the 1000 

Genomes Project phase 3 European samples20 as reference. An exploratory factor analysis was 

conducted using the genetic covariance matrix and a four latent-factor structure with varimax 

rotation. We used the determined structure containing paths with loading factor >0.2 to perform 

a confirmatory factor analysis implemented in the GenomicsSEM package in R. To prevent 

negative residual variance after estimation, we restricted the residual variance of OCD and 

ADHD to be greater than 0. 
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Results 

 

Sample Description 

Our MVP sample comprised 425,944 individuals (AA: 88,498; EA: 302,585; HA: 34,861), 

of whom 90.6% were male (Supplementary Table 1). The less stringent OUD definition yielded 

28.8%-38.9% more cases across the ancestral groups (AA = 8,968, EA = 19,978, HA = 2,527) 

than the stringent definition (AA = 6,457; EA = 15,040; HA = 1,962). On average, less stringent 

cases had 77.2 (SD=96.9) opioid prescription fills, stringent cases had 76.5 (SD=97.6) fills, and 

controls had 25.0 fills (SD=48.3). 

 

Identification of Novel Loci Associated with Opioid Use Disorder 

 The cross-ancestry meta-analysis of the less stringent OUD diagnosis within the MVP 

sample yielded 12 GWS variants, 10 of which were independent after conditioning on the lead 

variant within each locus (Figure 1, Supplementary Table 3). The protein-coding genes nearest 

these variants are CDKAL1, BTNL2, and OPRM1 (all on chr. 6), RABEPK (chr. 9), FBXW4 and 

7SK (chr. 10), NCAM1 (chr. 11), FURIN (chr. 15), KCNN1 (chr. 19), and RNF114 (chr. 20). The 

most robust signal was in OPRM1 (lead SNP rs1799971, p=6.78 x 10-10), which replicates the 

main finding of the previous MVP OUD GWAS13. The variant in FURIN is supported by prior 

findings at the variant14 and gene-based16 levels. In addition, there were 3 ancestry-specific loci 

(Supplementary Table 4): 1 each in AAs (NNT, chr. 5), EAs (CDH8, chr. 16), and HAs (MRS2, 

chr. 8). 3 loci were GWS in the cross-ancestry meta-analysis of the stringent OUD diagnosis in 

the MVP sample, including 1 additional locus (TSNARE1, chr. 8) which was also found in the 

EA-specific analysis of the stringent OUD diagnosis (Supplementary Tables 5 and 6), and the 

meta-analysis of EA subjects’ data from MVP, Partners HealthCare Biobank, PGC and YP3 

(Supplementary Table 8). GWS loci from all analyses are presented in Supplementary Tables 3-

8. Based on all analyses, we identified a total of 14 GWS loci, 12 novel (Table 1). 
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SNP Heritability and Genetic Correlations Across GWAS Datasets 

The estimated SNP heritability (h2
SNP) in MVP for the less stringent phenotype is similar 

in AAs (0.11 ± 0.03) and EAs (0.12 ± 0.01). Using the stringent OUD phenotype, the estimated 

h2
SNP was higher in AAs (0.20 ± 0.05) than EAs (0.15 ± 0.01). In contrast, the estimated h2

SNP 

was higher in EAs (0.11± 0.01) than AAs (0.08 ± 0.03) in the ancestry-specific meta-analyses 

across datasets (Supplementary Table 9). Variation in these estimates appears to be mainly 

driven by changes in effective sample size, as estimates using actual sample size show little 

variation (Supplementary Table 9). The within-ancestry rg between datasets is high, ranging 

from 0.7 (± 0.3) between the less stringent OUD MVP and Partners HealthCare Biobank 

datasets in EAs, to 1.2 (± 0.2) between the less stringent OUD MVP and the previous OUD 

MVP GWAS13 in EAs (which used the same diagnosis definition as the present stringent 

analysis) (Supplementary Table 10).  

Considering the similarity in h2
SNP between the different OUD GWAS and the greater 

number of loci captured by the less stringent diagnosis in MVP, all subsequent downstream 

analyses are based on the less stringent OUD GWAS within the MVP sample. 

 

Partitioning Heritability Enrichment 

We performed partitioning heritability enrichment analyses in LDSC27 and examined 

heritability enrichment for gene expression using GTEx data40. The most significantly enriched 

cell type group was the central nervous system (CNS; p = 3.34 × 10–3, Figure 2A, 

Supplementary Table 11). We observed significant enrichment for OUD in brain tissues only, 

including the anterior cingulate cortex (p < 4.71 × 10–6), limbic system (p < 3.25 × 10–5), 

prefrontal cortex (p < 5.73 × 10–5), cerebral cortex (p < 9.81 × 10–5), cortex (p < 1.11 × 10–4), 

hypothalamus (p < 1.23 × 10–4), amygdala (p < 1.41 × 10–4), and hippocampus (p < 2.04 × 10–4) 
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(Figure 2B, Supplementary Table 12). There were no significant enrichments for epigenetic 

annotations after correction for multiple testing (Supplementary Table 13). 

 

 Transcriptome-wide Analysis 

We used S-PrediXcan32 to predict the effect of genetic variation on gene expression. 

Significant within-tissue gene expression regulation was identified for 43 tissues, including brain, 

adipose, gastrointestinal, thyroid, and liver (Supplementary Figure 2, Supplementary Tables 14 

and 15). Significant associations with expression in brain tissues were detected for FURIN, 

FES, LRP8, LINC01556, ZNF660 and RP1-153G14.4 (Figure 2C). Some of these genes 

(FURIN, LINC01556, ZNF660, and RP1-153G14.4) were also expressed in non-brain tissues, 

such as adipose, gastrointestinal, and thyroid tissues (Supplementary Figure 2), suggesting that 

OUD-related genetic variation may exert significant transcriptomic changes in the periphery as 

well as the CNS. 

Considering the sharing of eQTLs across multiple tissues, we tested the joint effects of 

variation in gene expression across tissues using S-MultiXcan34. Significant transcriptomic 

effects for OUD were detected in 8 genes, 5 of which overlapped with genes detected by S-

PrediXcan (FURIN, FES, RP1-153G14.4, LRP8, and RABEPK) and 3 which were novel 

(ZNF391, ZKSCAN4, and MAGOH) (Supplementary Table 16). 

 

Gene Set, Functional Enrichment, and Drug Repurposing Analyses 

Gene-based analyses identified one GWS gene in AAs (CHRM2, p = 9.52 × 10-7) and 

three GWS genes in EAs (OPRM1, p = 2.17 × 10-7; FTO, p = 9.52 × 10-7; DRD2, p = 1.67 × 10-6) 

(Supplementary Figure 3), but none in HAs. Following Bonferroni correction, no biological 

processes or pathways were significantly enriched, although nominal associations in EAs 

highlighted pathways of potential relevance, including “dopamine receptors” (p = 1.87 × 10-5) 
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and “regulation of adenylate cyclase activating G-protein coupled receptor signaling pathway” (p 

= 4.39 × 10-5) (Supplementary Table 17). 

Genes identified in the variant-level, gene-based, or transcriptome (brain region) 

analyses (N=24) are summarized in Supplementary Table 18. Examination of these genes for 

drug-gene interactions via the Drug Gene Interaction database identified 761 interactions 

between 8 genes (CHRM2, DRD2, FES, FURIN, KCNN1, NCAM1, OPRM1, PRL) and 340 

unique medications (Supplementary Table 19, Supplementary Figure 4).  OPRM1 had 193 

interactions, mainly with classes of analgesics, anesthetics, and drugs for constipation. DRD2 

had 376 interactions, the majority of which were with psycholeptics. 

 

Genetic Correlations 

We estimated pairwise rg with OUD for 40 published phenotypes using LDSC25. OUD 

showed significant rg with 21 traits. As expected, the strongest positive correlations were with 

substance use traits (e.g., problematic alcohol use, cannabis use disorder, ever smoked 

regularly) and psychiatric disorders (e.g., bipolar disorder, major depressive disorder) and the 

strongest negative correlation was with educational attainment (Figure 3A, Supplementary 

Table 20). We also assessed rg with OUD for 1,270 complex traits from the UKBB using CTG-

VL36. After multiple testing correction (p < 3.94 × 10-5), 106 traits demonstrated significant 

genetic association with OUD (Supplementary Figure 5, Supplementary Table 21). These 

included positive correlations with substance use related traits (e.g. current smoking, ever 

addicted to any substance or behavior), psychiatric traits (e.g. anxiety treatment, self-reported 

depression) and pain-related traits (e.g. low back pain, multisite chronic pain), and negative 

correlations with having secondary education qualifications and the presence of social support. 

Thus, overall, we found that increased risk of OUD is genetically correlated with increased 

liability for use of substances, psychiatric disorders, and experiencing pain, and lower likelihood 

of educational attainment and social support. 
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Mendelian Randomization 

Using MR, we tested for bidirectional causal effects between OUD and the 21 traits 

identified as significantly genetically correlated with OUD (Figure 3A, Supplementary Figure 6). 

There was a causal effect of OUD on 6 traits: problematic alcohol use, drinks per week, 

cannabis use disorder, general risk tolerance, MDD, and cross disorder. Among the 21 traits, 9 

had a causal effect on OUD, of which 2 showed a negative causal effect on OUD (cognitive 

performance and educational level) and 7 a positive causal effect on OUD (in descending order 

of magnitude: drinks per week, worry subcluster, neuroticism, the number of sexual partners, 

major depressive disorder, cigarettes per day and schizophrenia).  

 

Polygenic Risk Scores and Phenome-wide Association Studies 

PRS were calculated in 2 independent datasets to identify phenotypic associations of 

genetic liability for OUD. In the Yale-Penn sample, PRS were calculated for 4,922 African 

ancestry and 5,709 European ancestry individuals. No significant associations were identified 

for AAs (Supplementary Figure 7, Supplementary Table 22). In EAs, PheWAS identified 41 

phenotypes in the opiate domain and 71 phenotypes in other phenotypic domains that were 

significantly associated with OUD PRS (Figure 3C, Supplementary Table 23). The most 

significantly associated phenotypes were “time spent obtaining/using opioids” and “opioid use 

disorder”. In BioVU, PRS were calculated for 12,384 AAs and 66,903 EAs. No significant 

associations were found for OUD PRS in AAs (Supplementary Figure 8, Supplementary Table 

24). In EAs, the OUD PRS was associated with 27 phenotypes, including “substance addiction 

and disorders” and “mood disorders” (Figure 3B, Supplementary Table 25). 

 

Genomic Structural Equation Modeling 
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 We conducted genomic structural equation modeling (gSEM) to evaluate how OUD 

relates to the three other substance use traits and the seven psychiatric disorders identified as 

the most significantly associated with OUD in genetic correlation analyses. Exploratory factor 

analysis (EFA) involving all 11 traits supported a 4-factor model with cumulative variance of 

0.639. We retained paths with a loading factor >0.2 and conducted confirmatory factor analysis 

(CFA). In this analysis, the 4-factor model fit the data well (comparative fit index (CFI) = 0.948, 

Akaike information criterion = 340.840, χ2 = 276.840, degrees of freedom = 34, standard root 

mean root square error (SRMR) = 0.073). The 4 substance use traits all loaded on Factor 1, 

with a major contribution from OUD (loading = 0.84 ± 0.05) and problematic alcohol use (loading 

= 0.91 ± 0.3), and lower contributions from cannabis use disorder (loading = 0.58 ± 0.06) and 

ever smoked regularly (loading = 0.40 ± 0.03). Cannabis use disorder (loading = 0.37 ± 0.06) 

and ever smoked regularly (loading = 0.42 ± 0.03), together with other psychiatric disorders, 

also loaded on Factor 3. Major psychiatric disorders, including bipolar disorder (loading = 0.86 ± 

0.04), schizophrenia (loading = 0.76 ± 0.03), and MDD (loading = 0.43 ± 0.03) loaded on Factor 

2. Tourette’s syndrome (loading = 0.33 ± 0.07) and obsessive-compulsive disorder (loading = 

1.03 ± 0.21) loaded on Factor 4 (Figure 4, Supplementary Table 26). 
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Discussion 
 
 

This study, the largest single-sample GWAS of OUD to date, identified 14 loci 

associated with the disorder, 12 of which are novel findings. Three of these loci were significant 

in ancestry-specific analyses only, demonstrating that inclusion of diverse ancestral samples in 

genetic studies of OUD permits the identification of novel genetic variants. Post-GWAS 

analyses in EAs revealed enrichment for OUD in the CNS, particularly the brain, and an 

extensive phenotypic spectrum associated with genetic liability for OUD.  

Because the effect sizes of common variants contributing to highly polygenic phenotypes 

such as OUD are small, large sample sizes are required to identify GWS loci. The largest OUD 

GWAS prior to the current study greatly increased the effective sample size (Neffective = 88,115) 

by meta-analyzing the results of studies that used a range of case and control definitions16. 

Here, we performed GWAS using the stringent definition of OUD used by Zhou et al.13 (Ncases = 

23,459, Neffective = 88,569) and a less stringent definition requiring the presence of only 1 ICD-

9/10 diagnostic code for opioid abuse or dependence (Ncases = 31,473, Neffective = 116,590). 

Although the less stringent definition lowers the specificity of the case phenotyping (i.e., 

individuals are more likely to be mislabeled as having OUD), it increases the number of cases 

by more than 8,000 and reveals 8 more GWS variants than the stringent definition. These 

results support prior conclusions that the potential variability introduced by broadening 

phenotypic definitions in genetic studies of OUD is outweighed by substantial increases in 

sample size16; however owing to clinical differences between substance use disorders and other 

psychiatric disorders, this may not be generalizable. In contrast, our meta-analysis of the MVP 

data with other datasets reduced the number of GWS loci identified, potentially because the 

smaller additional datasets increased the variability in the effect size of variants, reducing 

associations overall. 
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The most significant locus, OPRM1, encodes the mu-opioid receptor, which binds 

morphine and other opioids and has been the focus of many functional and candidate gene 

studies of opioid-related phenotypes41–43. In a previous GWAS comprised principally of subjects 

from MVP, OUD was significantly associated only with OPRM1 in EAs13, with the lead SNP 

being the non-synonymous, exon 1 variant rs1799971 (A118G). In neither that study, nor the 

present study, was the SNP associated with OUD in AAs, presumably because the minor (G) 

allele frequency in this population group is considerably lower than in EAs44. Even so, it is 

difficult to explain why meta-analysis with AAs does not increase the statistical strength of the 

association of OUD with this variant if it is truly the lead functional variant, even if based on 

introgressed EA alleles alone. A recent meta-analysis of opioid addiction in European-ancestry 

individuals, which included data from the previous MVP OUD GWAS13 and 4 other cohorts also 

identified OPRM1 as a risk gene, although the lead SNP at that locus was rs9478500 in intron 

116.  

We identified a second peak in OPRM1, with the lead SNP rs3778151, a variant in intron 

1 that is in high LD with rs9478500 (r2 = 0.56-0.90)45, the variant associated with opioid 

addiction in the recent meta-analysis16. Although LD clumping in our sample showed these two 

loci to be independent, when we conditioned the analysis on rs1799971, rs3778151 was no 

longer significant, suggesting that the variants are structurally independent, but functionally 

redundant. A prior study in EA alcohol- or drug-dependent cases and controls also identified two 

independent LD blocks in OPRM146. The findings were interpreted as a partial explanation of 

the inconsistent findings for OPRM1, particularly rs1799971, in candidate gene studies of 

alcohol and drug use disorders46. Our findings suggest that although LD clumping may 

differentiate the two OPRM1 loci, a more definitive test of independence – namely, a conditional 

analysis – fails to show their independence, consistent with the presence of a single locus at 

OPRM1. 
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Our cross-ancestry analysis showed an association between a SNP in FURIN and OUD, 

with transcriptome-wide analyses showing significant downregulation of gene-expression for 

FURIN in brain-related tissues. These findings support the reported associations of OUD with 

FURIN both in gene-based analyses14,16 and in a variant-level meta-analysis of OUD14. FURIN 

is associated with schizophrenia47 and harbors a schizophrenia-associated cis-eQTL48. 

Although FURIN encodes a protease that cleaves some endogenous opioids, notably 

proenkephalin49, the enzyme has not previously been linked to the effects of exogenous opioids 

or mu-opioid receptor signaling. Given these findings, further research on the mechanism 

underlying the gene’s effects on risk of OUD is warranted. 

Our analysis also identified 12 novel GWS loci. Two of these, which are in RABEPK and 

NCAM1, were GWS in a multi-trait analysis using MTAG of OUD with cannabis use disorder 

and alcohol use disorder14. Here, we show associations directly with OUD. RABEPK is adjacent 

to PPP6C, a gene previously implicated in a gene-level analysis of OUD16 that has also been 

linked to reward-related phenotypes like obesity and smoking50,51. Whereas SNPs within 

RABEPK contributed to the PPP6C signal in a previous study45, our lead SNP could be tagging 

functional variants in PPP6C. Alternatively, our study included multiple ancestral groups, and 

50% more OUD cases, which could have affected the location of the GWAS peak and enabled 

us to localize the peak more accurately than in 45. NCAM1 and KCNN1 have been implicated in 

the neuropharmacology of opioid-related phenotypes. The mouse homolog of KCNN1 is 

differentially expressed in the nucleus accumbens following chronic morphine exposure52. The 

gene is also downregulated in the rodent prelimbic cortex after exposure to cues associated 

with morphine withdrawal53, suggesting a connection to learning and memory. NCAM1 also 

appears to be involved in the response to morphine exposure. Tolerance in rodents due to 

repeated morphine injection can be prevented by treatment with an antisense 

oligodeoxynucleotide that targets Ncam154. NCAM1 variants have also been significantly 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 15, 2021. ; https://doi.org/10.1101/2021.12.13.21267480doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.13.21267480
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

 

24

associated with alcohol dependence55, drug dependence56, smoking initiation51, cannabis use57, 

and alcohol consumption51.  

Several other loci identified in our cross-ancestry meta-analysis contain GWAS hits for 

other traits, suggesting the possibility of widespread pleiotropy of loci associated with OUD. 

CDKAL1 and BTNL2 have been associated with metabolic traits such as type 2 diabetes, body 

mass index58 and obesity-related phenotypes50. FBXW4 and CDH8 have prior associations with 

cognitive traits such as educational attainment and mathematical ability59, and TSNARE1 has a 

prior association with schizophrenia60. 

Partitioning heritability enrichment analyses showed that CNS cells were the only 

significantly enriched group. We found significant enrichment for OUD in brain tissues only, 

including the anterior cingulate cortex, limbic system, prefrontal cortex, hypothalamus, 

amygdala, and hippocampus, regions previously associated with the underlying neurobiology of 

the disorder61.  These findings underscore the neural basis of OUD and reinforce the 

conceptualization of substance use disorders, which are often chronic and relapsing, as brain 

diseases. This notion was novel when proposed nearly 25 years ago62 and although today it is a 

view widely held by neuroscientists and clinicians, it is not universally understood by politicians 

or the general public. Improving our understanding of the biological basis of OUD could promote 

a science-based response to the opioid epidemic.  

Consistent with prior findings, OUD showed strong genetic correlations with multiple 

substance use disorders, psychiatric disorders, cognitive traits, and risk behavior13,15,16,63. 

Mendelian randomization analyses demonstrated causal effects of OUD on problematic alcohol 

use and cannabis use disorder, and a bidirectional causal effect of drinks per week. Given the 

high frequency with which substance use disorders co-occur, and the causal associations 

shown here, treatment efforts that aim broadly to reduce substance use are recommended: 

reducing use of substances comorbid with OUD would, according to this model, also reduce use 

of opioids. Genetic liability for psychiatric traits, including neuroticism and schizophrenia, was 
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also causally associated with OUD, with a bidirectional causal effect of MDD on OUD. Our 

findings, along with those of others13, suggest that OUD has a common biological pathway with 

schizophrenia and MDD. Despite the significant genetic correlations and causal associations 

between OUD and psychiatric disorders, genomic structural equation modelling indicated a 

common genetic factor representing broad genetic liability for substance use disorders that is 

distinct from those underlying the psychiatric disorders. The factor structure among psychiatric 

disorders seen here is consistent with previous findings64 and shows that cannabis use disorder 

and smoking, unlike OUD, load onto both the substance use disorder factor and the factor 

underlying MDD, ADHD, autism spectrum disorder, and Tourette’s syndrome. 

PheWAS of the genetic liability for OUD in the Yale-Penn sample, which was 

ascertained for substance use disorders, reproduced the broad association with other 

substance use. In a clinical dataset using EHR data, the genetic liability for OUD was 

associated with multiple traits in every phenotypic domain tested, demonstrating the widespread 

effects of OUD liability on bodily systems. Some of the associations may be due to phenotypic 

correlation. For instance, associations were found with viral hepatitis and human 

immunodeficiency virus (HIV), potential proxies of injection drug use, and with chronic pain and 

back pain, potential proxies for the use of analgesic medications. Negative associations with 

obesity, type 1 diabetes, and skin cancer may reflect under reporting or diagnosis in individuals 

with OUD, or they could also reflect true biological relationships. 

Limitations to the present study should be noted. Although it includes AA, EA, and HA 

individuals, participants of European ancestry comprise more than 60% of the total sample, 

which in large part drove the results of the cross-ancestry analysis. This disparity in sample size 

is also reflected in analyses of the individual ancestral groups, in which the smaller AA and HA 

groups provided less statistical power and yielded fewer significant loci. The lower power of the 

AA GWAS is also reflected in the lack of associations in PRS analysis in AAs. Future GWAS of 

OUD should focus on expanding sample sizes for non-European-ancestral populations to 
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capture loci that are relevant to specific population groups. The sample for this study is >90% 

male, reflecting the sex distribution of Veterans in the United States. Risk variants relevant only 

to women may thus have been overlooked due to the lower statistical power. Because the MVP 

dataset lacks information on the initiation of opioid use among patients diagnosed with OUD, we 

could not differentiate patients who developed the disorder only after being prescribed opioid 

analgesics from those whose first opioid use involved recreational use of analgesics or heroin. 

Differences in the initiation of opioid use could reflect different genetic risk factors contributing to 

non-overlapping intermediate phenotypes (e.g., pain threshold/susceptibility in analgesic use vs. 

risk taking in recreational use). 

In summary, we have identified 14 genetic loci associated with OUD, the majority novel. 

Many of the loci contain genes with prior associations with substance use or psychiatric 

disorders, suggesting widespread pleiotropy. The use of a less stringent definition of OUD 

allowed a 25% larger number of OUD cases than a stringent definition in the MVP sample. 

Downstream analyses validate this approach by demonstrating plausible enrichment of OUD in 

brain regions, genetic correlations with other substance use disorders and psychiatric disorders, 

and association between OUD PRS and opioid dependence in an independent sample. Our 

findings provide insight into the biological underpinnings of OUD, which could inform preventive, 

diagnostic, and therapeutic efforts and thereby help to address the opioid epidemic.  
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Figure legends 

Figure 1: Manhattan and quantile-quantile plot for cross-ancestry meta-analysis of OUD (N 

case=31,480, N control=394,484). Effective sample size weighted meta-analyses were 

performed in METAL. The nearest protein-coding gene (<1Mb) in each locus is labelled. 

Figure 2: Enrichment of OUD in the brain. A. Partitioning heritability enrichment analyses using 

LDSC show enrichment for OUD in the central nervous system. B. Heritability enrichment for 

gene expression using GTEx data show enrichment for OUD in brain regions previously 

associated with addiction. C. Predicted gene expression using S-PrediXcan identify genes with 

differential expression in brain regions. 

Figure 3: Phenotypic spectrum associated with OUD. A. Genetic correlation analyses show 

multiple traits significantly genetically correlated with OUD (red bar – positively correlated, blue 

bar – negatively correlated). Mendelian randomization analyses identify causal associations 

between OUD and other traits (arrows, red – positive causal association, blue – negative causal 

association). B and C. PheWAS results in BioVU (B) and Yale-Penn (C) datasets. All 

phenotypes significant at FDR p<0.05 are plotted. In B, all phenotypes which pass Bonferroni 

correction are labelled. For readability, in C, only the top 3 traits within each group which pass 

Bonferroni correction are labelled. Circle size denotes effect size. 

Figure 4: Genomic SEM analysis of OUD with other substance use traits (OUD: opioid use 

disorder; PAU: problematic alcohol use; CUD: cannabis use disorder; SMK: ever smoked 

regularly) and psychiatric disorders (SCZ: schizophrenia; BIP: bipolar disorder; MDD: major 

depressive disorder; ASD: autism spectrum disorder; ADHD: attention deficit hyperactivity 

disorder; TS: Tourette’s syndrome; OCD: obsessive compulsive disorder). Four factors were 

identified. Factor loadings for each trait are depicted by arrows between the trait and the factor. 

Correlation between factors is indicated by arrows between the factors. Residual variance for 

each trait is indicated by the U-circles. Standard errors are depicted in parentheses. 
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Table 1: Summary of the 14 GWS loci identified in GWAS analyses of OUD 

Chr Position (GRCh37/hg19) of 

lead SNPs 

Nearest genes GWAS analysis 

5 43846681 NNT AA (Less stringent) 

6 21362610, 21478361 CDKAL1, SOX4 Cross-ancestry (Less stringent), HA (Less 

stringent), Cross-ancestry (Meta) 

6 32383573 BTNL2 Cross-ancestry (Less stringent) 

6 154360797, 154380719, 

154382139, 154393680, 

154396472 

OPRM1 Cross-ancestry (Less stringent), EA (Less 

Stringent), Cross-ancestry (Stringent), EA 

(Stringent), Cross-ancestry (Meta), EA (Meta) 

6 24394925 MRS2 HA (Less stringent) 

8 143312933, 143316970 TSNARE1 Cross-ancestry (Stringent), EA (Stringent), EA 

(Meta) 

9 127873473, 127959540, 

127980426 

SCAI, RABEPK Cross-ancestry (Less stringent), Cross-ancestry 

(Meta), EA (Meta) 

10 103414885 FBXW4 Cross-ancestry (Less stringent), EA (Less 

Stringent), EA (Meta) 

10 110504365 [] Cross-ancestry (Less stringent) 

11 112869404 NCAM1 Cross-ancestry (Less stringent) 

15 91410009, 91406146, 

91426560 

FURIN Cross-ancestry (Less stringent), EA (Less 

Stringent), Cross-ancestry (Stringent), EA 

(Stringent), Cross-ancestry (Meta), EA (Meta) 

16 61631362 CDH8 EA (Less stringent), EA (Stringent) 

19 18093588 KCNN1 Cross-ancestry (Less stringent), AA (Less 

stringent), Cross-ancestry (Meta), AA (Meta) 

20 48540277, 48583726 RNF114 Cross-ancestry (Less stringent), Cross-ancestry 

(Meta) 
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