## Vitamin D Supplementation is Associated with Slower Epigenetic Aging

Valentin Max Vetter<sup>1, 2</sup>, Yasmine Sommerer<sup>3</sup>, Christian Humberto Kalies<sup>1</sup>, Dominik Spira<sup>1</sup>, Lars Bertram<sup>3, 4</sup>, Ilja Demuth<sup>1, 5</sup>

<sup>1</sup>Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Endocrinology and Metabolic Diseases (including Division of Lipid Metabolism), Biology of Aging working group, Augustenburger Platz 1, 13353 Berlin, Germany

<sup>2</sup>Department of Psychology, Humboldt University Berlin, Berlin, Germany

<sup>3</sup>Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Lübeck, Germany

<sup>4</sup>Center for Lifespan Changes in Brain and Cognition (LCBC), Dept of Psychology, University of Oslo, Oslo, Norway

<sup>5</sup>Charité - Universitätsmedizin Berlin, BCRT - Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany

## **Corresponding author:**

Ilja Demuth (Ph.D.) Charité - Universitätsmedizin Berlin Lipid Clinic at the Interdisciplinary Metabolism Center, Biology of Aging Group Augustenburger Platz 1 13353 Berlin Email: ilja.demuth@charite.de Phone: ++49 30 450 569 143 FAX: ++49 30 450 566 904

## **Supplementary Table 1: Sex-stratified cohort characteristics of the older participants at baseline examination (BASE-II).** The t-test was used to assess the significance of the differences in means for continuous variables. Difference between categorical variables was determined by chi-square and goodness-of-fit test.

|                           | female |         |      |       |       | male |         |      |       |       |         |
|---------------------------|--------|---------|------|-------|-------|------|---------|------|-------|-------|---------|
|                           | n      | Mean, % | SD   | Min   | Max   | n    | Mean, % | SD   | Min   | Max   | p-value |
| Chronological Age         | 538    | 68.07   | 3.33 | 61.34 | 84.63 | 498  | 68.50   | 3.65 | 60.16 | 80.65 | 0.046   |
| sex                       | 538    |         |      |       |       | 498  |         |      |       |       |         |
| male                      | 0      | 0.00    |      |       |       | 498  | 100.00  |      |       |       | < 0.001 |
| female                    | 538    | 100.00  |      |       |       | 0    | 0.00    |      |       |       |         |
| Vitamin D status          | 538    |         |      |       |       | 498  |         |      |       |       |         |
| deficient                 | 253    | 47.03   |      |       |       | 228  | 45.78   |      |       |       | 0.735   |
| sufficient                | 285    | 52.97   |      |       |       | 270  | 54.22   |      |       |       |         |
| Vitamin D supplementation | 538    |         |      |       |       | 498  |         |      |       |       |         |
| no                        | 484    | 89.96   |      |       |       | 481  | 96.59   |      |       |       | < 0.001 |
| yes                       | 54     | 10.04   |      |       |       | 17   | 3.41    |      |       |       |         |
| Season of blood draw      | 516    |         |      |       |       | 498  |         |      |       |       |         |
| winter                    | 170    | 32.95   |      |       |       | 249  | 50.00   |      |       |       | < 0.001 |
| summer                    | 346    | 67.05   |      |       |       | 249  | 50.00   |      |       |       |         |
| Morbidity Index           | 433    | 1.11    | 1.21 | 0     | 10    | 434  | 1.28    | 1.34 | 0     | 7     | 0.050   |

## Supplementary Table 2: Sex-stratified cohort characteristics of the older participants at follow-up examination (as part of the GendAge

study). The t-test was used to assess the significance of the differences in means for continuous variables. Difference between categorical variables

|                           | female |        |       |       |        | male |        |       |       |       |         |
|---------------------------|--------|--------|-------|-------|--------|------|--------|-------|-------|-------|---------|
|                           | n      | mean   | sd    | min   | max    | n    | mean   | sd    | min   | max   | p       |
| Chronological Age         | 538    | 75.75  | 3.55  | 66.41 | 94.07  | 498  | 75.51  | 4.02  | 64.91 | 90.03 | 0.312   |
| sex                       | 538    |        |       |       |        | 498  |        |       |       |       | < 0.001 |
| male                      | 0      | 0.00   |       |       |        | 498  | 100.00 |       |       |       |         |
| female                    | 538    | 100.00 |       |       |        | 0    | 0.00   |       |       |       |         |
| Vitamin D level (nmol/L)  | 538    | 72.82  | 27.78 | 8.75  | 218.20 | 498  | 68.07  | 26.68 | 8.75  | 200.3 | 0.005   |
| Vitamin D status          | 538    |        |       |       |        | 498  |        |       |       |       | 0.555   |
| deficient                 | 115    | 21.38  |       |       |        | 115  | 23.09  |       |       |       |         |
| sufficient                | 423    | 78.62  |       |       |        | 383  | 76.91  |       |       |       |         |
| Vitamin D supplementation | 538    |        |       |       |        | 498  |        |       |       |       | < 0.001 |
| no                        | 387    | 71.93  |       |       |        | 438  | 87.95  |       |       |       |         |
| yes                       | 151    | 28.07  |       |       |        | 60   | 12.05  |       |       |       |         |
| Season of blood draw      | 538    |        |       |       |        | 498  |        |       |       |       | 0.824   |
| winter                    | 211    | 39.22  |       |       |        | 191  | 38.35  |       |       |       |         |
| summer                    | 327    | 60.78  |       |       |        | 307  | 61.65  |       |       |       |         |
| Morbidity Index           | 464    | 1.33   | 1.49  | 0     | 9      | 438  | 1.44   | 1.61  | 0     | 9     | 0.282   |

was determined by chi-square and goodness-of-fit test.

Supplementary Table 3: Multiple linear regression analyses of DNAm age and DNAmAA on group (treated/control), season of blood draw, chronological age and sex (if applicable).

|                 | Estimate | SE   | p-value |    | n   |
|-----------------|----------|------|---------|----|-----|
| Women and Men   |          |      |         |    |     |
| 7-CpG DNAmAA    | -2.55    | 0.99 | 0.0112  | *  | 126 |
| Horvath DNAmAA  | -1.18    | 0.61 | 0.0557  |    | 126 |
| Hannum DNAmAA   | -0.46    | 0.62 | 0.4650  |    | 126 |
| PhenoAge DNAmAA | -0.32    | 0.88 | 0.7177  |    | 126 |
| GrimAge DNAmAA  | -0.35    | 0.48 | 0.4659  |    | 126 |
|                 |          |      |         |    |     |
| Women           |          |      |         |    |     |
| 7-CpG DNAmAA    | -3.12    | 1.28 | 0.0165  | *  | 86  |
| Horvath DNAmAA  | -0.57    | 0.79 | 0.4667  |    | 86  |
| Hannum DNAmAA   | -0.03    | 0.80 | 0.9730  |    | 86  |
| PhenoAge DNAmAA | -0.34    | 1.12 | 0.7582  |    | 86  |
| GrimAge DNAmAA  | -0.28    | 0.55 | 0.6117  |    | 86  |
|                 |          |      |         |    |     |
| Men             |          |      |         |    |     |
| 7-CpG DNAmAA    | -1.49    | 1.48 | 0.3214  |    | 40  |
| Horvath DNAmAA  | -2.55    | 0.91 | 0.0077  | ** | 40  |
| Hannum DNAmAA   | -1.22    | 0.96 | 0.2091  |    | 40  |
| PhenoAge DNAmAA | -0.40    | 1.44 | 0.7811  |    | 40  |
| GrimAge DNAmAA  | -0.35    | 0.97 | 0,7236  |    | 40  |
|                 |          |      |         |    |     |



Supplementary Figure 1: Alluvial plot of participants that showed vitamin deficiency and no vitamin D supplementation at baseline. Many of the participants that had vitamin D level < 50nmol/L at baseline are vitamin D sufficient at follow-up. This transition can be explained for most participants by either start of vitamin D supplementation or blood draw during summer.



Supplementary Figure 2: Barplots of the frequency of vitamin D deficient participants stratified by month of blood draw.



**Covariate Balance after Matching** 

Supplementary Figure 3: Love plot of absolute standardized mean difference in covariates before and after matching of treated participants with vitamin D deficient participants without supplementation. Optimal pair matching was performed to identify the ideal control group for the participants that were vitamin D deficient at baseline and started vitamin D supplementation during the follow-up period.



Supplementary Figure 4: Boxplots of DNAmAA by five different epigenetic clocks in the treated group (n=63) and control group (vitamin D sufficient at baseline and follow-up, n=63).



**Covariate Balance after Matching** 

Supplementary Figure 5: Love plot of absolute standardized mean difference in covariates before and after matching of treated participants with vitamin D sufficient participants without supplementation. Optimal pair matching was performed to identify the ideal control group of "healthy" participants for the participants that were vitamin D deficient at baseline and started vitamin D supplementation during the follow-up period.