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Abstract 

Short-term probabilistic forecasts of the trajectory of the COVID-19 pandemic in the United 
States have served as a visible and important communication channel between the scientific 
modeling community and both the general public and decision-makers. Forecasting models 
provide specific, quantitative, and evaluable predictions that inform short-term decisions such as 
healthcare staffing needs, school closures, and allocation of medical supplies. Starting in April 
2020, the US COVID-19 Forecast Hub (https://covid19forecasthub.org/) collected, 
disseminated, and synthesized tens of millions of specific predictions from more than 90 
different academic, industry, and independent research groups. A multi-model ensemble 
forecast that combined predictions from dozens of different research groups every week 
provided the most consistently accurate probabilistic forecasts of incident deaths due to COVID-
19 at the state and national level from April 2020 through October  2021. The performance of 27 
individual models that submitted complete forecasts of COVID-19 deaths consistently 
throughout this year showed high variability in forecast skill across time, geospatial units, and 
forecast horizons. Two-thirds of the models evaluated showed better accuracy than a naïve 
baseline model. Forecast accuracy degraded as models made predictions further into the future, 
with probabilistic error at a 20-week horizon 3-5 times larger than when predicting at a 1-week 
horizon. This project underscores the role that collaboration and active coordination between 
governmental public health agencies, academic modeling teams, and industry partners can play 
in developing modern modeling capabilities to support local, state, and federal response to 
outbreaks.  
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Significance Statement 

This paper compares the probabilistic accuracy of short-term forecasts of reported deaths due 
to COVID-19 during the first year and a half of the pandemic in the US. Results show high 
variation in accuracy between and within stand-alone models, and more consistent accuracy 
from an ensemble model that combined forecasts from all eligible models. This demonstrates 
that an ensemble model provided a reliable and comparatively accurate means of forecasting 
deaths during the COVID-19 pandemic that exceeded the performance of all of the models that 
contributed to it. This work strengthens the evidence base for synthesizing multiple models to 
support public health action. 
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Introduction 

Effective pandemic response requires federal, state, and local leaders to make timely decisions 
in order to reduce disease transmission. During the COVID-19 pandemic, surveillance data on 
the number of cases, hospitalizations, and disease-associated deaths were used to inform 
response policies (1, 2). While these data provide insight into recent trends in the outbreak, they 
only present a partial, time-lagged picture of transmission and do not show if and when changes 
may occur in the future. 

Anticipating outbreak change is critical for optimal resource allocation and response. 
Forecasting models provide quantitative, evaluable, and probabilistic predictions about the 
epidemic trajectory for the near-term future. Forecasts can inform operational decisions about 
allocation of healthcare supplies (e.g., personal protective equipment, therapeutics, and 
vaccines), staffing needs, and school closures (3). Providing prediction uncertainty is critical for 
such decisions, as it allows stakeholders to assess the most likely outcomes and plausible 
worst-case scenarios (3).  

Academic research groups, government agencies, industry teams, and individuals produced 
COVID-19 forecasts at an unprecedented scale starting in March 2020. Publicly available 
forecasts reflect varied approaches, data sources, and assumptions. Some models had 
mechanisms that allowed them to incorporate an estimated impact of current or potential future 
policies on human behavior and COVID-19 transmission. Other models assumed that currently 
observed trends would continue into the future without considering external data on policies in 
different jurisdictions. 

To leverage these forecasts for the COVID-19 response, the United States Centers for Disease 
Control and Prevention (CDC) partnered with the Reich Lab at the University of Massachusetts 
Amherst to create the COVID-19 Forecast Hub (https://covid19forecasthub.org/) (4). Launched 
in early April 2020, the Forecast Hub facilitated the collection, archiving, evaluation, and 
synthesis of forecasts. Teams were explicitly asked to submit “unconditional” forecasts of the 
future, in other words, predictions that integrate across all possible changes in future dynamics. 
In practice, most individual models make predictions that are conditional on explicit or implicit 
assumptions of how policies, behaviors, and pathogens will evolve in the coming weeks. From 
these forecasts, a multi-model ensemble was developed, published weekly in real-time, and 
used by CDC in official public communications about the pandemic 
(https://www.cdc.gov/coronavirus/2019-ncov/covid-data/mathematical-modeling.html). 
Forecasts were generated for the outcomes of reported cases, hospitalizations and deaths due 
to COVID-19. This paper focuses on evaluating forecasts of reported deaths. 

Ensemble models incorporate the information and uncertainties from multiple forecasts, each 
with their own perspectives, strengths and limitations, to create accurate predictions with well-
calibrated uncertainty (5–10).  Synthesizing multiple models removes the risk of over-reliance 
on any single approach for accuracy or stability. It is challenging for individual models to make 
calibrated predictions of the future when the behavior of the system being studied is non-
stationary due to continually changing policies and behaviors. Ensemble approaches have 
previously demonstrated superior performance compared with single models in forecasting 
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influenza (11–13), Ebola (14), and dengue fever outbreaks (15). Preliminary research 
suggested that COVID-19 ensemble forecasts were also more accurate and precise than 
individual models in the early phases of the pandemic (16, 17).  

Predicting the trajectory of a novel pathogen outbreak such as COVID-19 is subject to many 
challenges. These include the role of human behavior and decision-making in outbreak 
trajectories; the fact that epidemic forecasts may play a role in a “feedback loop” when and if the 
forecasts themselves have the ability to impact future societal or individual decision-making 
(18). There are also a host of data irregularities, especially in the early stages of the pandemic.  

It is important to systematically and rigorously evaluate forecasts designed to predict real-time 
changes to the outbreak in order to identify strengths and weaknesses of different approaches 
and to understand the extent to which the forecasts are a reliable input to public health 
decisions. Knowledge of what leads to more or less accurate and well-calibrated forecasts can 
inform their development and their use within outbreak science and public policy. In this 
analysis, we sought to evaluate the accuracy of individual and ensemble probabilistic forecasts 
submitted to the Forecast Hub, focusing on forecasts of reported weekly incident deaths. 

Results 

Summary of models 

Forecasts evaluated in this analysis are based on submissions in a continuous 79-week period 
starting late April 2020 and ending in late October 2021 (Figure 1, Methods). Forecasts were 
evaluated at 55 locations including all 50 states, 4 jurisdictions and territories (Guam, US Virgin 
Islands, Puerto Rico, and the District of Columbia), and the US national level. The evaluation 
period captured the decline of the spring 2020 wave, a late summer 2020 increase in several 
locations, a large late-fall/early-winter surge in 2020/2021, and the rise and fall of the Delta 
variant in the summer and fall of 2021 (Figure 1B). 

The number of models that submitted forecasts of incident deaths to the Forecast Hub and were 
screened for inclusion in this analysis increased from 4 models at the beginning of the 
evaluation period to an average of 41.2 models per week during the first ten months of 2021 
(Figure 1C, Figure S1). Twenty-eight models met inclusion criteria, yielding 1,791 submission 
files with 556,050 specific predictions for unique combinations of forecast dates, targets 
(horizons forecasted), and locations.  

The evaluated forecasts used different data sources and made varying assumptions about 
future transmission patterns (Table S1). All evaluated models other than CEID-Walk, the 
COVIDhub-baseline, the COVIDhub-ensemble, and PSI-Draft used case data as inputs to their 
forecast models. Ten models included data on COVID-19 hospitalizations, ten models 
incorporated demographic data, and nine models used mobility data. Of the 28 evaluated 
models, seven made explicit assumptions that social distancing and other behavioral patterns 
would change over the prediction period. Two naive models were included. The COVIDhub-
baseline is a neutral model built with median predicted incidence equal to the number of 
reported deaths in the most recent week with uncertainty around the median based on weekly 
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differences in previous observations (see Methods). CEID-Walk is a random walk model with 
simple outlier handling (Table S1).  

Overall model accuracy 

To evaluate probabilistic accuracy, the primary metric used was the weighted interval score 
(WIS), a non-negative metric which measures how consistent a collection of prediction intervals 
is with an observed value (19). For WIS, a lower value represents smaller error (see Methods, 
SI Text).  

Led by the ensemble model, a majority of the evaluated models achieved better accuracy than 
the baseline model in forecasting incident deaths (Table 1). The COVIDhub-ensemble achieved 
a relative WIS of 0.61, which can be interpreted as achieving, on average, 39% less 
probabilistic error than the baseline forecast in the evaluation period, adjusting for the ease or 
difficulty of the specific predictions made. An additional seven models achieved a relative WIS 
of less than or equal to 0.75. In total, 18 models had a relative WIS of less than 1, indicating 
lower probabilistic forecast error than the baseline model, and 10 models (including the 
baseline) had a relative WIS of 1 or greater (Table 1). Patterns in relative point forecast error 
were similar, with 18 models having equal or lower mean absolute error (MAE) than the 
baseline (Table 1). Values of relative WIS and rankings of models were robust to  changing 
thresholds for submission inclusion criteria and to the inclusion or exclusion of individual 
outlying or revised observations (Tables S3 and S4). When stratified by phase of the pandemic, 
different models showed the highest accuracy overall (Figure S5).  

The degree to which individual models provided calibrated predictions varied widely (Table 1). 
We measured the probabilistic calibration of model forecasts using the empirical coverage rates 
of prediction intervals (PIs). Across 1 through 4 week-ahead horizons, 79 weeks, and 50 states, 
only the ensemble model achieved near nominal coverage rates for both the 50% and 95% PIs. 
Eight models achieved coverage rates within 5% of the desired coverage level for the 50% PI, 
and only the COVIDhub-ensemble and UMass-MechBayes achieved coverage rates within 5% 
for the 95% PI. Typically, observed coverage rates were lower than the nominal rate (Table 1, 
Figure S2). Three models had very low coverage rates (less than 50% for the 95% PI or less 
than 15% for the 50% PI). In general, models were penalized more for underpredicting the 
eventually observed values than overpredicting (Figure S7). 

Among the top performing models, there was variation in data sources used, indicating that the 
inclusion of additional data sources was not a sufficient condition for high accuracy. Of the top 
individual models with a relative WIS less than or equal to 0.75, (UMass-MechBayes, Karlen-
pypm, OliverWyman-Navigator, SteveMcConnell-CovidComplete, GT-DeepCovid, JHU_CSSE-
DECOM, and USC-SI_kJalpha) four used data beyond the epidemiological hospitalization, 
case, and death surveillance data from CSSE (Table S1). Ten of the 18 individual models that 
performed better than the baseline used data other than epidemiological surveillance data (e.g., 
demographics or mobility). The top performers consisted of both models with mechanistic 
components and mostly phenomenological ones.  

Model accuracy rankings are highly variable 

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for thisthis version posted December 10, 2021. ; https://doi.org/10.1101/2021.02.03.21250974doi: medRxiv preprint 

https://doi.org/10.1101/2021.02.03.21250974


 9 

 

The COVIDhub-ensemble was the only model that ranked in the top half of all models 
(standardized rank > 0.5) for more than 85% of the observations it forecasted, although it made 
the single best forecast less frequently than any other model (Figure 2). We ranked models 
based on relative WIS for each combination of 1 through 4 week-ahead horizons, 79 weeks, 
and 55 locations, contributing to 17,006 possible predicted observations for each model (Figure 
2). All models showed large variability in relative skill, with each model having observations for 
which it had the best (lowest) WIS and thereby a standardized rank of 1. Some models such as 
JHUAPL-BUCKY and PSI-DRAFT show a bimodal distribution of standardized rank, with one 
mode in the top quartile of models and another in the bottom quartile. In these cases, the 
models frequently made overconfident predictions (Figure S6) resulting in either lower scores 
(indicating better performance) in instances when their predictions were very close to the truth 
or higher scores (indicating worse performance) when their predictions were far from the truth. 
Similar patterns in ranking and relative model performance were seen when stratifying ranks by 
pandemic phase (Figure S3). 

Observations on accuracy in specific weeks 

Forecasts from individual models showed variation in accuracy by forecast week and horizon 
(Figure 3). The COVIDhub-ensemble model showed better average WIS than both the baseline 
model and the average error of all models across the entire evaluation period, except for three 
weeks where the baseline had lower 1-week ahead error than the ensemble. The COVIDhub-
ensemble 1-week ahead forecast for EW02-2021 yielded its highest average WIS across all 
weeks (average WIS = 72.7), and 9 out of 26 other models that submitted for the same 
locations outperformed it that week. The 4-week ahead COVIDhub-ensemble forecasts were 
worse in EW49-2020 than in any other week during the evaluation period (average WIS = 
111.7), and 15 out of the 26 models outperformed the ensemble that week at a forecast horizon 
of 4 weeks.  

There was high variation among the individual models in their forecast accuracy during periods 
of increasing deaths and near peaks (i.e., forecast dates in July through early August of 2020,  
November through March, and August - October of 2021, Figure 3). High errors in the baseline 
model tended to be associated with large outliers in observed data for a particular week, e.g. 
times when a state reported a large backfill of deaths in the most recent week (SI Text). In 
general, other models did not show unusual errors in their forecasts originating from these 
anomalous data, suggesting that their approaches, including possible adjustments to recent 
observations, were robust to anomalies in how data were reported. 

Model performance in specific pandemic waves 

In addition to evaluating performance in aggregate across the entire evaluation period and 
separate phases, we evaluated model performance during important moments during the 
pandemic. To assess the impact of rapidly changing trends on incident death forecasting 
accuracy, we ran an analysis restricted to specific locations and time periods that experienced 
high rates of change during four different waves of the pandemic (Figure 4):  

(a) the summer 2020 waves in the south and southwest,  
(b) the late fall 2020 rise in deaths in the upper Midwest, 
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(c) the wave driven by the Alpha SARS-CoV-2 variant in Michigan in in March/April 2021, 
and  

(d) the Delta variant wave in summer 2021 throughout most states in the US. 

Forecast performance varied substantially in these examples. Models in general systematically 
underpredicted the mortality curve as trends were rising and overpredicted as trends were 
falling. In some of the selected waves (e.g., North Dakota and Florida), the ensemble forecast 
showed inappropriate levels of uncertainty, with the 95% prediction intervals covering the 
eventual observations less than 80% of the time. However, during other waves (e.g., Louisiana 
and Michigan) the ensemble forecast, while systematically biased first below and then above 
the eventually reported counts of deaths, did cover the observations at or above 95% of the 
time, although PIs were very wide. In general, lower-than expected coverage rates and bias 
were more pronounced at a 4-week horizon than a 1-week horizon. These four examples 
appeared to be representative of trends observed when looking across a larger number of 
waves (Dataset S2).  

Individual model forecast performance varies substantially by location 

Forecasts from individual models showed large variation in accuracy by location when 
aggregated across all weeks and targets (Figure 5). Only the ensemble model showed superior 
accuracy when compared to baseline in all locations. Ensemble forecasts of incident deaths 
showed the largest relative accuracy improvements in New York, New Jersey, Indiana (relative 
WIS = 0.4), California, Massachusetts, and at the national level (relative WIS = 0.5), and the 
lowest relative accuracy in Vermont, Guam, and The Virgin Islands (relative WIS = 0.9). The 
COVIDhub-ensemble was the only model to outperform the baseline in every location when 
eligible in a specific pandemic phase (Figure S6).  

Forecast performance degrades with increasing horizons  

Averaging across all states and weeks in the evaluation period, forecasts from all models 
showed lower accuracy and higher variance at a forecast horizon of 4 weeks ahead compared 
to a horizon of 1 week ahead; however, models generally showed improved performance 
relative to the naive baseline model at larger horizons (Figure S4). Eleven models showed a 
lower average WIS (range: 24.9-34.3) than the baseline at a 1-week horizon (average WIS = 
35.8). At a 4-week ahead horizon, 19 models had a lower average WIS (range: 39.9-65.2) than 
baseline (average WIS = 70.1). Across all models except one, the average WIS was higher than 
the median WIS, indicative of outlying forecasts impacting the mean value.  

When averaging across locations and stratifying by phase of the pandemic, there was variation 
in the top performing models (Figure S5). Four models had a lower mean wis than baseline for 
both 1- and 4-week ahead targets in at least three out of four phases (COVIDhub-ensemble, 
GT-DeepCOVID, Karlen-pypm, UMass-MechBayes). Additionally, UMass-MechBayes, and 
COVIDhub-ensemble were the only models to appear in the top three models in three of the 
four phases analyzed (Figure S5). In contrast to average WIS, prediction interval coverage rates 
did not change substantially across the 1- to 4-week horizons for most models (Figure S2). 
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While many teams submitted only short-term (1 to 4 week ahead) forecasts, a smaller number 
of teams consistently submitted longer-term predictions with up to a 20-week horizon for all 50 
states (Figure S8). Across all teams submitting forecasts for the 50 states, 4-week ahead 
forecasts had around 76% more error (based on relative WIS) than 1-week ahead forecasts, a 
relationship that was consistent across the entire evaluation period. Longer-term forecasts 
showed less accuracy on average than 1- and 4-week ahead forecasts. There were no clear 
overall differences in probabilistic model accuracy between 8- and 20-week horizons, although 
in early summer 2020, late spring 2021, and fall of 2021 average WIS at 8-week horizons were 
slightly lower than at longer horizons (Figure S8B). For the two teams who made 20-week 
ahead forecasts for all 50 states, average WIS was 2.9 to 4 times higher at a 20-week horizon 
than it was at a 1-week horizon. The increased WIS at longer prediction horizons for these 
models were due to larger dispersion (i.e. wider predictive distributions representing increased 
uncertainty) as well as larger penalties for underprediction and overprediction (Figure S9). The 
biggest increases in WIS were from increased penalties for underprediction, suggesting that the 
model forecasts did not accurately capture the possibility of increases in incidence at long 
horizons. Coverage rates for 95% prediction intervals tended to be stable or decline as the 
horizon increased (Figure S8C).  

Discussion 

Given the highly visible role that forecasting has played in the response to the COVID-19 
pandemic, it is critical that consumers of models, such as decision-makers, the general public, 
and modelers themselves, understand how reliable models are. This paper provides a 
comprehensive and comparative look at the probabilistic accuracy of different modeling 
approaches for forecasting COVID-19-related deaths during the COVID-19 pandemic in the US 
from April 2020 through October 2021. This work illustrates the tension between the desire for 
long term forecasts, which would be helpful for public health practitioners, and the decline in 
forecast accuracy at longer horizons that is shown by all forecasting methods.  

As has been shown in prior epidemic forecasting projects, ensemble forecasts streamline and 
simplify the information provided to model consumers, and can provide a stable, accurate, and 
low-variance forecast (3, 13–15). The results presented here, which show high variation in 
accuracy between and within stand-alone models but more consistent accuracy from an 
ensemble forecast, support these prior results and confirm that an ensemble model can provide 
a reliable and comparatively accurate means of forecasting that exceeds the performance of 
most, if not all, of the models that contribute to it. The ensemble approach was the only model 
that (a) outperformed the baseline forecast in every location, (b) had better overall 4-week-
ahead accuracy than the baseline forecast in every week, and (c) ranked in the top half of 
forecasts for more than 85% of the forecasts it made. Additionally, it achieved the best overall 
measures of point and probabilistic forecast accuracy for forecasting deaths. However, during 
key moments in the pandemic, while the ensemble outperformed many models, it often showed 
lower than desired accuracy (Figures 3 and 4).These results continue to strengthen the 
evidence base for synthesizing multiple models for public health decision support. 

We summarize the key findings of the work as follows. 

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for thisthis version posted December 10, 2021. ; https://doi.org/10.1101/2021.02.03.21250974doi: medRxiv preprint 

https://doi.org/10.1101/2021.02.03.21250974


 12 

 

● The performance of all individual models forecasting COVID-19 mortality was highly 
variable, even for short-term targets (Figures 2 and 3). One source of variation was the 
data inputs. Further investigation is needed to determine in what settings additional data 
can yield measurable improvements in forecast accuracy or add valuable diversity to a 
collection of models that are being combined. 

● A simple ensemble forecast that combined all submitted models each week was 
consistently the most accurate model when aggregating performance across forecast 
targets (Figure S4), weeks (Figure 3), or locations (Figure 5). Although rarely the “most 
accurate” model for individual predictions, the ensemble was consistently one of the top 
few models for any single prediction (Figure 2). For public health agencies concerned 
with using a model that shows dependably accurate performance, this is a desirable 
feature of a model. 

● The high variation in ranks of models for each location-target-week suggests that all 
models, even those that are not as accurate on average, have observations for which 
they are the most accurate (Figure 2). 

● The post hoc evaluation of models during forecasting waves in select states showed 
poor accuracy of the ensemble model’s point forecasts for 1- and 4- week ahead. During 
periods of increasing incident deaths the ensemble tended to underpredict, and during 
periods of decreasing incident deaths the ensemble tended to overpredict. Prediction 
interval coverage during these times varied (Figure 4).  

● Forecast accuracy and calibration were substantially degraded as forecast horizons 
increased, largely due to underestimating the possibility of increases in incidence at long 
horizons (Figures S8 and S9). 

It is critical that model performance is assessed both in aggregate (to assess models that 
showed the best overall performance) and in specific important moments during the pandemic. 
It is of public health interest to evaluate how well models are able to predict points at which the 
observed trends change. However, we note that a post-hoc evaluation that focuses only on 
times where a specific type of trend was observed raises conceptual challenges. Extreme 
turning points in the pandemic are relatively rare compared with the many weeks where trends 
continue or only slightly change from previous weeks. A post-hoc evaluation that focuses 
exclusively on these “change points” may reward models that may regularly predict extreme 
changes even when they do not occur at other times (20). Adapting proper scoring rules to 
weigh good performance in both kinds of situations is difficult. 

Rigorous evaluation of forecast accuracy faces many limitations in practice. The large variation 
and correlation in forecast errors across targets, submission weeks, and locations) makes it 
difficult to create simple and rigorous comparisons of models. Forecast comparison is also 
challenging because teams have submitted forecasts for different lengths of time, different 
locations, and for different numbers of horizons (Figures S8 and S1). Some teams have also 
changed their models over time (Tables S1 and S2, Figure S1). To account for some of this 
variability, we implemented specific inclusion criteria. However, those criteria may exclude 
valuable approaches that were not applied to a large fraction of locations or weeks (see 
Methods).  
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Forecast performance may be affected by ground truth data and forecast target. Ground truth 
data are not static. They can be later revised as more data become available (Dataset S1). 
There are also instances where data are not revised but rather left with large peaks or dips due 
to reporting effects, especially around holidays. Different sources for ground truth data can also 
have substantial differences that impact model performance. Lastly, because this evaluation 
focuses on incident death forecasts, it cannot speak to model performance for incident cases or 
hospitalizations. Deaths may serve as a lagging indicator of COVID-19, thus making it more 
predictable than hospitalization and case targets (21). 

While the Hub has provided many insights into what has and has not been predictable in the 
COVID-19 pandemic, it also has left many important questions unanswered. Due to the 
operational, real-time orientation of the project, the Hub has not collected data on experimental 
modeling studies where certain features can be included or left out to explicitly test what 
features of a model increase predictive accuracy. An observational study could be conducted 
with forecasts collected by the hub, but any such analysis would likely be confounded by other 
factors about how the model was built and validated. Other research in this area has shown 
small but measurable improvements in predictive accuracy by including other data streams 
available in real time (22). Continued research in this area is needed, especially to evaluate how 
behavioral, mobility, variant prevalence, or other data streams, might enhance predictive 
modeling. 

Short-term forecasts of COVID-19 mortality have informed public health response and risk 
communication for the pandemic. The number of teams and forecasts contributing to the 
COVID-19 ensemble forecast model has exceeded forecasting activity for any prior epidemic or 
pandemic. However, these forecasts are only one component of a comprehensive public health 
data and modeling system needed to help inform outbreak response. Preparedness for future 
pandemics could be facilitated by creating template infrastructure and resources for arriving at 
and maintaining model submission formats. This project underscores the role that collaboration 
and active coordination between governmental public health agencies, academic modeling 
teams, and industry partners can play in developing modern modeling capabilities to support 
local, state, and federal response to outbreaks. 

 

Methods 

Surveillance data  

Early in the COVID-19 pandemic, the Johns Hopkins Center for Systems Science and 
Engineering (CSSE) developed a publicly available data tracking system and dashboard that 
was widely used (23). CSSE collected daily data on cumulative reported deaths due to COVID-
19 at the county, state, territorial, and national levels and made these data available in a 
standardized format beginning in March 2020. Incident deaths were inferred from this time-
series as the difference in reported cumulative deaths on successive days. Throughout the real-
time forecasting exercise described in this paper, the Forecast Hub stated that forecasts of 
deaths would be evaluated using the CSSE data as the ground truth and encouraged teams to 
train their models on CSSE data. 
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Like data from other public health systems, the CSSE data occasionally exhibited irregularities 
due to reporting anomalies. CSSE made attempts to redistribute large “backlogs” of data to 
previous dates in instances where the true dates of deaths, or dates when the deaths would 
have been reported, were known. However, in some cases, these anomalous observations 
were left in the final dataset (SI Text). All updates were made available in a public GitHub 
repository (https://github.com/CSSEGISandData/COVID-
19/tree/master/csse_covid_19_data#data-modification-records). Weekly incidence values were 
defined and aggregated based on daily totals from Sunday through Saturday, according to the 
standard definition of epidemiological weeks (EW) used by the CDC (24). 

Forecast format 

Research teams from around the world developed forecasting models and submitted their 
predictions to the COVID-19 Forecast Hub, a central repository that collected forecasts of the 
COVID-19 pandemic in the US beginning in April 2020. The Forecast Hub submission process 
has been described in detail elsewhere (25). Incident death forecasts, the focus of this 
evaluation, could be submitted with predictions for horizons of 1- 20 weeks after the week in 
which a forecast was submitted. 

A prediction for a given target (e.g., “1-week ahead incident death”) and location (e.g., 
“California”) was specified by one or both of a point forecast (a single number representing the 
prediction of the eventual outcome) and a probabilistic forecast. Probabilistic forecasts were 
represented by a set of 23 quantiles at probability levels 0.01, 0.025, 0.05, 0.10, 0.15, ..., 0.95, 
0.975, 0.99. 

Forecast model eligibility and evaluation period 

To create a set of standardized comparisons between forecasts, only models that met specific 
inclusion criteria were included in the analysis. For the 79 weeks beginning in EW17-2020 and 
ending with EW42-2021, a model’s weekly submission was determined to be eligible for 
evaluation if the forecast 

1. was designated as the “primary” forecast model from a team (groups who submitted 
multiple parameterizations of similar models were asked to designate prospectively a 
single model as their scored forecast); 

2. contained predictions for at least 25 out of 51 focal locations (national level and states); 
3. contained predictions for each of the 1- through 4-week ahead targets for incident 

deaths; and 
4. contained a complete set of quantiles for all predictions. 

A model was included in the evaluation if it had submitted an eligible forecast for at least 60% 
(n=47) of the submission weeks during the continuous 79 week period (Figure S1). Based on 
the eligibility criteria, we compared 28 models that had at least 47 eligible weeks during this time 
period.  

Aggregated forecast evaluation of pandemic phases 

In a secondary analysis, forecasts were evaluated based on model submissions during four 
different phases of the pandemic. A model was eligible for inclusion in a given phase if it met the 
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eligibility criteria listed above and had forecast submissions for at least 60% of the weeks during 
that phase. For the spring phase, models had to submit eligible forecasts for at least six out of 
10 weeks starting EW16-2020 and ending EW26-2020. For summer eligibility, a model required 
submissions for at least 12 out of 20 submission weeks between EW27-2020 and EW46-2020. 
For winter eligibility, a model required submissions for at least 14 out of 23 submission weeks 
between EW47-2020 and EW16-2021. For delta phase eligibility, a model required submissions 
for at least 16 out of 26 submission weeks between EW17-2021 and EW42-2021. These 
phases were determined based on the waves of deaths at the national level during pandemic 
(Figure 1b). Each phase includes a period of increasing and decreasing incident deaths, 
although forecasts for the spring phase did not begin early enough to capture the increase in 
many locations.  

Forecasts were scored using CSSE data available as of November 16, 2021. We did not 
evaluate forecasts on data first published in the 2 weeks prior to this date due to possible 
revisions to the data. 

Disaggregated forecast evaluation by pandemic wave 

In a post-hoc secondary analysis, we evaluated forecasts made in selected locations during 
selected pandemic waves. We used the following criteria in selecting locations and waves to 
represent this analysis (Figure 4, Dataset S2). 

● We selected states that had unusually severe waves or whose waves "led" the overall 
wave. Locations for which data for weekly deaths during the wave had been 
substantially revised after the initial report were excluded from consideration. 

● We picked an initial date near the start of the first increase at the start of the wave and a 
last date at the end of the steep decline of the wave. 

To compare the forecasts during the waves, we plotted 1 and 4 week ahead forecasts and 
calculated 95% prediction interval coverage rates of forecasts made for the given location both 
during the wave of interest over all weeks. Coverage rates were computed for models that were 
included in the overall analysis (see eligibility criteria above) and, for inclusion in the coverage 
calculations for each wave, the model additionally had to have made forecasts for at least 3 
weeks in the selected wave. 

Forecast locations 

Forecasts were submitted for 57 locations including all 50 states, 6 jurisdictions and territories 
(American Samoa, Guam, the Northern Mariana Islands, US Virgin Islands, Puerto Rico, and 
the District of Columbia), and a US national level forecast. Because American Samoa and the 
Northern Mariana Islands had no reported COVID-19 deaths and one reported COVID-19 death 
respectively during the evaluation period, we excluded these locations from our analysis. 

In analyses where measures of forecast skill were aggregated across locations, we typically 
only included the 50 states in the analysis. Including these territories in raw score aggregations 
would favor models that had forecasted for these regions because models were often accurate 
in predicting low or zero deaths each week, thereby reducing their average error. The national 
level forecasts were not included in the aggregated scores because the large magnitude of 
scores at the national level strongly influences the averages. However, in analyses where 
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scores were stratified by location, we included forecasts for all US states, including territories 
and the national level. 

This evaluation used the CSSE COVID-19 surveillance data as ground truth when assessing 
forecast performance. We did not score observations when ground-truth data showed negative 
values for weekly incident deaths (due to changes in reporting practices from state/local health 
agencies, e.g., removing “probable” COVID-19 deaths from cumulative counts). This occurred 
11 times.  

Forecast models 

For the primary evaluation, we compared 28 models that submitted eligible forecasts for at least 
47 of the 79 weeks considered in the overall model eligibility period (Figure 1). Teams that 
submitted to the COVID-19 Forecast Hub used a wide variety of modeling approaches and input 
data (Tables S1 and S2). Two of the evaluated models are from the COVID-19 Forecast Hub 
itself: a baseline model and an ensemble model. 

The COVIDhub-baseline model was designed to be a neutral model to provide a simple 
reference point of comparison for all models. This baseline model forecasted a predictive 
median incidence equal to the number of reported deaths in the most recent week (��), with 
uncertainty around the median based on changes in weekly incidence that were observed in the 
past of the time series (details in SI Text). 

The COVIDhub-ensemble model combined forecasts from all models that submitted a full set of 
23 quantiles for 1- through 4-week ahead forecasts for incident deaths. The ensemble for 
incident weekly deaths was first submitted in the week ending June 06, 2020 (EW23). For 
submission from EW23 through EW29 (week ending July 18, 2020), the ensemble took an 
equally weighted average of forecasts from all models at each quantile level. For submissions 
starting in EW30 (week ending July 25, 2020), the ensemble computed the median across 
forecasts from all models at each quantile level (26). We evaluated more complex ensemble 
methods, and while they did show modest improvements in accuracy, they also displayed 
undesirable increases in variability in performance during this evaluation period (27, 28). 

Forecast submission timing 

Of the 3,555 forecast submissions we included in the evaluation, 230 (6%) were either originally 
submitted or updated more than 24 hours after the submission deadline. In all of these 
situations, modeling teams attested (via annotation on the public data repository) to the fact that 
they were correcting inadvertent errors in the code that produced the forecast, and that the 
forecast used as input only data that would have been available before the original submission 
due date. In these limited instances, we evaluated the most recently submitted forecasts. 

Evaluation methodology 

We evaluated aggregate forecast skill using a range of scores of forecast skill that assessed 
both point and probabilistic accuracy. These scores were aggregated over time and locations for 
near-term forecasts (4 weeks or less into the future) and, in a single analysis, for longer-term 
projections (5-20 weeks into the future). 
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Point forecast error was assessed using the mean absolute error (MAE), defined for a set of 

observations ��:� and each model’s designated point predictions ���:� as ��� �  
�

�
∑ |�� 
 ���|�
���  

To assess probabilistic forecast accuracy, we used two scores that are easily computable from 
the quantile representation for forecasts described above. Briefly, the weighted interval score 
(WIS) is a proper score that combines a set of interval scores for probabilistic forecasts that 
provide quantiles of the predictive forecast distribution (19). Proper scores promote “honest” 
forecasting by not providing forecasters with incentives to report forecasts that differ from their 
true beliefs about the future (29). We also evaluated the prediction interval coverage, the 
proportion of times a prediction interval of a certain level covered the observed value, to assess 
the degree to which forecasts accurately characterized uncertainty about future observations. 
Details of the calculation of the WIS score and prediction interval coverage are provided in SI 
Text.  

Forecast comparisons 

Comparative evaluation of the considered models 1, … , M is hampered by the fact that not all 
of them provide forecasts for the same set of locations and time points. To adjust for the level of 
difficulty of each model’s set of forecasts, we computed (a) a standardized rank between 0 and 
1 for every forecasted observation relative to other models that made the same forecast, and (b) 
an adjusted relative WIS and MAE.  

To compute the WIS standardized rank score for model � and observation 
 (���,�), we 
computed the number of models that forecasted that observation (��) and the rank of model � 
among those �� models (��,�). The model with the best (i.e., lowest) WIS received a rank of 1 
and the worst received a rank of ��. The standardized rank then rescaled the ranks to between 
0 and 1, where 0 corresponded to the worst rank and 1 to the best, (30–32) as follows: 

���,� � 1 


�,���

����
. 

This metric is not dependent on the scale of the observed data. If all models were equally 
accurate, distributions of standardized ranks would be approximately uniform.  

A procedure to compute a measure of relative WIS, which evaluates the aggregate performance 
of one model against the baseline model is described in SI Text. To adjust for the relative 
difficulty of beating the baseline model on the covered set of forecast targets, the chosen 
measure also takes into account the performance of all other available models. The same 
procedure was used to compute a relative MAE. 

Data and code availability 

The forecasts from models used in this paper are available from the COVID-19 Forecast Hub 
GitHub repository (https://github.com/reichlab/covid19-forecast-hub) (4) and the Zoltar forecast 
archive (https://zoltardata.com/project/44)(33). The code used to generate all figures and tables 
in the manuscript is available in a public repository (https://github.com/reichlab/covid19-forecast-
evals). All analyses were conducted using the R language for statistical computing (v 4.0.2) 
(34).  
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We followed the EPIFORGE 2020 guidelines for reporting results from epidemiological 
forecasting studies (Table S5) (35).  
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Tables and Figures 

Table 1: Summary accuracy metrics for all submitted forecasts from 28 models meeting 
inclusion criteria, aggregated across locations (50 states only), submission week, and 1- 
through 4-week forecast horizons. The ‘# forecasts’ column refers to the number of individual 
location-target-week combinations. Empirical prediction interval (PI) coverage rates calculate 
the fraction of times the 50% or 95% PIs covered the eventually observed value. Values within 
5% coverage of the nominal rates are highlighted in boldface text. The “relative WIS” and 
“relative MAE” columns show the relative mean weighted interval score (WIS) and relative mean 
absolute error (MAE), which compare each model to the baseline model while adjusting for the 
difficulty of the forecasts the given model made for state-level forecasts (see Methods). The 
baseline model is defined to have a relative score of 1. Models with relative WIS or MAE values 
lower than 1 had “better” accuracy relative to the baseline model (best score in bold). 
 

Model # forecasts 95% PI Cov. 50% PI Cov. Relative WIS Relative MAE 

BPagano-RtDriven 10864 0.72 0.36 0.77 0.80 

CEID-Walk 12161 0.78 0.45 1.00 1.03 

CMU-TimeSeries 10456 0.77 0.42 0.78 0.80 

Covid19Sim-Simulator 11770 0.34 0.11 1.02 0.85 

CovidAnalytics-DELPHI 11064 0.82 0.46 0.99 1.01 

COVIDhub-baseline 15460 0.88 0.51 1.00 1.00 

COVIDhub-ensemble 14260 0.90 0.53 0.61 0.66 

CU-select 13710 0.72 0.43 0.92 0.89 

DDS-NBDS 12261 0.86 0.43 1.25 2.19 

epiforecasts-ensemble1 12204 0.87 0.46 3.17 2.74 

GT-DeepCOVID 13585 0.84 0.41 0.75 0.82 

IHME-SEIR 11116 0.59 0.25 0.79 0.82 

JHU_CSSE-DECOM 10190 0.80 0.35 0.75 0.80 

JHU_IDD-CovidSP 14170 0.82 0.33 0.99 1.04 

JHUAPL-Bucky 11664 0.63 0.29 1.05 1.06 
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Karlen-pypm 13060 0.86 0.47 0.64 0.70 

LANL-GrowthRate 13560 0.83 0.38 0.85 0.91 

MOBS-GLEAM_COVID 15452 0.71 0.37 0.77 0.78 

OliverWyman-Navigator 10548 0.82 0.45 0.72 0.76 

PSI-DRAFT 13209 0.34 0.15 1.51 1.27 

RobertWalraven-ESG 13430 0.51 0.28 1.13 0.97 

SteveMcConnell-

CovidComplete 12063 0.8 0.45 0.74 0.77 

UA-EpiCovDA 13710 0.72 0.41 0.98 0.94 

UCLA-SuEIR 10549 0.31 0.09 1.37 1.21 

UCSD_NEU-DeepGLEAM 11664 0.91 0.7 0.83 0.78 

UMass-MechBayes 14660 0.93 0.56 0.63 0.67 

UMich-RidgeTfReg 11394 0.63 0.34 1.18 1.08 

USC-SI_kJalpha 9660 0.52 0.22 0.75 0.72 
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Figure 1: Overview of the evaluation period included in the paper. Vertical dashed lines indicate 
“phases' ' of the pandemic analyzed separately in the supplement. (A) The reported number of 
incident weekly COVID-19 deaths by state or territory, per JHU CSSE reports. Locations are 
sorted by the cumulative number of deaths as of October 30th, 2021. (B) The time-series of 
weekly incident deaths at the national level overlaid with example forecasts from the COVID-19 
Forecast Hub ensemble model. (C) The number of models submitting forecasts for incident 
deaths each week. Weeks in which the ensemble was submitted are shown with a red asterisk. 
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Figure 2: A comparison of each model’s distribution of standardized rank of weighted interval 
scores (WIS) for each location-target-week observation. A standardized rank of 1 indicates that 
the model had the best WIS for that particular location, target, and week and a value of 0 
indicates it had the worst WIS. The density plots show interpolated distributions of the 
standardized ranks achieved by each model for every observation that model forecasted. The 
quartiles of each model’s distribution of standardized ranks are shown in different colors: yellow 
indicates the top quarter of the distribution and purple indicates the bottom quarter of the 
distribution. The models are ordered by the first quartile of the distribution, with models that 
rarely had a low rank near the top. 
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Figure 3: Average WIS by the target forecasted week for each model across all 50 states. 
Panel A shows the observed weekly COVID-19 deaths based on the CSSE reported data as of 
May 25, 2021. Panel B shows the average 1-week ahead WIS values per model (in grey). For 
all 21 weeks in which the ensemble model (red triangle) is present, this model has lower WIS 
values than the baseline model (green square) and the average score of all models (blue circle). 
The y-axes are truncated in panels B and C for readability of the majority of the data. 
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Figure 4: Forecasts for selected states and pandemic waves, with prediction interval coverage. 
The first column shows every 1 and 4 week ahead forecast with 95% prediction intervals (PIs) 
made by the ensemble during the selected evaluation period. The second and third columns of 
plots show evaluations of PIs, across 1 through 4 week horizons (x-axis). The red line with 
triangle points corresponds to the coverage rates of the COVIDhub-ensemble forecasts, green 
squares refer to the COVIDhub-baseline model. The boxplots represent the distribution of 
coverage rates from all component models. The second column evaluates only forecasts made 
for the dates shown in the first column. The third column evaluates forecasts across all weeks in 
the evaluation period. In the last two columns, the expected coverage rate (95%) is shown by 
the dashed line. 
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Figure 5: Relative WIS by location for each model across all horizons and submission weeks. 
The value in each box represents the relative WIS calculated from 1- to 4-week ahead targets 
available for a model at each location. Boxes are colored based on the relative WIS compared 
to the baseline model. Blue boxes represent teams that outperformed the baseline and red 
boxes represent teams that performed worse than the baseline. Locations are sorted by 
cumulative deaths as of the end of the evaluation period (October 30, 2021). Teams are listed 
on the horizontal axis in order from the lowest to highest relative WIS values (Table 1).  
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