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 2 

Abstract 23 

 24 

Physical inactivity (PA) is an important risk factor for a wide range of diseases. Previous 25 

genome-wide association studies (GWAS), based on self-reported data or a small number of 26 

phenotypes derived from accelerometry, have identified a limited number of genetic loci 27 

associated with habitual PA and provided evidence for involvement of central nervous system 28 

in mediating genetic effects. In this study, we derived 27 PA phenotypes from wrist 29 

accelerometry data obtained from 88,411 UK Biobank study participants. Single-variant 30 

association analysis based on mixed-effects models and transcriptome-wide association studies 31 

(TWAS) together identified 5 novel loci that were not detected by previous studies of PA, sleep 32 

duration and self-reported chronotype. For both novel and previously known loci, we 33 

discovered associations with novel phenotypes including active-to-sedentary transition 34 

probability, light-intensity PA, activity during different times of the day and proxy phenotypes 35 

to sleep and circadian patterns. Follow-up studies including TWAS, colocalization, tissue-specific 36 

heritability enrichment, gene-set enrichment and genetic correlation analyses indicated the 37 

role of the blood and immune system in modulating the genetic effects and a secondary role of 38 

the digestive and endocrine systems. Our findings provided important insights into the genetic 39 

architecture of PA and its underlying mechanisms.  40 

 41 

Key words: Genome-wide association studies, physical activity, novel loci, blood and immune 42 

mechanisms  43 
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 3 

Introduction 44 

 45 

Regular physical activity (PA) is associated with lower risk of a wide range of diseases, including 46 

cancer, diabetes, cardiovascular disease(Kyu et al., 2016), Alzheimer’s disease(Rovio et al., 47 

2005), as well as mortality(Smirnova et al., 2019; Leroux et al., 2019). However, studies have 48 

indicated that large majority of US adults and adolescents are insufficiently active(Piercy et al., 49 

2018), and thus PA interventions have great potential to improve public health. PA was shown 50 

to have a substantial genetic component, and understanding its genetic mechanism can inform 51 

the design of individualized interventions(Lightfoot et al., 2018; Moore-Harrison & Lightfoot, 52 

2010). For example, people who are genetically pre-disposed to low PA may benefit more from 53 

early and more frequent guidance. 54 

 55 

A number of previous genome-wide association studies (GWAS) on physical activity have relied 56 

on self-reported phenotypes, which are subject to perception and recall error(De Moor et al., 57 

2009; Hara et al., 2018; Kim et al., 2014; Klimentidis et al., 2018). Recently, wearable devices 58 

have been used extensively to collect physical activity data objectively and continuously for 59 

multiple days. To date, there have been two GWAS based on acceleromtery-derived activity 60 

phenotypes. Both studies used data from the UK Biobank study(Doherty et al., 2017; Bycroft et 61 

al., 2018)  but only focused on a few summaries of these high-density PA measurements. One 62 

study considered two accelerometry-derived phenotypes (average acceleration and fraction 63 

accelerations > 425 milli-gravities) and identified 3 loci associated with PA(Klimentidis et al., 64 

2018). A second study used a machine learning approach to extract PA phenotypes, including 65 
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 4 

overall activity, sleep duration, sedentary time, walking and moderate intensity activity(Doherty 66 

et al., 2018). This study identified 14 loci associated with PA and found that the central nervous 67 

system (CNS) plays an essential role in modulating the genetic effects on PA. However, both 68 

studies used a small number of phenotypes, which may not capture the complexity of PA 69 

patterns.  70 

 71 

Recent studies suggest that in addition to the total volume of activity, other PA summaries may 72 

be strongly associated with human health and mortality risk. For example, the transition 73 

between active and sedentary states was strongly associated with measures of health and 74 

mortality(Leroux et al., 2019; Schrack et al., 2019). PA relative amplitude, a proxy for sleep 75 

quality and circadian rhythm, was strongly associated with mental health(Rock, Goodwin, 76 

Harmer, & Wulff, 2014a). Moderate-to-vigorous PA (MVPA) and light intensity PA (LIPA) have 77 

also been reported to be associated with health(McGregor, Palarea-Albaladejo, Dall, 78 

Stamatakis, & Chastin, 2019; Young & Haskell, 2018). Thus, there is increasing evidence that 79 

objectively measured PA in the free-living environment is a highly complex phenotype that 80 

requires a large number of summaries that provide complementary information. Understanding 81 

the genetic mechanisms behind these summaries is critical for understanding the genetic 82 

regulation of activity behavior and informing targeted interventions. 83 

 84 

In this paper, we conducted genome-wide association analysis using 27 accelerometry-derived 85 

PA measurements from UK Biobank data(Bycroft et al., 2018; Doherty et al., 2017). The 86 

phenotypes cover a wide range of features including volumes of activity, activity during 87 
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different times of the day, active to sedentary transition probabilities, principal components 88 

and proxies for circadian rhythm (Table 1). We conducted GWAS using a mixed-model-based 89 

method, fastGWA(Jiang et al., 2019), to identify variants associated with the above phenotypes. 90 

We also conducted transcriptome-wide association studies (TWAS)(Gusev et al., 2016) across 91 

48 tissues to identify genes and tissues harboring the associations. We further conducted 92 

colocalization (Giambartolomei et al., 2014),  tissue-specific heritability enrichment(Finucane et 93 

al., 2018; Finucane et al., 2015), gene-set enrichment(Watanabe, Taskesen, van Bochoven, & 94 

Posthuma, 2017) and genetic correlation(Bulik-Sullivan et al., 2015a) analyses to further reveal 95 

the underlying biological mechanisms. We identified 5 novel loci associated with PA and 96 

showed that, in addition to the CNS, blood and immune related mechanisms could play an 97 

important role in modulating the genetic effects on activity, and digestive and endocrine tissues 98 

could play a secondary role. 99 

 100 

Material and Methods 101 

 102 

Study Cohort and Physical Activity Phenotypes 103 

 104 

The UK Biobank study consists of ~500,000 individuals in the United Kingdom with 105 

comprehensive genotype and phenotype data(Bycroft et al., 2018). We used a subset of the 106 

103,712 individuals who were invited and agreed to participate in the accelerometry sub-study 107 

where participants wore a wrist-worn accelerometer for up to 7 days(Doherty et al., 2017). 108 

Accelerometry data from participants are available at multiple resolutions. Here, the individual-109 
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 6 

specific set of accelerometry-based phenotypes was derived from the five-second level 110 

acceleration data provided by the UK Biobank team. We further compressed the data by 111 

averaging the 5-second level data within every minute. Individuals were screened for poor 112 

quality data using indictors provided by the UK Biobank. In addition, we required individuals to 113 

have at least 3 days (12am-12am) of sufficient wear time defined as estimated wear time 114 

greater than 95% of the day (>= 1368 minutes). Our inclusion criteria for this analysis closely 115 

mirrors that described in a related paper from our group(Leroux et al., 2020) with the exception 116 

that we did not exclude participants younger than 50 at the time of accelerometer wear or 117 

based on missing demographic and lifestyle data and instead excluded individuals based on 118 

ancestry and genotype data (see subsection Genotype Data below). 119 

 120 

Physical activity phenotypes were all calculated at the day level and then averaged within study 121 

participants across days to obtain one measure for each phenotype and study participant. This 122 

led to in 31 PA phenotypes for 93,745 study participants that covered a wide spectrum of 123 

information. The phenotypes are described in Table 1 and briefly summarizes as follows: 1) 124 

total volume of activity (total acceleration (TA), total log acceleration (TLA)); 2) activity during 125 

12 disjoint two-hour windows of the day (TLA 12am-2am, TLA 2am-4am, …, TLA 10pm-12am); 126 

3) duration of sedentary state (ST), LIPA and MVPA; 4) principal components of the log-127 

transformed minute-level activity profiles (PC1-6); 5) active-to-sedentary transition probability 128 

(ASTP) and sedentary-to-active transition probability (SATP); 6) proxy phenotypes for circadian 129 

patterns, including dynamic activity ratio estimate (DARE), activity during the most active 10 130 

hours (M10) and least active 5 hours (L5) of the day, timing of M10 and L5, and PA relative 131 
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amplitude (!"#$%&!"#'%&). They included most of the phenotypes used in the previous PA association 132 

studies as well (See Table 1 for details)(Doherty et al., 2018; Klimentidis et al., 2018). The exact 133 

procedure for deriving study participant-specific phenotypes is described in detail in the 134 

supplemental material of the related paper from our group(Leroux et al., 2020). The 135 

phenotypes were inverse-normal transformed  136 

!"#(%() = 	Φ$" *)*+,(.+)$,+$0,'" , , 				. = 3/8, 137 

where the transformed variables have mean 0 and variance 1.  138 

 139 

Removing Highly Correlated Phenotypes 140 

 141 

Some of the initial 31 PA phenotypes were highly correlated (Figure S1). To avoid counting 142 

similar phenotypes multiple times, if two phenotypes had correlation > 0.8 we removed one of 143 

them. First, we removed total acceleration (TA), duration of sedentary state (ST), PC1 and M10 144 

due to their high correlation with total log acceleration (TLA). TLA was retained as the main 145 

metric for the total volume of activity. Since two previous GWASs used TA as the main metric 146 

for the volume of activity (Doherty et al., 2018; Klimentidis et al., 2018), we chose TLA instead 147 

of TA to avoid repetition with existing work. In addition, the original distribution of TA is highly 148 

skewed, which may not be completely addressed by the INT. In total, 4 phenotypes were 149 

removed and 27 PA phenotypes were retained for the association analysis. 150 

 151 

Genotype Data 152 

 153 
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 8 

The imputed genotype data for ~93 million variants, using UK10K, 1000 Genomes (Phase 3) and 154 

Haplotype Reference Consortium as reference panel, provided by UK Biobank were used and 155 

merged with the PA phenotype data. Following the Neale lab UK Biobank GWAS pipeline 156 

(https://github.com/Nealelab/UK_Biobank_GWAS/blob/master/imputed-v2-157 

gwas/README.md), we excluded study participants according to the following criteria: 1) non-158 

white ancestry; 2) putative sex chromosome aneuploidy; 3) an excessive number of relatives 159 

(more than 10 putative third-degree relatives in the kinship table); 4) sample was not in the 160 

input for phasing of chr1-chr22. After applying these exclusion criteria the sample was further 161 

reduced to 88,411 study particiants for downstream analysis.  162 

 163 

We conducted variant quality control to ensure that genetic variants with poor genotyping 164 

quality do not affect the results. Specifically, variants that satisfy any of the following criteria 165 

were removed: 1) imputation INFO score < 0.8; 2) MAF < 0.01; 3) Hardy-Weinberg Equilibrium 166 

(HWE) p-value < 1 ×	10$1; 4) missing in more than 10% study participants. After the filtering, 167 

8,951,705 variants remained for downstream analysis, of which 8,067,228 (90.1%) were single 168 

nucleiotide polymorphisms (SNPs) and the rest (9.9%) were insertion-deletions (INDELs). 169 

 170 

Association Analysis 171 

 172 

We used a fast mixed-effects model method, fastGWA(Jiang et al., 2019), for genome-wide 173 

association analysis. Like other mixed-effects model methods, fastGWA allows the inclusion of 174 

related and unrelated individuals but improves computational efficiency by incorporating a 175 
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sparse genetic relationship matrix (GRM). The GRM measures the genetic similarity between 176 

individuals and each element is the correlation of genotypes between a pair of individuals. We 177 

constructed the GRM using linkage disequilibrium (LD)-pruned variants that had MAF > 5% and 178 

were present in HapMap3 (LD-pruning was done in PLINK using the following set up as 179 

recommended in Jiang et al (Jiang et al., 2019): window size = 1000Kb, step-size = 100 and r2 = 180 

0.9). We further computed a sparse-GRM at sparsity level 0.05 to capture the genetic 181 

relatedness between the closely related individuals only and reduced others to zero. We used 182 

the Haseman-Elston regression to estimate the variance of the random effects as an 183 

intermediate step of fastGWA. This approach is orders of magnitude faster than the previous 184 

state-of-the-art, BOLT-LMM(Loh et al., 2015; Loh, Kichaev, Gazal, Schoech, & Price, 2018).  185 

 186 

Models were adjusted for age, sex and the first 20 genetic principal components as covariates. 187 

Because the PA phenotypes are correlated, principal component analysis (PCA) was conducted 188 

on the phenotypes to estimate the number of independent phenotypes before setting the 189 

GWAS significance threshold. At least 19 phenotype PCs were needed to explain 99% percent of 190 

the PA phenotypic variance (Figure S2). Variants with p-value below the threshold 191 

5 × 10$2/19 = 2.63 × 10$3 were declared to be statistically significant, which accounted for 192 

the number of independent phenotypes. LD clumping was conducted based on the minimum p-193 

value across phenotypes. The requirements for the lead SNPs of different loci were to have 194 

:0 < 0.1 and be at least > 500kb apart. 195 

 196 
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A locus was defined as novel if its lead variant is >500kb from the lead variant of any known loci 197 

discovered by the following GWASs on PA, sleep, and circadian rhythm: (1) Doherty et al study 198 

on a smaller set of accelerometry-derived PA phenotypes(Doherty et al., 2018); (2) Klimentidis 199 

et al study on self-reported and accelerometry-derived PA(Klimentidis et al., 2018); (3) Dashti et 200 

al study on self-reported sleep duration(Dashti et al., 2019); (4) Jones et al study on circadian 201 

rhythm(Jones et al., 2019). Considering the diversity of PA phenotypes, we further ensure these 202 

loci do not have associations with other related traits not listed above, by searching for the lead 203 

variants in Open Targets Genetics (OTG, https://genetics.opentargets.org/). A locus remains 204 

novel if the lead variant: 1) is not associated at < < 5 × 10$2 with traits whose names include 205 

the following keywords: accelerometry, physical, exercise, sleep, nap, circadian and 206 

chronotype; 2) and is not in LD with previously reported GWAS lead variants for these traits 207 

(:0 > 0.5). 208 

 209 

Transcriptome-wide association studies (TWAS) were conducted using the FUSION R 210 

program(Gusev et al., 2016) with reference models generated from 48 tissues of GTEx v7(GTEx 211 

et al., 2017).  TWAS analysis was limited to the 18 traits with at least one genome-wide 212 

significant variant (< < 2.63 × 10$3). Multiple testing due to the large number of tissue-trait 213 

combinations (48*18=864) was addressed by a two-stage adjustment approach: 1) for each 214 

variant, the Benjamini-Hochberg (BH) adjustment was applied across all tissue-trait pairs; 2) 215 

each variant with BH-adjusted p-value 2.5 × 10$1 was then identified (accounting for 20,000 216 

protein-coding genes). Since there can be multiple genes in close proximity to each other, to 217 

identify independent loci detected by TWAS analysis, genes were clustered based on significant 218 
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 11 

associations. A clumping approach was used, which selected the gene with the smallest 219 

minimum p-value across tissue-trait pairs and removed the other genes with a transcription 220 

start site (TSS) within 1Mb of the lead gene TSS. The process continued by identifying the gene 221 

with the next smallest minimum p-value and iterating. The only exception was when the lead 222 

gene of the cluster was not a protein-coding gene (e.g., pseudogene, lncRNA) and a protein-223 

coding gene was in the cluster. In this case the protein-coding gene with the smallest minimum 224 

p-value was identified as the lead gene. This led to independent gene clusters at genomic loci 225 

which were least 1Mb apart, i.e., none of the lead gene TSS is within the cis region of another 226 

lead gene.  227 

 228 

Enrichment Analysis 229 

 230 

Stratified LD score regression(Finucane et al., 2015; Finucane et al., 2018) was used to identify 231 

the tissues and genomic annotations enriched by the heritability for PA. For tissue specific 232 

analysis, chromatin-based annotations were used as derived from the ENCODE and Roadmap 233 

data(ENCODE, 2012; Roadmap et al., 2015) by Finucane et al(Finucane et al., 2018). The 234 

annotations were based on narrow peaks of DNase I hypersensitivity site (DHS) and five 235 

activating histone marks (H3K27ac, H3K4me3, H3K4me1, H3K9ac and H3K36me3) observed for 236 

111 tissues or cell types, resulting in a total of 489 annotations. Stratified LD score regression 237 

computes the heritability attributed to each annotation and computes a coefficient and a p-238 

value that characterize enrichment. 239 

 240 
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In a separate analysis, the enrichment of TWAS signals was evaluated among the genes that 241 

have been reported to be associated to different traits, using FUMA(Watanabe et al., 2017; 242 

Watanabe, Umićević Mirkov, de Leeuw, van den Heuvel, & Posthuma, 2019). For a given PA 243 

trait, we defined a gene-set as the genes that were significant at an exome-wide level (< <244 

2.5 × 10$1) and investigated whether these genes overlapped with the genes that have been 245 

mapped to genome-wide significant variants for different traits as reported in GWAS 246 

catalog(Buniello et al., 2019). The collection of such genes have been detailed in Molecular 247 

Signatures Database (MSigDB)(Liberzon et al., 2011). We used FUMA to compute the 248 

proportion of genes related to other diseases and traits that were also identified by our TWAS 249 

analysis and computed enrichment p-values using the Fisher’s exact test.  250 

 251 

Colocalization Analysis 252 

 253 

For each susceptibility locus of PA (Table 2), colocalization analysis was conducted between its 254 

most significantly associated phenotype and eQTL effects on gene expression in 48 tissues in 255 

GTEx v7(GTEx et al., 2017).  SNPs within +-200kb radius of the lead SNP were used and genes 256 

that had at least one significant eQTL (q-value < 0.05) in the region were considered. Analysis 257 

was conducted using the R package COLOC (Giambartolomei et al., 2014) and GWAS and eQTL 258 

effects were identified as being colocalized if PP4 > 0.8. 259 

 260 

Heritability and Genetic Correlation Analysis 261 

 262 
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Heritability of activity phenotypes was estimated using Haseman-Elston regression as an 263 

intermediate output of fastGWA(Jiang et al., 2019). Our fastGWA analysis computed sparse 264 

GRM at sparsity level 0.05 as recommended by the fastGWA paper (see “Association analysis”). 265 

However, this cutoff may miss the subtle relatedness in the sample and affect heritability 266 

estimate. As a sensitivity analysis, we re-estimated the heritability using a lower sparsity 267 

threshold at 0.02 to capture more subtle relatedness. The genetic correlation between 18 PA 268 

traits and 238 complex traits and diseases was estimated using LD score regression(Bulik-269 

Sullivan et al., 2015a) implemented in LD Hub(Zheng et al., 2017). In particular, we focused on 270 

four broad groups of traits and diseases (A) cholesterol levels (B) anthropometric traits (C) 271 

autoimmune disease and (D) miscellaneous traits including psychiatric, neurological, cognitive 272 

and personality traits. For each trait and within each category, we applied a false discovery rate 273 

correction to the p-values corresponding to the genetic correlation estimated using LD score 274 

regression, to account for multiple testing. Any genetic correlation with FDR-adjusted p-value 275 

less that 10% were declared as significant.    276 

 277 

Results 278 

 279 

Genetic Loci Associated with Physical Activity 280 

 281 

Single-variant genome-wide association analysis identified a total of 16 independent loci, 282 

including three novel ones compared to previous studies (Table 2 and Figure 1). All three novel 283 

loci were discovered on chromosome 3: the locus indexed by rs3836464 was associated with 284 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted December 9, 2021. ; https://doi.org/10.1101/2021.02.15.21251499doi: medRxiv preprint 

https://doi.org/10.1101/2021.02.15.21251499


 14 

ASTP; the locus indexed by rs9818758 was associated with relative amplitude, which is a proxy 285 

sleep behavior and circadian rhythm(Rock, Goodwin, Harmer, & Wulff, 2014b); the locus 286 

indexed by indel 3:131647162_TA_T (no rsid available) was associated with TLA 2am-4am 287 

which is a proxy phenotype for activity during sleep. LIPA appeared to be associated with other 288 

SNPs near 3:131647162_TA_T but not the lead variant itself, indicating multiple independent 289 

signals at the same locus (Figure 1). Nearest coding genes for the novel loci include SEC13, 290 

USP4, and CPNE4. 291 

 292 

Our analysis also identified novel phenotypes for several known loci (Table 2). The strongest 293 

signal was seen for the locus indexed by rs113851554 which is associated with multiple sleep 294 

and circadian rhythm proxy phenotypes including TLA 12am-2am (< = 6.7 × 10$45), TLA 2am-295 

4am (< = 7.9 × 10$43), average log acceleration during the least active 5 hours of the day (L5, 296 

< = 1.3 × 10$44), timing of L5 (< = 5.4 × 10$00) and PA relative amplitude (< = 6.9 × 10$"&). 297 

This locus was previously identified to be associated with accelerometry-derived sleep duration 298 

in UK Biobank(Doherty et al., 2018). Among other known loci, 5 were only discovered in the 299 

GWAS of self-reported circadian rhythm(Jones et al., 2019) but not in the other studies 300 

considered (Table 2, last column). In our analysis, the loci indexed by rs1144566, rs9369062 and 301 

rs12927162 were associated with sleep proxy phenotypes including timing of L5, TLA 12am-302 

2am, TLA 2am-4am and TLA 10pm-12am. Three other loci, indexed by rs301799, rs2909950 and 303 

rs12717867, were associated with TLA 6pm-8pm and LIPA, respectively.  304 

 305 
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In addition to the phenotypic associations above, other variants in some of the loci captured 306 

associations that are not reflected by the lead variants. In particular, variants in high LD with 307 

rs2138543 are associated with a wide range of phenotypes including LIPA, MVPA, activity 308 

during two-hour windows, and a number of proxy phenotypes for circadian patterns (Table S1).   309 

 310 

Transcriptome-Wide Association Study and Colocalization Analysis  311 

 312 

We performed transcriptome-wide association studies (TWAS) (Gamazon et al., 2015; Gusev et 313 

al., 2016) for each PA trait based on gene expression data across 48 tissues available through 314 

GTEx (version 7)(GTEx et al., 2017). Our analysis identified 15 loci (Table 3, Figure 2, Table S2) 315 

with significant association in at least one trait-tissue pair analysis after correcting for multiple 316 

testing (Benjamini-Hochberg corrected p-value < 2.5 × 10$1, see Methods). We identified two 317 

novel loci. One of them was indexed by RN7SKP16, whose higher expression in brain putamen 318 

basal ganglia is genetically associated with lower level of MVPA.  Another was indexed by 319 

pseudogene PDXDC2P (16q22.1), whose higher expression in esophagus mucosa and EBV 320 

transformed lymphocytes appeared to be genetically associated with lower level of TLA 6am-321 

8am (Figure 2). See Table S2 for details of these associations. These loci was not previously 322 

reported by any prior GWAS and were not close to any of the 3 novel regions detected by our 323 

single variants analysis (Table 3).  324 

 325 

The TWAS analysis also identified novel PA phenotypes, potential target genes and underlying 326 

tissues for many of the known loci or novel loci detected through single variant analysis (Table 327 
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3). Consistent with a previous study (Doherty et al., 2018), the TWAS analysis showed that 328 

genetic association for PA traits often points towards involvement of CNS (Table 3). Further, our 329 

analysis indicates consistent involvement of blood and immune, digestive and endocrine 330 

systems in modulating the genetic effects on PA. See Table S2 for a complete list of associated 331 

tissues. Among the 15 loci significant in TWAS analysis, the lead genes of 4 loci were 332 

significantly associated with PA phenotypes via the blood and immune tissues. For example, the 333 

genetically predicted expression of PBX3 and KANSL1 in the blood and immune tissues (whole 334 

blood, EBV-transformed lymphocytes) were each associated with 3 PA phenotypes. The genes 335 

associated with PA via blood and immune tissues were also associated via digestive (esophagus 336 

mucosa, small intestine - terminal ileum, colon – sigmoid, etc) and/or endocrine (thyroid, 337 

pituitary) tissues, but only one of them overlapped with the 9 genes that were associated with 338 

PA phenotypes through the CNS (Table 3). Another locus, represented by C3orf62, were 339 

associated with PA relative amplitude only via the digestive and endocrine tissues (esophagus 340 

mucosa, colon – sigmoid, thyroid) but not the blood/immune tissues or CNS. These findings 341 

suggested two potential pathways for the genetic regulation of PA: a primary pathway involving 342 

the CNS (brain in particular) and a secondary pathway involving the blood/immune system and, 343 

potentially, the digestive and endocrine systems. The actual biological processes involved in the 344 

pathways are beyond the scope of this paper and may be worth future investigation. 345 

 346 

Several genes that were found to be significantly associated to specific PA traits in our TWAS 347 

analysis, were also found to be highly overlapping with genes that were previously reported to 348 

be associated with various traits and diseases including but not limited to neuropsychiatric 349 
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diseases, behavioral traits, anthropometric traits and autoimmune diseases (Figure S3). For 350 

example, we found that the genes associated with TLA across different tissues, are enriched for 351 

genes that have been associated with neuroticism, bipolar disorder, Parkinson’s disease, 352 

cognitive function and several others indicating the putative involvement of the CNS in the 353 

genetic mechanism of TLA. Additionally, the genes associated with relative amplitude 354 

overlapped highly with those associated with several autoimmune diseases like inflammatory 355 

bowel disease, ulcerative colitis in addition to different behavioral and cognitive traits (Figure 356 

S3). These results further supported the possible involvement of both CNS as well as the blood 357 

and immune system in the genetic mechanism of PA traits.  358 

 359 

We performed a colocalization analysis to gain further insights on the tissue specific activity of 360 

the significant genetic loci. Among the 16 loci significantly associated with PA, 9 loci colocalized 361 

with the eQTL signals for at least one gene and one tissue with a colocalization probability 362 

(PP4) > 0.8 (Table S3). Colocalization occurred in a similar set of tissues as those that harbored 363 

the TWAS associations (Table 3 and Table S3), namely the CNS, blood and immune (whole 364 

blood, spleen, EBV transformed lymphocytes), digestive (esophagus, colon) and endocrine 365 

(thyroid, testis, adrenal gland) tissues, and also in a number of cardiovascular tissues that were 366 

not highlighted by TWAS. Among the 15 lead genes for TWAS significant loci, the eQTL signal of 367 

4 genes (RERE, C3orf62, PBX3 and RP11-396F22.1) colocalized with PA GWAS signal in at least 368 

one tissue. Colocalization also occurred in two other secondary genes (RP5-1115A15.1 and 369 

CASC10).  370 

 371 
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Analysis of Heritability and Co-Heritability  372 

 373 

Our fastGWA analysis estimated genome-wide heritability of PA phenotypes as an intermediate 374 

output. The estimates appeared to be dependent on the sparsity level of the genetic 375 

relationship matrix (Figure S4). We chose the results under the lower cutoff (0.02) since it 376 

captured more subtle relatedness and should give more accurate heritability estimates. The 377 

estimates of heritability varied across different PA phenotypes. A number of traits were 378 

estimated to have higher heritability than others, including TLA (0.15), TLA 6pm-8pm (0.15), 379 

MVPA (0.14) (Figure S4). Afternoon and pre-sleep evening activity (TLA 4pm to 12am) appeared 380 

to be more heritable than morning activity (TLA 2am to 12pm). As could be expected, 381 

phenotypes with higher heritability tend to have a higher average @0 statistic for genetic 382 

associations, and a QQ plot which deviate further from the null line (Figure S5). The magnitude 383 

of heritability estimates was generally consistent with previous studies, which reported 10-20% 384 

heritability for PA traits (Doherty et al., 2018; Klimentidis et al., 2018). We also notice that 385 

heritability estimated using restricted maximum likelihood (REML) tended to be slightly higher 386 

Haseman-Elston regression estimates (Figure S4).  387 

 388 

We further used stratified LD-score regression for partitioning heritability by functional 389 

annotations of genome(Finucane et al., 2015; Finucane et al., 2018). Consistent with TWAS 390 

findings, this analysis also indicated possible role for blood and immune system in addition to 391 

CNS for genetic regulation of PA (Figure 3). In particular, heritabilities for both TLA and LIPA 392 

were enriched for DNase I hypersensitivity sites (DHS) in primary B cells from peripheral blood 393 
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and that for TLA 12pm-2pm were enriched for H3K27ac in spleen. We also found potential 394 

enrichment in other traits, though they were not significant after FDR adjustment. For example, 395 

for TLA 8am-10am, MVPA, and ASTP the heritability enrichment in active chromatin regions of 396 

blood/immune tissues were all close to being statistically significant (Figure S6). 397 

 398 

We further used LD score regression(Bulik-Sullivan et al., 2015a; Bulik-Sullivan et al., 2015b) to 399 

explore genetic correlation between PA phenotypes and four broad groups of complex traits 400 

and diseases (Figure S7). Genetic correlations were identified (FDR < 10%) between PA 401 

phenotypes and: (1) neurological, psychiatric and cognitive traits, including Alzheimer’s disease 402 

(AD), attention-deficit hyperactivity disorder (ADHD), depressive symptoms, intelligence, and 403 

neo-conscientiousness; (2) auto-immune diseases, with the strongest correlation for multiple 404 

sclerosis and weaker correlations for Crohn’s disease and primary billary cirrhosis; (3) obesity-405 

related anthropometric traits and (4) cholesterol levels. Most PA traits have negative genetic 406 

correlation with obesity-related traits and triglycerides, and positive genetic correlation with 407 

HDL cholesterol. The directions of genetic correlation with the other two categories of traits are 408 

mixed (Figure S7). These results broadly supported our previous results indicating the role of 409 

CNS and blood/immune related mechanisms in the genetics of PA traits. 410 

 411 

Discussion 412 

 413 

In summary, our study provided novel insights to genetic architecture of physical activity   414 

through genome-wide association analysis of an extensive set of accelerometry based PA 415 
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phenotypes, derived in the UK biobank study, and a series of follow-up genomic analyses. We 416 

identified a total of six novel loci, most of which were associated with PA phenotypes not 417 

considered in previous studies (Dashti et al., 2019; Doherty et al., 2018; Jones et al., 2019; 418 

Klimentidis et al., 2018). Our analysis also identified novel phenotypes associated with the 419 

known loci. Further, we provided multiple independent lines of evidence that genetic 420 

mechanisms for association for PA involve the blood and immune system.  421 

 422 

Compared to the 15 loci identified by the two previous GWASs on accelerometry-based PA 423 

(Doherty et al., 2018; Klimentidis et al., 2018), the novel loci we discovered have increased the 424 

number of PA susceptibility loci by 33%. Most of the novel loci were connected to the 425 

expression of genes, pseudogenes or long non-coding RNAs (lncRNA, Table 2 and 3), and 426 

C3orf62 was also supported by evidence of colocalization (Table S3). The novel locus indexed by 427 

rs9818758 overlaps with the TWAS locus index by C3orf62. Though it was unclear how C3orf62 428 

is involved in PA, two secondary genes in the locus, ARIH2 and DAG1 (Table 3), appeared to be 429 

involved in the following biological processes: ARIH2 was found to be essential for 430 

embryogenesis by regulating the immune system(Lin et al., 2013); DAG1 was found to play a 431 

role in the regeneration of skeletal muscles(Cohn et al., 2002). Both processes appeared 432 

relevant for PA. We argue that the two loci above, supported by multiple lines of evidence 433 

including GWAS, TWAS, colocalization and gene functions, should be prioritized in follow-up 434 

studies. Another two novel loci were connected to pseudogene RN7SKP16 and PDXDC2P of 435 

which the function is less clear and may also be worth future investigation. However, Dashti et 436 

al found a transcription factor site variant rs915416 to be associated with sleep duration, which 437 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted December 9, 2021. ; https://doi.org/10.1101/2021.02.15.21251499doi: medRxiv preprint 

https://doi.org/10.1101/2021.02.15.21251499


 21 

is approximately 930Kb away from the transcription start site of RN7SKP1 and might have 438 

potential long range regulatory effects which warrants further study. Among the genes located 439 

in known loci, PBX3 and RP11-396F22.1 were highlighted by both TWAS and colocalization 440 

results. PBX3 is a member of the pre-B cell leukemia (PBX) family which have extensive roles in 441 

early development and some adult processes (Morgan & Pandha, 2020), which could also 442 

modulate its association with PA. 443 

 444 

The novel phenotypes in this study provided important insights into the genetic architecture of 445 

PA, which may have been overlooked by previous GWASs on a small number of phenotypes. 446 

The accelerometry-based study by Doherty et al identified the genetic associations with overall 447 

activity, sleep duration and sedentary time(Doherty et al., 2018); the study by Klimentidis et al 448 

studied the average acceleration and the duration of active states(Klimentidis et al., 2018). Our 449 

results found that there can be different genetic architecture for PA during different times of 450 

the day, and there can be unique variants that only affect certain PA patterns, like ASTP, LIPA 451 

and relative amplitude, but not others (Table 2). The heritability and genetic correlation can 452 

also vary across different PA phenotypes (Figures S4 and S7). 453 

 454 

TWAS and tissue-specific heritability enrichment analysis suggested that in addition to the CNS, 455 

the blood and immune system could be also associated with PA. This finding was further 456 

supported by colocalization, gene-set enrichment and genetic correlation analyses. A previous 457 

study(Doherty et al., 2018), which explored enrichment of heritability for PA traits by tissue-458 

specific gene expression patterns, identified potential modulating role of the CNS, 459 
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adrenal/pancreatic and skeletal muscle tissues. Our study, which used a more extended set of 460 

phenotypes and chromatin-state-based annotations, confirmed previous findings and further 461 

highlighted the role of the blood and immune system. Though there is lack of studies on the 462 

effect of immune functions on PA, previous medical literature has established the effect of PA 463 

on immune functions. A study showed that higher PA is associated with elevation of T-464 

regulatory cells and lower risk for autoimmune diseases(Sharif et al., 2018). Multiple studies 465 

showed that regular moderately intense PA boost immune functions in older adults and 466 

protects against age-related inflammatory disorders(Dhalwani et al., 2016; Duggal, Niemiro, 467 

Harridge, Simpson, & Lord, 2019; Vancampfort et al., 2017).Though the direction of causal 468 

effect may not be the same as that suggested by genetic analyses, these studies supported 469 

broad connections between PA and immune functions. Future studies are needed to better 470 

understand the underlying mechanisms and causal directions.  471 

 472 

In addition to the blood and immune system, TWAS and enrichment analysis also suggested 473 

that the digestive system and endocrine system could be involved in modulating the genetic 474 

effects on PA. The literature has also established broad connections between PA and digestive 475 

and endocrine tissues. A previous study found that PA has complex effects on gastroinstestinal 476 

health(Peters, De Vries, Vanberge-Henegouwen, & Akkermans, 2001): acute strenuous activity 477 

may provoke gastrointestinal symptoms while low-intensity activity could have benefits. 478 

Interestingly, three TWAS loci that were significant in digestive tissues were associated with PA 479 

phenotypes that are proxies for meal-time activity: PDXDC2P with TLA 6am-8am, RERE with TLA 480 

6pm-8PM and KANSL1 with TLA 4pm-6pm (Table 3). It was also known that multiple organs in 481 
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the endocrine system produce hormones that regulate physiological functions of the body, 482 

which can have complex bidirectional relationships with PA(Ciloglu et al., 2005; Hawkins et al., 483 

2008; Ennour-Idrissi, Maunsell, & Diorio, 2015; Alessa et al., 2017; Hackney & Saeidi, 2019). 484 

Among the endocrine tissues, thyroid appeared to be modulating the genetic effect of the 485 

largest number of loci. Previous studies showed that TWAS lead genes PBX3, Corf62 and 486 

KANSL1 were highly expressed in thyroid (GTEx et al., 2017), and SNPs near KANSL1 were found 487 

to be associated with thyroid-stimulating hormone levels (Teumer et al., 2018). Our TWAS 488 

analysis indicated that the genes associated with PA via the blood and immune system tended 489 

to also be associated with the digestive and endocrine systems, but do not usually overlap with 490 

the genes associated with the CNS. This suggests that the blood and immune, digestive and 491 

endocrine systems may be involved in the same broad pathway that affects PA, which is 492 

different from that of CNS.   493 

 494 

It is noteworthy that the accelerometry-derived PA phenotypes in this study are not limited to 495 

exercise, but include a variety of broad-sense activity patterns. In fact, we do find that several 496 

phenotypes have strong genetic correlation with sleep, chronotype and other behavioral traits 497 

(Figure S7). Therefore, when defining novel loci, we have further excluded those variants 498 

previously reported to be associated with PA, sleep and circadian rhythm. However, due to the 499 

nature of accelerometry, which captures the acceleration of human body, those phenotypes 500 

are still essentially and broadly PA phenotypes, though they can indirectly reflect and be related 501 

to other traits. Hence we still address all of them by PA phenotypes throughout the paper. 502 

 503 
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This study has a number of limitations. Though we derived a more extensive set of PA 504 

phenotypes than previous studies, information was still lost when collapsing a 7-day continuous 505 

times series of wrist accelerometry into 31 PA phenotypes. The ideal approach would be to 506 

conduct a GWAS utilizing all the information across the 7 days of accelerometry measurements. 507 

Results could outline genetic regulation of a continuous course of PA over time. The current 508 

analysis of TLA during 12 non-overlapping two-hour time intervals during the day, indicated 509 

that different genetic variants may affect PA during different times of the day (Tables 2 and 3). 510 

Another limitation is that some of the phenotypes are not directly interpretable. For example, 511 

the PCs of log acceleration are less interpretable than other phenotypes, such as TLA and ASTP. 512 

However, they do reflect important features of physical activity and warrant further 513 

investigations. A potential solution is to obtain proxy measurements that are interpretable and 514 

highly correlated with PC scores. 515 

 516 

In conclusion, we conducted association studies on a wide range of PA phenotypes and 517 

identified 5 novel loci associated with PA. We found that in addition to the CNS, the blood and 518 

immune system may also play an important role in the genetic mechanisms of PA, and the 519 

digestive and endocrine systems could also be involved in the blood and immune pathway.  520 

 521 

Data Availability 522 

Data supporting the findings of this paper are available upon application to the UK Biobank 523 

study. The summary statistics are publicly available via the GWAS Catalog 524 

(https://www.ebi.ac.uk/gwas/) under accession numbers GCST90061408-GCST90061434. 525 
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Table 1. Description of physical activity phenotypes. 
Category Phenotype abbreviation Phenotype full name and description 

Total volume of activity 

TA* Total acceleration. 

TLA Total log acceleration. Sum of log(1+acceleration). 

Activity during 2-hour windows of 
the day 

TLA 12am-2am, TLA 2am-4am, TLA 4am-6pm, …, 
TLA 8pm-10pm, TLA 10pm-12am 

Total log acceleration in the k-th two-hour window of the day, starting from midnight (12 intervals 
in total) 

Duration of activity patterns 

ST* 
Duration of sedentary state. Time when the acceleration is less than 30 milli-gravity (mg) is defined 
as sedentary state. 

LIPA 
Duration of light-intensity physical activity (LIPA). LIPA is defined as the time when the acceleration 
is >=30mg but <100mg. 

MVPA 
Duration of moderate to vigorous physical activity (MVPA). MVPA is defined as the time when the 
acceleration if >=100mg. 

Principal components PC1*, PC2, …, PC6 First 6 principal component of the log-transformed minute-level activity profiles. 

Active-sedentary transition patterns 

SATP 
Sedentary to active transition probability. SATP is the probability of transitioning to active state if 
the subject is currently sedentary. Active state is defined as acceleration >=30mg and sedentary 
state is defined as acceleration <30mg. 

ASTP 
Active to sedentary transition probability. SATP is the probability of transitioning to sedentary state 
if the subject is currently active. 

Circadian rhythm proxies 

DARE 
Dynamic activity ratio estimate. Total log-acceleration during 8am-8pm as proportion of TLA for the 
whole day. 

M10* Average log acceleration during the ten most active hours of the day 

L5 Average log acceleration during the five least active hours of the day 

Timing of M10 Mid-point of the ten most active hours of the day 

Timing of L5 Mid-point of the five least active hours of the day 

Relative amplitude 
Relative amplitude = (M10-L5)/(M10+L5). It measures the difference between daytime activity and 
activity during sleep. 

All the phenotypes are first calculated at the day level and then averaged across 7 days. 
* Excluded from genetic association analyses due to high correlation (>0.8) with TLA. 
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Table 2. Significant loci associated with physical activity in single-variant analysis.  
Lead varianta 

Chromosome 
region 

Base pair 
Minor 
allele 

Major 
allele 

Minor allele 
frequency 

Nearest coding 
gene and distanced 

Significantly associated traitsc 
Previous studies that 
discovered the locus 

Novel locib        

NA 
rs3836464 3p25.3 10454772 CA C 0.274 SEC13 (92kb) ASTP (p=2.2e-09, b=-0.032) 

rs9818758 3p21.31 49382925 A G 0.171 USP4 (4.8kb) Relative amplitude (p=2.1e-09, b=-0.036) 

3:131647162_TA_T 3q22 131647162 T TA 0.466 CPNE4 (357kb) TLA 2am-4am (p=2.2e-09, b=0.029) 

Known loci         

rs1144566 1q25.3 182569626 T C 0.030 RGS16 (3.9kb) Timing of L5 (p=5e-10, b=-0.086)* 4 

rs301799 1p36.23 8489302 C T 0.422 SLC45A1 (111kb) TLA 6pm-8pm (p=1.7e-09, b=0.027)* OTGe 

rs113851554 2p14 66750564 T G 0.050 MEIS1 (90kb) TLA 12am-2am (p=6.7e-37, b=0.138)*, TLA 2am-4am 
(p=7.9e-39, b=0.142)*, L5 (p=1.3e-33, b=0.13)*, 
Relative amplitude (p=6.9e-15, b=-0.082)*, Timing of L5 
(p=5.4e-22, b=0.105)* 

1,4 

rs2909950 5q33.1 151886147 A G 0.418 NMUR2 (73kb) TLA 6pm-8pm (p=9.4e-10, b=-0.028)* 4 

rs12717867 5q33.1 152412845 G A 0.453 GRIA1 (456kb) LIPA (p=6.2e-10, b=-0.029)* 4 

rs9369062 6p21.2 38437303 C A 0.292 BTBD9 (171kb) TLA 12am-2am (p=1.5e-12, b=-0.037)*, TLA 2am-4am 
(p=2.3e-10, b=-0.033)* 

4 

rs2006810 7q11.22 69902152 C T 0.395 GALNT17 (695kb) TLA 8pm-10pm (p=8.1e-11, b=-0.031)* 1,4 

rs1268539 9q33.3 128195657 A C 0.419 GAPVD1 (172kb) TLA (p=1.1e-10, b=0.03), LIPA (p=3.2e-10, b=0.03)* 1 

rs564819152 10p12.31 21820650 G A 0.320 SKIDA1 (5kb) TLA 8am-10am (p=1.4e-09, b=-0.031)* 1,3 

rs2138543 12q12 39298423 A T 0.477 CPNE8 (2.8kb) TLA 6am-8am (p=3.9e-11, b=0.03)*, PC2 (p=1.5e-09, b=-
0.029)* 

4 

rs12927162 16q12.2 52684916 G A 0.277 TOX3 (103kb) TLA 10pm-12am (p=1e-09, b=0.032)* 4 

rs2532402 17q21.31 44304130 G C 0.221 KANSL1 (1.4kb) TLA (p=1.5e-12, b=0.04), MVPA (p=1.9e-10, b=0.035) 1,2,3,4 

rs3837946 19p13.2 9955920 TTTTG T 0.475 PIN1 (10kb) TLA (p=1.3e-11, b=-0.032), LIPA (p=1.6e-09, b=-0.029)* 1,3 

aSignificant variants (single nucleotide polymorphism (SNP) or insertion/deletion) are defined as those with fastGWA p-value < 2.63 × 10)* (Bonferroni corrected for 19 independent traits). LD 
clumping was performed at +, < 0.1 and lead variants of different loci were required to be >500kb apart. 
bA locus is defined as novel if its lead variant is >500kb from the lead variant of any loci identified in one of the previous GWAS: 1) Doherty et al study on a smaller set of accelerometry-based 
physical activity; 2) Klimentidis et al study on self-reported and accelerometry based physical activity; 3) Dashti et al study on self-reported sleep duration; 4) Jones et al study on circadian rhythm. 
Loci that were discovered by the four above studies are marked with 1, 2, 3 and 4 in the last column, respectively. Novel phenotypes associated with known loci are marked with *.  
cTraits are followed by p-values (p) and effect sizes (b). The effects size b is for the effect of minor allele vs major allele, e.g. a positive b indicates the minor allele is the trait-increasing allele. TLA: 
total log-acceleration. ASTP: active-to-sedentary transition probability. MVPA: moderate-to-vigorous physical activity. PC2: second principal component. LIPA: light-intensity physical activity. 
dNearest coding gene is defined as the protein-coding gene whose transcription start site (TSS) is closest to the variant. 
eThis locus was not reported by the four studies we catalogued but was associated with daytime nap, as reported by Open Targets Genetics (OTG). See Table S4 for details.  
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Table 3. Significant loci associated with physical activity identified in transcriptome-wide association studies (TWAS). 
Most significant 
genea 

CHR Gene start Gene end Locus 
Minimum p-value 
across traits and 
tissues 

Secondary genes in the 
locus with comparable 
associationsc 

Trait and tissued 
Previous studies 
that discovered 
the locus 

Novel locib         

RN7SKP16 1 33802167 33802465 1p35.1 2.72E-09 - MVPA (CNS)  

PDXDC2P 16 70069541 70098679 16q22.1 1.81E-09 - TLA 6am-8am (Blood/Immune, Digestive) NA 
Known loci         

RERE† 1 8412457 8877702 1p36.23 5.28E-09 ENO1-IT1, RP5-
1115A15.1† 

TLA 6pm-8pm (Digestive, Other, Blood/Immune) GWAS 

RP5-1160K1.6 1 110171118 110171939 1p13.3 7.68E-10 - PC2 (CNS) 4 

C3orf62† 3 49306219 49315263 3p21.31 3.28E-10 RP11-694I15.7, ARIH2, 
DAG1, SLC25A20 

Relative amplitude (Digestive, Endocrine) GWAS 

CTC-467M3.3 5 87988462 87989789 5q14.3 1.39E-08 - ASTP (CNS) 1,4 

NMUR2 5 151771093 151812929 5q33.1 8.88E-10 - TLA 6pm-8pm (CNS, Other) 4,GWAS 

PBX3† 9 128509624 128729656 9q33.3 3.04E-10 MAPKAP1 LIPA (Blood/Immune, Digestive, Endocrine, Other); 
SATP (Blood/Immune, Other, Digestive, Endocrine); 
TLA (Blood/Immune, Other, Digestive, Endocrine) 

1,GWAS 

DNAJC1 10 22045466 22292698 10p12.31 3.20E-09 CASC10† TLA 8am-10am (CNS) 1,3,GWAS 

RP11-396F22.1† 12 39300253 39303394 12q12 9.89E-10 - Timing of M10 (CNS), PC2 (CNS, Other), TLA 6am-
8am (CNS, Other) 

4,GWAS 

FMNL1 17 43299590 43324633 17q21.31 2.82E-09 CTD-2020K17.1 TLA (CNS) 1,4 

KANSL1 17 44107282 44302733 17q21.31 2.17E-13 KANSL1-AS1, RP11-
798G7.8 

MVPA (CNS, Blood/Immune, Other, Digestive, 
Musculoskeletal/connective); TLA 4pm-6pm 
(Blood/Immune, Other, Digestive); TLA (Adipose, 
CNS, Blood/Immune, Other, Digestive, 
Cardiovascular, Musculoskeletal/connective, 
Endocrine) 

1,2,3,4,GWAS 

ZNF846 19 9862669 9903856 19p13.2 2.22E-10 OLFM2, PIN1, CTD-
2623N2.3 

TLA (Other) 1,3,GWAS 

JUND 19 18390563 18392432 19p13.11 3.18E-09 - SATP (Other) 4 

LINC00634 22 42348169 42354937 22q13.2 4.85E-11 - TLA (CNS) 4 

aFor each gene, we apply Benjamini-Hochberg (BH) correction across all trait-tissue pairs. Significant genes are defined as those with BH corrected p-value < 2.5 × 10!". Significant genes are clustered using an approach 
similar to LD clumping so that different loci, marked by the transcription start site (TSS) of the lead gene, are >1Mb apart. Gene symbols are italicized. † Genes of which the eQTL signal colocalizes with GWAS signal of the 
most significantly associated phenotype. 
bA locus is defined as novel if its flanking region (±500kb from TSS) does not harbor a variant reported in Table 2 or any of the four previous studies considered in Table 2. Loci that were discovered by the above studies are 
marked with 1, 2, 3 and 4 in the last column, respectively. Loci that were discovered by our single-variant analysis (Table 2) are marked with “GWAS” in the first column.  
cOther genes in the cluster with minimum p-value less that 10 times the minimum p-value of the lead gene are shown in column “Secondary genes in the locus with comparable associations”.  See Table S2 for all the 
significant tissue-trait pairs.  
dCNS: central nervous system. TLA: total log-acceleration. ASTP: active-to-sedentary transition probability. SATP: sedentary-to-active transition probability. MVPA: moderate-to-vigorous physical activity. PC2: second 
principal component. 
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Figures 

 

 

 

Figure 1. Manhattan plot for 18 traits that are significantly associated with at least one 
variant at ! < #. %& × ()!" in single-variant analysis. The red dashed line is * = 2.63 × 10!# 
accounting for the number of independent traits. The blue dashed line is the standard genome-
wide significance threshold * = 5 × 10!$. Three novel loci that have not been discovered in 
previous GWAS of physical activity, sleep duration and circadian rhythm are circled out and 
annotated by the lead variant and nearest coding gene (see Table 2).  
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Figure 2: TWAS Manhattan plots for three tissues that harbor the TWAS novel loci. Significant 
genes with FDR corrected p-values< 2.5 × 10!% are circled (see Methods for details). Only the 
PA traits that are significantly associated with at least one variant at * < 2.63 × 10!# in single-
variant analysis are shown. 
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Figure 3. Tissue-specific heritability enrichment p-values for traits with significant enrichment 
at FDR < 0.05 in blood and immune tissues. The analysis was conducted using tissue/cell type 
specific stratified LD score regression based on 6 chromatin-based annotations in 111 tissues 
and cell types described in Finucane et al, Nature Genetics 2018 (PMID: 29632380). Each dot 
corresponds to an annotation in a tissue or cell type. A complete list of tissue and cell types is 
provided in Supplementary Table 7 of the above paper. Black line corresponds to FDR < 0.05 (-
log(p-value)=3.83) across all combinations of trait, tissue, and histone mark. Red line 
corresponds to p = 0.05. See Figure S6 for the enrichment p-values for the rest of the traits. 
CNS: central nervous system. 
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