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 25 

Summary 26 

The neutrophil-lymphocyte ratio (NLR) is a biomarker of systemic inflammation and measures 27 

innate-adaptive immune system balance. The omega-3-index (O3I) measures the amount of 28 

EPA+DHA in blood. Both a low O3I and an elevated NLR are associated with increased risk for 29 

chronic disease and mortality, including cardiovascular diseases and cancer. Hypothesizing that 30 

low O3I may partly contribute to systemic chronic inflammation, we asked if a relationship 31 

existed between O3I and NLR in healthy adults (≥18y, n=28,871, 51% female) without 32 

inflammation [C-reactive protein (CRP) <3mg/mL)] who underwent a routine clinical 33 

assessment. NLR was inversely associated with O3I before (p<0.0001) and after adjusting for 34 

age, sex, BMI, and CRP (p<0.0001). Pearson correlations of other variables with NLR were 35 

r=0.06 (CRP), r=0.14 (age), and r=0.01(BMI). In this healthy population, an O3I <6.6% was 36 

associated with increasing NLR whereas NLR remained relatively constant (low) when O3I 37 

>6.6%, suggestive of a quiescent, balanced immune system. 38 

  39 
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Keywords: neutrophils, lymphocytes, neutrophil-lymphocyte ratio, omega-3 index, 40 

eicosapentaenoic acid, docosahexaenoic acid 41 

 42 

Abbreviations: BMI, body mass index; CRP, high-sensitivity C-reactive protein; DHA, 43 

docosahexaenoic acid; EPA, eicosapentaenoic acid; NLR, neutrophil-lymphocyte ratio; O3I, 44 

omega-3 index; SPM, specialized pro-resolving lipid mediators. 45 
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1. Introduction 47 

Cells from both the innate and adaptive immune system circulate in blood. Cells of the 48 

former (i.e., neutrophils, phagocytes, dendritic cells, macrophages, eosinophils, basophils, mast 49 

cells, and natural killer cells) work together to neutralize pathogens, in part by releasing pro-50 

inflammatory mediators that modulate the latter. Neutrophils are the most abundant 51 

leukocytes in circulation. They migrate to sites of tissue injury or damage and are responsible 52 

for a non-specific inflammatory response. The adaptive system (acquired immunity) responds 53 

to specific pathogens and cytokines by producing antibodies and maintains immunological 54 

memory via lymphocytes, i.e., T and B cells. The hallmark of the adaptive immune system is 55 

clonal expansion of lymphocytes. Inflammation is generally self-limiting, with its resolution 56 

being an active rather than passive process [1]. Chronic or unresolved inflammation can 57 

damage host tissues and increase risk for the development of a range of non-communicable 58 

diseases, e.g. cardiovascular, cancer, chronic respiratory diseases, diabetes, and autoimmune 59 

disorders, e.g. rheumatoid arthritis [2–4]. 60 

The neutrophil-lymphocyte ratio (NLR) is an emerging biomarker of systemic inflammation 61 

[5–8] and innate-adaptive immune system balance [6,9] that is readily accessible from a 62 

complete blood count. It has the benefit of not being influenced by physiological conditions 63 

such as dehydration and exercise [6]. NLR has been used to monitor astronaut immune function 64 

during long-duration missions [10]. Elevated NLR is also a biomarker of systemic inflammation 65 

[5,11–14], cardiovascular disease and events [6,15–18],  the severity of covid-19 [19–22], mood 66 

disorders [23], cognitive impairment [24], cancer [6,7,25], dry eye [26], periodontitis [27], 67 
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rheumatoid arthritis [28], cancer [12,25,29], diabetic kidney disease [30] and total mortality 68 

[6,9,14,17,31,32]. 69 

Nutrient deficiencies or inadequacies can impair immune system function and weaken the 70 

immune response [3,33–36]. The proportion of EPA and DHA in immune cell membranes can 71 

modulate inflammation via the synthesis of prostaglandins, leukotrienes, lipoxins and 72 

specialized pro-resolving lipid mediators (SPMs, e.g., resolvins, protectins, and maresins) [1,37]. 73 

The EPA and DHA-derived metabolites are less inflammatory than those derived from the 74 

omega-6 precursor, arachidonic acid [1,33,37–42]. SPMs derived from EPA and DHA reduce 75 

neutrophil infiltration and production of reactive oxygen species, regulate the cytokine-76 

chemokine axis, and temper the inflammatory response without immunosuppression [37,43–77 

45]. The omega-3 index (O3I) [46] is a stable biomarker of long term EPA and DHA intake 78 

[47,48]. A low O3I [49] and an elevated NLR [14,18,50] are both associated with risk of 79 

cardiovascular events and mortality (Supplemental Table 1). Hypothesizing that low blood 80 

EPA+DHA levels may partly contribute to systemic chronic inflammation, we asked if there was 81 

a relationship between the O3I and the NLR in healthy individuals without inflammation. 82 

2. Patients and Methods 83 

This is a cross-sectional analysis of data from blood samples submitted for testing to 84 

Health Diagnostic Laboratory, Inc (HDL, Inc., Richmond VA; now defunct) as part of routine 85 

clinical assessment between 2011-2012. Subjects were adults (≥18y) with data on O3I, NLR, 86 

body mass index (BMI), age, sex, and high-sensitivity C-reactive protein (CRP) (n=44,925). 87 

Individuals with extreme O3I values (i.e., highest and lowest 0.5%) were excluded. Because CRP 88 

> 3mg/L is indicative of inflammation arising from infection, trauma or chronic disease [51–54], 89 
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individuals with CRP >3 mg/L were also excluded. Thus, the final study population consisted of 90 

28,871 individuals (Figure 1). 91 

2.1  Laboratory Methods  92 

Blood samples were drawn after an overnight fast and shipped with cold packs to HDL, Inc. 93 

for testing. Samples were prepared at each clinical site according to standardized instructions 94 

as previously described [55]. Absolute concentrations of blood cells (neutrophils, lymphocytes, 95 

NLR) were determined with a Beckman-Coulter DxH 800 analyzer (Brea, CA, USA) and 96 

biomarker data (CRP, O3I) were extracted without any linked patient identifiers except age, sex, 97 

and BMI. For fatty acid analysis, RBCs were separated from plasma by centrifugation and 98 

analyzed using gas chromatography as previously described [56]. The University of South 99 

Dakota Institutional Review Board reviewed and approved the use of such de-identified clinical 100 

data for research purposes (IRB-21-147). 101 

 102 

2.2 Statistical methods 103 

Sample characteristics were summarized using standard statistical methods (e.g., means, 104 

SDs, correlations) with t-tests and adjusted linear models used to compare characteristics of 105 

male and female participants above and below O3I values that were ultimately identified as 106 

primary cut points in the NLR-O3I curves (see below). Splines were fit using 3rd degree 107 

polynomials with knots at each decile in R (version 3.6.2; splines package). Unadjusted models 108 

used a linear model to predict NLR values by splines of O3I. Adjusted models accounted for sex, 109 

age, BMI and CRP values in the linear models accounting for potential non-linear relationships 110 

using splines. To identify significant changes in the NLR-O3I relationship, we used a “sliding O3I 111 
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window” approach. The width of each window was three O3I percentage points (e.g., 4% to 112 

7%). By moving the window up by 0.1% increments and repeatedly testing for significant 113 

differences between the mean NLR in the lower vs. the upper half of the window, we sought to 114 

discover O3I cut points where the NLR-O3I relationship appeared to flatten. These would be O3I 115 

values above which the “effect” of an increase in O3I on NLR had little impact. We began with a 116 

window midpoint of O3I =2.6%, and we used adjusted linear models in R to test for upper vs 117 

lower half differences. We identified the first window which did not have a statistically 118 

significant difference in upper and lower mean NLR values. The midpoint of this window was 119 

chosen as the O3I cut point to be used in further analysis. 120 

Statistical interactions with O3I values above and below the subsequently identified 121 

inflection points were tested by placing the interaction term in separate models predicting O3I, 122 

NLR, age, sex, BMI, and CRP. Pearson correlations were used to assess strength and direction of 123 

linear association between covariates and NLR. Statistical significance was set to 0.05 for all 124 

analyses and 95% confidence bands are provided where appropriate.  125 

3. Results 126 

The final dataset consisted of 28,871 healthy adults (Figure 1). The average age was 127 

55.1±15.1 years, the average BMI was 27.6±5.4 kg/m2, and there were slightly more females 128 

(51%) than males. Females were significantly younger and had slightly but significantly higher 129 

O3I and CRP levels and lower NLR, neutrophil count, and BMI than males (Table 1). When the 130 

model was also adjusted for age, BMI and CRP, small but significant sex differences remained 131 

with the exception of BMI (Table 1).  132 
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NLR was significantly (p<0.0001) and inversely associated with O3I (Figure 2A). Pearson 133 

correlations (r) of other variables with NLR were r=0.06 (CRP), r=0.14 (age), r=0.01 (BMI), r=0.65 134 

(neutrophil count), and r=-0.24 (lymphocyte count). Adjustment for age, sex, BMI, and CRP 135 

strengthened the relationship (Figure 2B). The O3I value where the relationship between O3I 136 

and NLR began to flatten (i.e., the cut point determined by the sliding window analysis 137 

described in Methods) was 6.6% although NLR continued to decline until O3I >8.5% (Figure 2B). 138 

Below 6.6%, the curve was clearly steeper than it was above 6.6%. The O3I cut point of 6.6% 139 

was explored in more detail. An O3I <6.6% was associated with significantly higher NLR, 140 

neutrophil number, lymphocyte number, CRP, BMI, and lower age (versus O3I ≥6.6%) (Table 2). 141 

These O3I-related differences persisted, except for lymphocyte number, when the model was 142 

adjusted for age, sex, BMI and CRP (Table 2).  143 

When adults with inflammation (CRP >3mg/L) were included (n=43,851), NLR was 144 

significantly and inversely related with O3I before (p<0.0001) and after adjusting for age, sex, 145 

BMI and CRP (p<0.0001) (Supplemental Figure 1). As noted above, we chose to restrict our 146 

analysis to a healthy population (i.e., without evident inflammation) to establish EPA+DHA 147 

standards that could be used to develop DRIs.  148 

4. Discussion and Conclusions 149 

We report a significant inverse relationship between O3I and NLR. By excluding individuals 150 

with CRP >3 mg/L, we could examine the O3I-NLR relationship in individuals without any 151 

evidence of tissue injury, infection, or systemic acute inflammation [57,58], i.e. a cohort 152 

suitable for deriving O3I standards on which Dietary Reference Intakes (DRIs) could be 153 

developed for planning and assessing EPA+DHA intakes of healthy people. NLR values measured 154 
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in this cohort (Table 1) were similar to those measured in healthy adults globally [8,24,59–63]. 155 

NLR is known to increase with age [9,32,60], obesity [13,60], CRP [64,65], and to sometimes 156 

differ by sex [32,59]. These same relationships were mostly observed here as well (data not 157 

reported), suggesting that the findings from this clinical laboratory cohort are generally 158 

representative. 159 

Inflammation is a normal physiological response to infection and injury, but unrestrained 160 

inflammation can cause tissue damage leading to disease. As noted earlier, EPA and DHA serve 161 

as precursors for the synthesis of prostaglandins, leukotrienes, lipoxins and SPMs that can 162 

mediate immune responses [1,29,33,37,39–41]. SPMs derived from EPA and DHA protect 163 

tissues by limiting acute inflammatory responses and helping achieve homeostasis without 164 

immunosuppression [37,44,45]. In a randomized, double-blind, crossover trial, 165 

supplementation (10wk) with high doses of EPA or DHA (~8g/d) in individuals with abdominal 166 

obesity and low-grade inflammation (baseline CRP 3.3±2.4 mg/L) separated by a 9-wk washout 167 

significantly increased blood EPA and DHA concentrations (vs corn oil control) [66]. DHA, but 168 

not EPA, supplementation decreased CRP concentrations (vs control) and the authors 169 

concluded EPA and DHA had more consistent effects on anti-inflammatory gene expression 170 

than pro-inflammatory gene expression [66]. Using pairwise and network meta-analyses of 171 

randomized controlled trials, DHA and EPA seem to have similar effects on CRP, IL-6, TNF-α, and 172 

adiponectin [67]. Although EPA and DHA trigger anti-inflammatory responses in vitro [68,69], 173 

the effects of long-chain omega-3 fatty acids on plasma CRP concentrations are mixed [70–73]. 174 

A threshold blood EPA+DHA concentration may be required to fuel sufficient SPM biosynthesis 175 

to achieve meaningful resolution of inflammation [37].  176 
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Omega-3 supplementation increases the EPA+DHA content of neutrophil membranes in 177 

vivo and inhibits the 5-lipoxygenase pathway and leukotriene B4-mediated functions of 178 

neutrophils in vitro [38]. Omega-3 supplementation significantly increased plasma EPA+DHA 179 

levels (50-100%) and decreased concentrations of IL-6 (10-12% vs 36% increase in placebo 180 

group) and TNFα (0.2 to -2.3% vs 12% increase in placebo group) in healthy, middle-aged and 181 

older individuals [74]. Meta-analyses have confirmed this effect [72]. In a study of 8,237 182 

participants living in Japan without a history of cardiovascular disease,  eating fish >4 days per 183 

week was associated with significant lower NLR [75]. High omega-3 dietary intake was 184 

associated with a trend towards lower CRP (p=0.09) and NLR (p=0.17) in men with acute 185 

coronary syndrome [76]. A systematic review and meta-analysis of 18 randomized controlled 186 

trials found marine-derived omega-3 fatty acids lowered pro-inflammatory eicosanoid 187 

concentrations, e.g., in neutrophil leukotriene B4 [77]. In the long-term, chronically lower levels 188 

of inflammation may have health benefits. For example, a pooled analysis of data from 17 189 

prospective cohort studies involving 15,720 deaths among 43,466 individuals over a median of 190 

16 years of follow-up found blood EPA+DHA levels were inversely associated with risk for death 191 

from all causes, CVD, cancer and other causes [49].  192 

Despite the strength of the NLR-O3I relationship, the most obvious limitation of this study 193 

is that confounding metabolic events, dietary behaviors, smoking habits and/or physical activity 194 

levels associated with O3I may also affect innate-adaptive immune system balance. However, a 195 

nationally representative study of 9,427 individuals living in the US did not find significant 196 

differences in NLR with respect to sex, education, insurance status, or drinking habits [59]. 197 

Moreover, this cross-sectional population is similar to 2/3 of the US population who have CRP 198 
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<3mg/L [78] and the ~95% of adults living in the USA with circulating O3I percentages below 5% 199 

[79,80]. 200 

In this cross-sectional study of healthy individuals, 81% of participants had O3I <6.6%. 201 

Below this threshold, an increase in NLR, reflecting an increasingly imbalanced innate-adaptive 202 

immune system, was observed. NLR continued to decrease with increasing O3I until O3I  >8.5%, 203 

similar to the target proposed for cardiovascular health, i.e. O3I >8% [46,81]. Clearly additional 204 

evidence, including intervention studies, is needed to determine whether the NLR-O3I 205 

relationship is causal or coincidental.  206 

In conclusion, red blood cell EPA+DHA levels are significantly and inversely associated with 207 

NLR, a biomarker of inflammation and innate-adaptive immune system balance. Based on our 208 

observations in this healthy cohort, an O3I >6.6%, and possibly as high as 8.5%, is associated 209 

with lower NLR values that are indicative of a quiescent, balanced innate-adaptive immune 210 

system.  211 

  212 
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Table 1. Characteristics of the study population. Mean±SD  

Variable1 All 
(n=28,871) 

Males 
(n=14,211) 

Females 
(n=14,660) 

Male vs. Female 
Adjusted2  

p-value 

O3I (%) 4.97±1.84 4.9±1.82 5.05±1.85 0.016 

NLR 2.09±1.10 2.13±1.13 2.05±1.07 <0.0001 

Neutrophil (103/µL) 3.41 ±1.4 3.46±1.4 3.37±1.39 0.0002 

Lymphocyte (103/µL) 1.81±1.47 1.82±1.77 1.80±1.10 <0.0001 

CRP (mg/L) 1.23±0.77 1.21±0.75 1.25±0.79 0.0001 

BMI (kg/m2) 27.6±5.4 28.8±4.9 26.6±5.6 0.54 

Age (years) 55.1±15.1 55.3±14.7 54.9±15.5 <0.001 

1 O3I, Omega-3 index; NLR, neutrophil-lymphocyte ratio; CRP, high-sensitivity C-reactive 

protein; BMI, body mass index. 
2 Models were adjusted for age, BMI, and CRP (except when the model was predicting 

these variables).  
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 520 

Table 2. Stratification by omega-3 index (O3I) classification (n=28,871). Mean±SD 

Variable1 
O3I <6.6% 
(n=23,510) 

O3I ≥6.6% 
(n=5,361) 

Adjusted2  
p-value 

O3I (%) 4.28±1.11 8.03±1.16 <0.0001 

NLR 2.12±1.11 1.96±1.07 <0.0001 

Neutrophil (103/µL) 3.48±1.40 3.11±1.35 <0.0001 

Lymphocyte (103/µL) 1.82±1.56 1.76±0.95 0.591 

CRP (mg/L) 1.27±0.78 1.07±0.73 <0.0001 

BMI (kg/m2) 28.0±5.4 26.3±4.9 <0.0001 

Age (years) 54.1±15.4 59.4±13.1 <0.0001 
1 O3I, Omega-3 index; NLR, neutrophil-lymphocyte ratio; CRP, high-sensitivity C-reactive 

protein; BMI, body mass index. 
2 Models were adjusted for sex, age, BMI, and CRP (except when the model was 

predicting these variables). 
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Figure 1. Analytical sample flow. NLR, neutrophil-lymphocyte ratio; O3I, omega-3 index; CRP, 524 

high-sensitivity C-reactive protein; BMI, body mass index. 525 

 526 

Figure 2. The unadjusted (A) and adjusted for sex, age, BMI, and CRP (B) relationship between 527 

the neutrophil-lymphocyte ration (NLR) and the omega-3 index (O3I) in 28,871 healthy adults. 528 

(Means and 95% confidence bands). 529 
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44,295 adults
>18 years with O3I, NLR, 

Age, Sex, BMI, CRP

43,851 adults

Bottom 0.5% O3I
(n=222)

Top 0.5% O3I
(n=222)

28,871 adults

CRP > 3 mg/L
(n=14,980)

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted December 14, 2021. ; https://doi.org/10.1101/2021.10.22.21264656doi: medRxiv preprint 

https://doi.org/10.1101/2021.10.22.21264656


2.4

2.1

1.8

A B

N
LR

N
LR

3 66 93 9

O3I (%) O3I (%)

2.1

1.8

2.4

p<0.0001 p<0.0001

Unadjusted Adjusted

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted December 14, 2021. ; https://doi.org/10.1101/2021.10.22.21264656doi: medRxiv preprint 

https://doi.org/10.1101/2021.10.22.21264656

