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Summary

Asthma is a complex disease that affects millions of people and varies in prevalence by an order
of magnitude across geographic regions and populations. However, the extent to which genetic
variation contributes to these disparities is unclear, as studies probing the genetics of asthma
have been primarily limited to populations of European (EUR) descent. As part of the Global
Biobank Meta-analysis Initiative (GBMI), we conducted the largest genome-wide association
study of asthma to date (153,763 cases and 1,647,022 controls) via meta-analysis across 18
biobanks spanning multiple countries and ancestries. Altogether, we discovered 180
genome-wide significant loci (p < 5x10-8) associated with asthma, 49 of which are not previously
reported. We replicate well-known associations such as IL1RL1 and STAT6, and find that overall
the novel associations have smaller effects than previously-discovered loci, highlighting our
substantial increase in statistical power. Despite the considerable range in prevalence among
biobanks, from 3% to 24%, the genetic effects of associated loci are largely consistent across
the biobanks and ancestries. To further investigate the polygenic architecture of asthma, we
construct polygenic risk scores (PRS) using a multi-ancestry approach, which yields higher
predictive power for asthma in non-EUR populations compared to PRS derived from previous
asthma meta-analyses and using other methods. Additionally, we find considerable genetic
overlap between asthma and chronic obstructive pulmonary disease (COPD) across ancestries
but minimal overlap in enriched biological pathways. Our work underscores the multifactorial
nature of asthma development and offers insight into the shared genetic architecture of asthma
that may be differentially perturbed by environmental factors and contribute to variation in
prevalence.

Keywords
asthma, GWAS, heterogeneity, multi-ancestry, polygenic risk prediction, cross-trait

2

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 7, 2021. ; https://doi.org/10.1101/2021.11.30.21267108doi: medRxiv preprint 

https://doi.org/10.1101/2021.11.30.21267108
http://creativecommons.org/licenses/by-nc-nd/4.0/


Introduction
Asthma is a complex and multifactorial disease that affects millions of people worldwide, yet
much of its genetic architecture has eluded discovery. Genetic factors contribute substantially to
asthma risk, with heritability estimates ranging from 35% to 95%1,2. The most recent
meta-analysis of asthma discovered 212 asthma-associated loci across the genome, confirming
the polygenic nature of asthma3. However, these risk loci only account for a small proportion of
the total heritability for asthma. Furthermore, the discovery GWAS, like the majority of previous
asthma GWAS, were primarily conducted in populations of European ancestry. Some major
exceptions are the EVE Consortium4, one of the first efforts to perform GWAS in populations of
African-American, African-Caribbean and Latino ancestries, as well as the Trans-National
Asthma Genetic Consortium (TAGC) which included modest sample sizes from populations of
African, Japanese and Latino ancestries in their meta-analysis5. As these studies noted, efforts
to diversify asthma GWAS are particularly important because the prevalence of asthma varies
widely around the world. Surveys of asthma worldwide have found that prevalence can vary by
as much as 21-fold among countries6,7. Within countries, prevalence ranges considerably as
well8, and this variation cannot be attributed to any single known risk factor such as air pollution.
Rather, the contributing genetic and environmental factors are complex. Therefore, assessing
the genetic architecture of asthma in diverse cohorts is critical to gaining a more comprehensive
understanding of asthma risk.

This heterogeneity in prevalence is mirrored by, and may be a consequence of, the
heterogeneity of the disease itself. Asthma is commonly viewed as not a single disease, but
rather a syndrome composed of overlapping phenotypes and endotypes9,10. These are driven by
a myriad of risk factors, both genetic and non-genetic9,10. Asthma also shares genetic
components with various comorbid diseases, including other respiratory diseases like chronic
obstructive pulmonary disease (COPD), allergic diseases, obesity, and neuropsychiatric
disorders11–17. The complex etiology and clinical presentations of asthma in turn complicate
standards for defining the phenotype; for example, nearly 60 different definitions of “childhood
asthma” were used across more than 100 studies in the literature18. This likely also contributes
to the observed variation in asthma prevalence across populations.

High quality clinical models of asthma are necessary to comprehensively and quantitatively
investigate risk factors within and among populations. However, with relatively few large and
diverse datasets of asthma, genetic risk predictors for asthma have been rare in the literature.
For a highly heterogeneous disease like asthma, polygenic risk scores (PRS) may be
particularly useful tools for predicting subtypes, disease severity, and the development of
comorbidities in the clinical setting, and for investigating potential gene-environment interactions
in the research setting. Existing PRS for asthma were generated primarily from UK Biobank
(UKBB), a large population-based cohort study, and BioBank Japan (BBJ), a similarly
large-scale hospital-based study19, or cohorts of smaller sample sizes20,21. The PRS had limited
predictive ability in these studies and lower performance compared to PRS for other common
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complex diseases. This underscores the genetic complexity of asthma and highlights the need
for more large-scale, genomic studies of asthma.

To more deeply interrogate the genetic architecture of asthma across different populations, we
analyzed paired phenotypic and genetic data from the Global Biobank Meta-analysis (GBMI).
Participating biobanks shared summary statistics for the meta-analyses of 14 phenotypes,
including asthma22. Compared to previous asthma resources and studies, this collaborative
effort increased both the sample size and diversity of asthma cases by many folds, covered
more variants with higher imputation quality, and harmonized phenotypes using consistent
electronic health record definitions for asthma across datasets. Harnessing this resource, we
identified 49 loci not previously associated with asthma. Despite prevalence differences of
nearly an order of magnitude, we also demonstrated remarkable consistency of genetic effects
across the biobanks and ancestries in GBMI. Further, we showed that the increased diversity of
data from GBMI improves genetic risk prediction accuracy in multiple populations. Finally, we
provided additional evidence for shared genetic architectures between asthma and known
coexisting diseases such as COPD and hay fever. Our findings highlight the need for future
investigations into how genetic effects shared with different diseases contribute to the
heterogeneity of asthma.

Results

Meta-analysis for asthma across 18 biobanks in GBMI

To identify novel loci associated with asthma, we performed fixed-effects inverse-variance
weighted meta-analysis using the harmonized GWAS summary statistics for asthma from 18
biobanks participating in GBMI. The combined sample size from all studies was 153,763 cases
and 1,647,022 controls, spanning individuals of European (EUR), African (AFR), Admixed
American (AMR), East Asian (EAS), Middle Eastern (MID), and Central and South Asian (CSA)
ancestry (Fig. 1). Despite the standardized phenotype definitions used by each biobank, which
included the asthma PheCode and/or self-reported data (Supplementary Table 3), the
prevalence of asthma varies widely across these biobanks, ranging from 3% in the Taiwan
Biobank to 24% in the Mass General Brigham Biobank. We applied pre- and post-GWAS quality
control filters that resulted in 70.8 million SNPs for meta-analysis; for downstream analyses we
analyzed SNPs present in at least 2 biobanks22. The meta-analysis identified 180 loci of
genome-wide significance (p < 5x10-8), 49 of which have not been previously reported to be
associated with asthma (Fig. 2A). The potentially novel associations had smaller effect sizes on
average compared to the previously reported loci, across the allele frequency spectrum (Fig.
2B). This illustrates that with the increased power and effective sample size of GBMI, we were
able to uncover SNPs with more modest effects on asthma.
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Because the GBMI meta-analysis includes data from UKBB, we compared our results to the
TAGC meta-analysis results that did not include the UKBB GWAS to facilitate analyses that
require independent samples5. Of the 180 lead variants in GBMI, 122 were in the TAGC
meta-analysis or had a tagging variant in high LD (r2 > 0.8) in the TAGC study; 76 of these had p
< 0.05 in the TAGC results. We compared the effect sizes of these 76 SNPs in the GBMI and
the TAGC meta-analyses using a previously proposed Deming regression method that
considers standard errors in both effect size estimates23. We found that all 76 SNPs were
directionally consistent and aligned across the studies (Supplementary Table 4,
Supplementary Fig. 1).

Among the 49 novel loci, six were missense variants or in high LD (r2 > 0.8) with a missense
variant (Supplementary Table 2). One of these SNPs, chr10:94279840:G:C (pmeta-analysis =
2.5x10-9), resides in PLCE1, an autosomal recessive nephrotic syndrome gene24; high
prevalence of atopic disorders, like asthma, among children with nephrotic syndrome has long
been observed in the clinic, suggesting potential shared pathways underlying asthma and
nephrotic syndrome25. The asthma risk allele has also been previously linked to lower blood
pressure26. The lead SNPs chr14:100883117:G:T (pmeta-analysis = 2.6x10-8) and
chr19:56222056:C:A (pmeta-analysis = 2.4x10-8) also implicate novel genes, RTL1 and ZSCAN5A
respectively. RTL1 has been found to play a role in muscle regeneration27, and ZSCAN5A has
been linked to monocyte count28. Additionally, three of the novel lead SNPs co-localized with a
fine-mapped cis-eQTL (Supplementary Table 2). One of these, chr19:49513502:C:T (pmeta-analysis

= 7.98x10-9), implicates FCGRT, which regulates IgG recycling and is a potential drug target for
autoimmune neurological disease therapies29. The other previously-reported missense variants
replicated previous findings; among these, chr4:102267552:C:T (p.Ala391Thr, p = 2.5x10-12) is a
highly pleiotropic variant in SLC39A8 that has been associated with many psychiatric,
neurologic, inflammatory and metabolic diseases30–36 and has been demonstrated to disrupt
manganese homeostasis37. Variants implicating well-known asthma-associated genes with large
effects, like IL1RL1, IL2RA, STAT6, IL33, GSDMB, and TSLP, were replicated in the
meta-analysis as well.

Genetic architecture of asthma across biobanks and ancestry groups is
shared

Given that sample size, disease prevalence, ancestry, and sampling approaches differed across
the 18 biobanks, we next investigated the consistency of the asthma-associated loci across the
biobanks and their attributes. We first implemented an approach that estimates the correlation
(r b) between the effects of the 180 lead variants in each biobank GWAS and the corresponding
meta-analysis excluding that biobank38. Most of the r b estimates were highly correlated (i.e. did
not differ significantly from 1) (Supplementary Table 5). To further interrogate the consistency
of the lead variants in all biobanks, we computed the ratio of the effect size of these SNPs in the
biobank-specific GWAS over that in the corresponding leave-that-biobank-out meta-analysis.
We found that the average per-biobank ratios were almost evenly split between those greater
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than and less than 1 (Supplementary Fig. 2). This indicates that any significant difference in
effects likely does not reflect technical artifacts in the meta-analysis or GWAS procedures. We
also applied Deming regression to assess the alignment of the lead SNP effects in each
biobank-specific GWAS with the effects in the corresponding leave-that-biobank-out
meta-analysis23 and observed that the effect sizes were comparable across the biobanks (Fig.
3). Furthermore, the genome-wide genetic correlations between the biobanks with non-zero
heritability estimates and the respective leave-that-biobank-out meta-analyses were all close to
122. Taken together, these analyses indicate that the genetic architecture of asthma is largely
shared across diverse cohorts, even when cohort characteristics like sample size and disease
prevalence differ.

We also found little evidence of heterogeneity in the ancestry-specific effect sizes for the lead
SNPs. One SNP, chr10:9010779:G:A, was significantly heterogeneous (p-value for Cochran’s Q
test < 0.0003, the Bonferroni-corrected p-value threshold) across the ancestry-specific
meta-analyses of AFR, AMR, CSA, EAS, and EUR individuals (Fig. 4A, Supplementary Table
6). One known SNP that nearly reached the Bonferroni-corrected p-value threshold for
heterogeneity, chr16:27344041:G:A, displayed different effects in the EUR and EAS cohorts.
This SNP lies within an intron of IL4R (Fig. 4B), which has known associations with asthma39,40.
Previous studies have investigated the association of IL4R with asthma in different populations,
with inconsistent results, so future studies on the population-specific effects of this gene will be
needed41–43. Our findings demonstrate that despite broad consistency of effect sizes across
ancestries among the lead variants, the increased power and diversity of GBMI enabled the
detection of SNPs with significantly different effects across ancestries.

Multi-ancestry Bayesian method improves asthma PRS accuracy in some
populations

We next explored the impact of the increased sample sizes and diversity in GBMI on
genome-wide risk prediction of asthma. To establish a baseline understanding of PRS
performance for the 14 phenotypes analyzed in GBMI, we implemented PRS-CS44 to construct
PRS using the leave-one-biobank-out meta-analyses as discovery data45. The PRS derived
from the GBMI leave-one-biobank-out meta-analyses of asthma had higher predictive accuracy,

as measured by R2 on the liability scale ( ), compared to the PRS constructed from the𝑅
𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦
2

TAGC meta-analysis5 across all biobanks tested (Fig. 5).

To expand on these analyses, we tested a recently-developed extension of PRS-CS,
PRS-CSx46. This method jointly models multiple summary statistics from different ancestries to
enable more accurate effect size estimation for prediction. For input to PRS-CSx, we used the
AFR, AMR, EAS, CSA, and EUR ancestry-specific meta-analyses from GBMI; the discovery
meta-analysis that matched the ancestry of the target cohort excluded the target cohort
(Supplementary Fig. 5). With the posterior SNP effect size estimates from PRS-CSx, we tested
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the multi-ancestry PRS in the following target populations: AFR ancestry individuals in UKBB,
CSA ancestry individuals in UKBB, a holdout set of EAS ancestry individuals in BBJ, and a
holdout set of EUR ancestry individuals in UKBB. The final prediction models tested in these
target populations were the optimal linear combinations of the population-specific PRS. In both

the EAS and EUR target cohorts, the approached the SNP-based heritability ( ),𝑅
𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦
2 ℎ

𝑆𝑁𝑃
2

estimated to be 0.085 for asthma using the all-biobank meta-analysis 45 (Fig. 5). However, we

acknowledge that estimates may differ across biobanks and ancestries given differences inℎ
𝑆𝑁𝑃
2

disease prevalence, environmental exposures, phenotype definitions, and other factors; these
differences may contribute to the PRS in EAS individuals performing similarly to PRS in EUR
individuals in our analyses, despite the smaller sample size of the EAS discovery cohort. The

across the target populations for the PRS-CSx scores were roughly the same as the𝑅
𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦
2

of the PRS derived from the PRS-CS analyses. It is important to note that the discovery𝑅
𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦
2

data used in the PRS-CS analyses differed slightly in sample size and composition, since the
leave-one-biobank-out approach was used for PRS-CS, but the target cohorts in which the PRS
were evaluated were the same (Supplementary Table 14).

To investigate why improvement in performance using PRS-CSx was only incremental in most
of the target cohorts, we examined the performances of each population-specific PRS. We
found that across all target cohorts, PRS derived from either the EUR or EAS set of posterior

effect size estimates outperformed the linear combination, and the of these PRS were𝑅
𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦
2

also higher compared to that of the PRS-CS scores (Supplementary Fig. 6). This suggests that
the addition of more discovery GWAS to PRS-CSx can improve the accuracy of PRS based on
a single set of posterior effect size estimates, but the linear combination of PRS from multiple
GWAS does not necessarily yield higher accuracy. This may be due to the considerably smaller
sample sizes of some of the input discovery meta-analyses in our analyses and thus varying
signal to noise ratios.

Asthma shows strong genome-wide genetic correlation with many disease
areas from COPD to digestive disorders

Previous studies have shown that asthma is genetically correlated with a wide range of
diseases and traits11–17. We aimed to do a comprehensive genetic correlation analysis and
identify all phenotypes that are significantly correlated with asthma from the GBMI biobanks.
Among the 14 phenotypes analyzed in GBMI, COPD, a late-onset respiratory disease, had the
highest genetic correlation with asthma (rg (se) = 0.67 (0.021), p = 1.55x10-226). This genetic
correlation estimate is higher than estimates from previous studies, which ranged from
0.38-0.4247,48. This may be a result of greater power in the GBMI meta-analysis of COPD and
different phenotype definitions used. Of note, only 6 of the 180 asthma-associated index
variants (3%) had a genome-wide significant p-value in the COPD meta-analysis. Conversely,
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12 of the 46 COPD-associated index variants (26%) had a genome-wide significant p-value in
the asthma meta-analysis (Supplementary Table 7); 8 of these 12 variants were previously
reported COPD associations. This shows that despite the strong genetic overlap between the
COPD and asthma meta-analyses, the COPD meta-analysis largely identified variants with
COPD-specific effects.

We next expanded these genetic correlation analyses beyond GBMI to measure correlations
between asthma and the full breadth of phenotypes in UKBB. Of the 7,142 phenotypes for
which GWAS were conducted in the EUR ancestry cohort in UKBB, 1,008 were significantly
heritable (heritability Z score > 4)49. Applying linkage-disequilibrium score correlation (LDSC) to
these GWAS and the GBMI leave-UKBB-out meta-analysis of asthma, we obtained pairwise
genetic correlation estimates between the heritable UKBB phenotypes and asthma, and
observed strong correlations (|rg| > 0.4) with 95 of these phenotypes, which spanned
prescriptions, PheCodes, and other categories (Supplementary Table 8). Many of these
replicated previously-found correlations with asthma. Digestive system disorders, including
gastritis and gastroesophageal reflux disease (GERD), emerged as a disease category with
significant and strong genetic correlations with asthma. Although the association between
asthma and digestive disorders has not been as well studied, this does reinforce a previous
finding of shared genetics between asthma and diseases of the digestive system5, indicating
that the commonly-observed co-presentation of asthma and gastroesophageal disease in the
clinic may be partially due to pleiotropic genetic effects. Our results also showed moderate and
significant correlations (rg ranging from 0.2-0.3) between asthma and neuropsychiatric diseases,
like anxiety and depression, and obesity-related traits, like body mass index, which is similarly
consistent with previous findings15,17.

To assess the consistency of the correlations in another population, we computed genetic
correlation estimates between the GBMI EAS meta-analysis of asthma and other phenotypes in
BBJ (Supplementary Table 9, Supplementary Fig. 4). Of the 48 available diseases in BBJ, 8
were significantly heritable in both BBJ and UKBB. Among these phenotypes, COPD showed
the strongest and most significant correlation with asthma in BBJ (rg = 0.29, p = 6.41x10-6),
although this was notably lower than across the full GBMI meta-analysis; differences in
phenotype definition and curation may potentially contribute to variation in correlation estimates.
Among all significantly heritable phenotypes in BBJ, pollinosis, also known as hay fever, showed
moderate correlation with asthma as well (rg = 0.28, p = 0.0004). These were directionally
consistent with the correlation results from UKBB, which showed strong and significant
correlation with COPD (rg = 0.71, p = 3.88x10-57) and moderate correlation with pollinosis (rg =
0.39, p = 4.60x10-3).

Asthma and COPD are influenced by both shared and distinct biological
processes
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To further evaluate the extent of genetic overlap between asthma and COPD, we applied a gene
prioritization method, MAGMA, to the GBMI EUR, AFR, EAS, and CSA meta-analyses of
asthma as well as the GBMI EUR, AFR, and EAS meta-analyses of COPD50. After Bonferroni
correction, we found that 442, 149, and 6 genes were significantly associated with asthma in the
EUR (p < 2.50x10-6), EAS (p < 2.50x10-6), and CSA (p < 2.52x10-6) populations, respectively,
with no significantly associated genes in the AFR cohort (all p > 2.51x10-6) (Supplementary
Table 10). The majority of the genes associated with asthma identified in the EAS meta-analysis
overlapped with the genes from the EUR meta-analysis (126 out of 149 genes), and all 6 genes
associated with asthma as identified in the CSA meta-analysis were also significantly
associated in the EUR and EAS meta-analyses. We identified 46 and 33 genes significantly
associated with COPD in the EUR (p < 2.50x10-6) and EAS (p < 2.50x10-6) cohorts, respectively,
and similarly to asthma, no significantly associated genes from the AFR meta-analysis (all p >
2.51x10-6) (Supplementary Table 11). Of the 75 genes associated with COPD across the EUR
and EAS meta-analyses, 24 overlapped with the asthma-associated genes.

Utilizing these sets of genes, we also adopted MAGMA for gene-set enrichment based on the
curated and ontology gene sets from the Molecular Signatures Database (MSigDB)51. We found
hundreds of gene sets that were significantly enriched (FDR < 0.05) by the asthma-associated
genes discovered in the EUR and EAS meta-analyses (Supplementary Table 12). In contrast,
only a handful of gene sets were significantly enriched among COPD-associated genes
discovered in the AFR meta-analysis, likely reflecting the smaller overall sample size of COPD
(Supplementary Table 13). The top-ranked asthma pathways from the EUR meta-analysis
included cytokine and interleukin signaling and T-cell activation. Consistently biologically, the
EAS meta-analysis identified autoimmune thyroid disease and graft vs. host disease pathways.
The top-ranked COPD pathways from the EUR meta-analysis, although not significant, included
several pathways related to nicotine receptor activity. These results reinforce that despite the
substantial genetic overlap, asthma and COPD are governed by distinct biological processes as
well. Future investigations will be required to fully parse out the etiology and comorbidities of
asthma, like COPD, that develop later on in adulthood.

Discussion
Assembling the largest and most diverse collection of asthma cohorts to date, we conducted a
GWAS meta-analysis of 18 biobanks around the world and identified 49 novel associations.
Despite the substantial sample sizes of previous meta-analyses of asthma5, our results
indicated that the heterogeneity and complexity of asthma necessitate even larger sample sizes
for genomic discovery. We interrogated the overall consistency of genetic effects across the
cohorts and found that in spite of variability in recruitment continent, sampling strategy, health
system design, and disease prevalence, the effects of the loci discovered in the meta-analysis
were mostly concordant across the biobanks. Additionally, genetic correlation estimates across
ancestries, which ranged from 0.65 to 0.99 for the well-powered ancestry groups, as well as
specific genes prioritized using MAGMA, strongly supported the finding that the genetic
architecture of asthma is largely shared across the ancestry groups studied. This study provided
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further evidence for substantial genetic overlap between asthma and well-known,
immune-related comorbidities like COPD and allergic diseases. We also identified genetic
correlations between asthma and less well-studied comorbidities like digestive system
disorders, while highlighting additional complexity in the etiology and comorbidities of asthma.
For example, gene set enrichment analyses using MAGMA did not yield many shared pathways
for asthma and COPD despite the strong genetic correlation.

We also showed that applying novel Bayesian PRS construction methods like PRS-CSx and
PRS-CS44,46 to association data from larger and more diverse cohorts can improve prediction in
asthma, particularly for populations of non-European ancestry. However, we found that
imbalances in the sample sizes of the discovery cohorts may need to be taken into careful
consideration when using these methods. Previous studies have shown that imbalanced sample
sizes across ancestries contribute somewhat unpredictably to varying prediction performances,
with a low signal-to-noise ratio in ancestry-matched target populations reducing prediction
performance52. Therefore, further investigations are needed to fully understand the interplay
between sample size and ancestry in the context of polygenic prediction. Ultimately, these
analyses highlight the pressing need for more well-powered and ancestrally-diverse resources
that will help reduce these imbalances.

We have highlighted the harmonization of the phenotype definitions across biobanks, but it is
important to acknowledge that the criteria used, which allowed for both self-reported and
PheCode information, are vulnerable to imprecision and variability in the data collected.
Self-reported data for asthma is particularly susceptible to imprecision, since it relies on
personal recollection of asthma diagnoses that are often given in childhood. On the other hand,
PheCodes, which are based on ICD codes, may fail to capture diagnoses made earlier in the
lifetime of individuals in hospital-based cohorts. Therefore, including both self-reported and
PheCode data -- an approach adopted by some but not all biobanks -- may be optimal for
association analyses for asthma. In the UKBB we found that the genetic correlation between the
EUR GWAS using only data from individuals with the asthma PheCode and the EUR GWAS
using individuals with either PheCode or self-reported data, which almost doubled the number of
cases, was nearly 1 (rg = 0.97). So, while we have demonstrated that the variation of phenotype
definition used does not significantly influence the genetic association results in this case, we
cannot confirm the same pattern for all biobanks in GBMI and especially for other diseases.
However, given the relative alignment of genetic effects across the biobanks, we would expect
that minor differences in phenotype definition would not substantially change the association
results.

Additionally, we acknowledge that since the definitions used here for asthma and COPD do not
exclude individuals with concurrent diagnoses, we are not able to fully distinguish the distinct
biological pathways affecting asthma and COPD. Comorbidity rates of asthma and COPD
reported in the literature range across studies but population-based estimates generally are low,
around 2-3%53,54, while hospital-based prevalence estimates tend to be higher, around 13%55.
Among biobanks participating in GBMI, for example, 15.5% of all individuals with asthma in
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UKBB have a concurrent COPD diagnosis, 21% in BioVU, and 7.4% in BBJ. A previous study
found that using stricter definitions of asthma, such as excluding subjects with COPD, resulted
in stronger association signals for some of the asthma-associated loci3. However, it is important
to note that this case exclusion would introduce an additional source of ascertainment bias. We
also note that estimates of genetic correlation by LDSC are not biased by sample overlap56. In
fact, this has been explored in the context of asthma and allergic diseases, where rg estimates
from LDSC were shown to be robust to overlapping cases and/or controls 16.

We also recognize the importance of analyzing environmental factors in conjunction with genetic
factors for a disease that is heavily influenced by the environment. Our genetic analyses offer
insight into the potential shared biological pathways that may be differentially affected by
non-genetic factors, but we were not able to explicitly investigate environmental effects given
the lack of available environmental exposure data among the biobanks. The high degree of
alignment among genetic associations, coupled with the large variability in asthma prevalence,
points to a particularly important role of the environment for asthma risk across populations.
Gaining a greater understanding of the specific non-genetic factors that contribute to asthma
development in different environments may help guide more accurate disease prediction across
populations.

This study, and importantly the data sharing across biobanks facilitated by this initiative, have
laid the groundwork for deeper dives into the shared and distinct genetic signatures of asthma
subtypes. Previous studies have categorized the UKBB individuals with asthma into childhood-
versus adult-onset subtypes based on their ages at first diagnosis, discovering partly distinct
genetic architectures15,57. Data from other biobanks in GBMI make it possible to perform similar
stratifications and enable multiple downstream analyses. For example, future studies can
evaluate the genetic overlap between subtypes, further validate previously reported
subtype-specific variants in different populations, and test the power of PRS to discern different
subtypes, empowered by the meta-analysis conducted here. Additionally, with access to
biobanks with a wide range of phenotypes beyond the 14 analyzed in this initiative, we can
begin to tease out the underlying biological relationships between asthma subtypes and other
correlated phenotypes, particularly immune-related pulmonary diseases. Harnessing these
cross-trait correlations for prediction may also be a fruitful approach to improving the accuracy
of polygenic prediction models for asthma.
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Figures

Figure 1. 18 biobanks in GBMI contributing GWAS of asthma. Distribution of prevalence of
asthma on left and number of cases of asthma on right across biobanks in GBMI. Biobanks
span different sampling approaches and ancestries (AFR = African; AMR = Admixed American;
EAS = East Asian; MID = Middle Eastern; EUR = European; CSA = Central and South Asian).
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Figure 2. Lead variants associated with asthma. a, 49 asthma lead variants that are
potentially novel. Missense variants and cis-eQTLs fine-mapped with PIP > 0.9 that overlapped
with an index or tagging variant (r2 > 0.8) are annotated here. Frequency of risk allele and effect
size estimate in GBMI meta-analysis are shown on the right. b, Frequency and effect size of risk
alleles of all 180 lead variants. Previously reported genes with large effect sizes are highlighted.
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Figure 3. Consistency of lead variants across biobanks. Regression slopes computed using
the Deming regression method, which compared effects of index variants in each biobank
GWAS against their effects in the corresponding leave-that-biobank-out meta-analysis23. The
x-axis shows the effective sample size of each biobank, computed as 4/(1/cases + 1/controls).
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Figure 4. Lead variants showing heterogeneity in ancestry-specific effect sizes. a, The
index variants with the most significant pCochran’s Q. Effect sizes of these variants in each
ancestry-specific meta-analysis are shown here. b, LocusZoom plots showing the association of
chr16:27344041:G:A (purple symbol) and variants within 150kb upstream and downstream of
this variant with asthma. Color coding of other SNPs indicates LD with this SNP. EUR, EAS, and
AFR indicate the population from which LD information was estimated.

Figure 5. PRS performance across ancestries. Each panel represents a target cohort in
which PRS constructed using PRS-CSx and PRS-CS were evaluated. PRS-CS analyses used
the GBMI leave-BBJ-out meta-analysis and GBMI leave-UKBB-out meta-analysis as discovery
data for the BBJ and all UKBB target cohorts, respectively (Supplementary Table 14)45. The
reference dataset was the TAGC meta-analysis5. Sample sizes for the target cohorts are:
cases=849 and controls=5190 for AFR; cases=500 and controls=500 for EAS; cases=1164 and
controls=7577 for EUR; cases=1232 and controls=6744 for SAS. Error bars represent standard
deviation of R2 on the liability scale across 100 replicates.

STAR Methods

Asthma phenotype definitions for association analyses

The phenotype definition guidelines that were developed by GBMI and shared with all
participating biobanks can be found in Zhou et al.22. Disease endpoints, including asthma, were
defined following the PheCode maps, which maps ICD-9 or ICD-10 codes to PheCodes58.
Asthma cases were all study participants with the asthma PheCode, and controls were all study
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participants without the asthma PheCode (or asthma-related PheCodes). Biobanks that did not
have ICD codes primarily used self-reported data (Supplementary Table 3).

Meta-analysis for asthma in GBMI

We performed fixed-effects meta-analysis with inverse variance weighting for 18 biobanks in
GBMI: China Kadoorie Biobank (CKB), Generation Scotland (GS), Lifelines, QSKIN, East
London Genes & Health (GNH), HUNT, UCLA Precision Health Biobank (UCLA), Colorado
Center for Personalized Medicine (CCPM), Mass General Brigham (MGB), BioVU, BioMe,
Michigan Genomics Initiative (MGI), BioBank Japan (BBJ), Estonian Biobank (ESTBB),
deCODE Genetics (DECODE), FinnGen, Taiwan Biobank (TWB), and UK Biobank (UKBB).
Basic information on the biobanks are described in Zhou et al., as well as details on the
genotyping, imputation, GWAS, post-GWAS quality control, and meta-analysis procedures22.
Genetic variants with minor allele count (MAC) < 20 and imputation score < 0.3 were excluded
from the analyses. Altogether, these cohorts had a total sample size of 153,763 cases and
1,647,022 controls (Supplementary Table 1). GWAS meta-analyses were first conducted within
continental ancestry groups to control for population stratification. 5,051 cases and 27,607
controls were of African (AFR) ancestry; 4,069 cases and 14,104 controls were of Admixed
American (AMR) ancestry; 18,549 cases and 322,655 controls were of East Asian (EAS)
ancestry; 121,940 cases and 1,254,131 were of European (EUR) ancestry; 139 cases and
1,434 controls were of Middle Eastern (MID) ancestry; and 4,015 cases and 27,091 controls
were of Central and South Asian (CSA) ancestry.

Lead SNP and locus definitions

We used a threshold of p < 5e-8 to identify SNPs with a genome-wide significant effect. To
identify lead variants, we used a window size of 500 kb upstream and downstream of the SNPs
with the strongest evidence of association in the meta-analysis, and merged overlapping
regions until no genome-wide significant variants were detected within the  ± 500 kb region. To
designate lead SNPs as previously discovered or potentially novel, we compiled a list of known
asthma-associated SNPs (p < 5x10-8) from the associations collected by El-Husseini et al. 39 and
listed in the GWAS catalog (as of 11/14/2021)59. We extended 500 kb upstream and
downstream of each of these variants to define a locus, and intersected these regions with the
loci defined by the lead SNPs in our meta-analysis to identify any overlaps. We annotated
genetic variants with the nearest genes using ANNOVAR60 and putative loss-of-function using
VEP61 with the LOFTEE plug62 as implemented in Hail22. We also annotated whether the lead or
tagging variants (r2 > 0.8) of asthma were fine-mapped in any of the cis-eQTL fine-mapping
resources. We retrieved cis-eQTL fine-mapped variants with posterior inclusion probability (PIP)
> 0.9 in any tissues and cell types from the GTEx v863 and eQTL catalogue release 464.
Fine-mapping was conducted using SuSiE65 with summary statistics and covariate-adjusted
in-sample LD matrix as described previously66,67 (Supplementary Table 2).

18

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 7, 2021. ; https://doi.org/10.1101/2021.11.30.21267108doi: medRxiv preprint 

https://paperpile.com/c/MLFZ6I/nb2G0
https://paperpile.com/c/MLFZ6I/UQP1z
https://paperpile.com/c/MLFZ6I/ZacUO
https://paperpile.com/c/MLFZ6I/zaPYi
https://paperpile.com/c/MLFZ6I/369Fc
https://paperpile.com/c/MLFZ6I/8iBfQ
https://paperpile.com/c/MLFZ6I/nb2G0
https://paperpile.com/c/MLFZ6I/NAWGp
https://paperpile.com/c/MLFZ6I/YxYbS
https://paperpile.com/c/MLFZ6I/yWo8A
https://paperpile.com/c/MLFZ6I/AaKjP+mho7r
https://doi.org/10.1101/2021.11.30.21267108
http://creativecommons.org/licenses/by-nc-nd/4.0/


Lead SNP effects across biobanks

To estimate the correlation of SNP effects for the 180 top-associated SNPs between one
specific biobank and the leave-that-biobank-out meta-analysis, we used the method proposed
by Qi et al. using GWAS summary statistics38 (Supplementary Table 5). Specifically, the
method directly calculates SNP effect correlation as:
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jackknife approach by leaving one SNP out each time. SNPs with large standard errors in CKB
and HUNT (chr12:123241280:T:C and chr17:7878812:T:C, respectively) were excluded from
these analyses.

Then, for the lead SNPs present in each biobank, we computed:
𝑏𝑖𝑜𝑏𝑎𝑛𝑘 𝑚𝑒𝑡𝑎−𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠 𝑒𝑓𝑓𝑒𝑐𝑡 𝑠𝑖𝑧𝑒

𝑙𝑒𝑎𝑣𝑒−𝑡ℎ𝑎𝑡−𝑏𝑖𝑜𝑏𝑎𝑛𝑘−𝑜𝑢𝑡 𝑚𝑒𝑡𝑎−𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠 𝑒𝑓𝑓𝑒𝑐𝑡 𝑠𝑖𝑧𝑒
for the biobank and leave-that-biobank-out pair. We took the average ratio across the lead SNPs
for each biobank and leave-that-biobank-out pair. We then used the regression method
introduced in Deming et al., which considers the errors in both the X- and Y-variables, to
compare the effect sizes of these SNPs in each biobank GWAS with their effects in the
leave-that-biobank-out meta-analysis23. We set the intercept equal to 0 for these analyses.

Ancestry-specific heterogeneity analyses

To assess heterogeneity of per-SNP effect sizes for the 180 lead SNPs across ancestries in
GBMI, we conducted ancestry-specific meta-analyses of the five most well-powered ancestry
groups in GBMI (EUR, AFR, AMR, EAS, and CSA). We applied the Cochran’s Q test 68 to the
SNP effects in the ancestry-specific meta-analyses and identified SNPs with significant
heterogeneity based on a Bonferroni-corrected p-value cut-off of 0.05/169 = 0.0003, accounting
for the number of SNPs present in all studies (Supplementary Table 6). Regions displaying
heterogeneity in effects across ancestry groups were visualized using the LocalZoom tool69.
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Polygenic risk score analyses

A description of the PRS analyses conducted using PRS-CS44, as well as the
leave-one-biobank-out meta-analysis strategy applied, is provided in Wang et al.45.

We used PRS-CSx, which jointly models GWAS summary statistics from populations of different
ancestries and returns posterior SNP effect size estimates for each input population46. We
applied this method to the AMR, AFR, CSA, EAS, and EUR ancestry-specific meta-analyses,
which served as the discovery data for PRS construction. For the ancestry-specific
meta-analysis that matched the ancestry of the target cohort, we excluded the target cohort. We
evaluated the predictive performance of the PRS in 4 target cohorts: 1) AFR ancestry
individuals in UKBB (849 cases, 5190 controls), 2) CSA ancestry individuals in UKBB (1232
cases, 6744 controls), 3) EAS ancestry individuals in BBJ that were part of a randomly-selected
1k holdout set (500 cases, 500 controls), and 4) EUR ancestry individuals in UKBB that were
part of a randomly-selected 10k holdout set (1164 cases, 7577 controls). As an example, for the
AFR ancestry individuals, the full set of discovery data for PRS construction consisted of the
AMR, CSA, EAS, and EUR ancestry-specific meta-analyses, as well as the AFR
ancestry-specific meta-analysis excluding the AFR ancestry individuals in UKBB. The same
strategy was applied to the other 3 target cohorts (Supplementary Fig. 5). We used
ancestry-matched LD reference panels from UKBB data and the default PRS-CSx settings for
all input parameters. We evenly and randomly split cases and controls in the target cohorts into
validation and testing subsets. Using the posterior SNP effect size estimates from PRS-CSx, we
computed one PRS per discovery population for the validation subsets to learn the optimal
linear combination of the ancestry-specific PRS using PLINK v1.970,71. Then, with these weights,
we evaluated the prediction accuracy of this linear combination of PRS in the testing subset. We
reported the average prediction accuracy, measured by variance explained on the liability scale

( ), estimated using the prevalence of asthma in the BBJ biobank for the EAS target𝑅
𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦
2

cohort and in the UKBB biobank for the other target cohorts, across 100 random splits.

Genetic correlation analyses in UKBB and BBJ

We used linkage-disequilibrium score correlation (LDSC) to compute pairwise genetic
correlations (rg)56. We estimated rg between all EUR-ancestry UKBB phenotypes with heritability
Z-score > 4 and (1) the GBMI leave-UKBB-out meta-analysis for asthma and (2) the UKBB
EUR-ancestry GWAS of asthma (PheCode ID 495 in UKBB). The heritability Z-scores were
obtained from the stratified-LDSC (S-LDSC) computations of heritability reported by the Pan-UK
Biobank team49,72,73. Summary statistics from the UKBB EUR GWAS were obtained from the
Pan-UK Biobank team as well49.
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We also used LDSC56 to compute rg between 48 phenotypes in BioBank Japan (BBJ) and (1)
the GBMI leave-BBJ-out meta-analysis for asthma and (2) the BBJ GWAS of asthma. We used
publicly available GWAS summary statistics for all traits74–76. Genetic correlation results were
visualized using the R corrplot package77.

Gene- and pathway-based enrichment analyses for asthma and COPD

Fixed-effects meta-analysis with inverse variance weighting was also performed for 16 biobanks
in GBMI with COPD data: BBJ, BioMe, BioVU, CCPM, CKB, ESTBB, FinnGen, GNH, GS,
HUNT, Lifelines, MGB, MGI, TWB, UCLA, and UKBB. The same processing and methods were
applied here as for the asthma meta-analysis. These cohorts had a total sample size of 81,568
cases and 1,310,798 controls. COPD cases were defined based on the COPD PheCode, and
controls were all study participants without the COPD or COPD-related PheCodes. Biobanks
that did not have ICD codes available used spirometry data (Lifelines) or self-reported data
(TWB). Details can be found in Zhou et al.22. Meta-analyses were also conducted within
continental ancestry groups: 19,044 cases and 310,689 controls of EAS ancestry, 1,978 cases
and 27,704 controls of AFR ancestry, and 58,559 cases and 937,358 controls of EUR ancestry.

We used MAGMA v1.09b for gene prioritization and gene-set enrichment analyses, applying this
method to the GBMI asthma EUR, AFR, EAS, and CSA ancestry-specific meta-analyses and
the GBMI COPD EUR, AFR, and EAS ancestry-specific meta-analyses50. For the gene-level
analyses in MAGMA, we first mapped the SNPs to the provided list of genes using a window
size of 20kb, and then performed gene analysis using the ancestry-matched 1000G LD
reference panels to account for LD structure. Gene-set enrichment was performed using the
default settings to correct for gene length, gene density, and the inverse mean minor allele
count. The gene sets used were the c2, “curated gene sets,” and c5, “ontology gene sets,”
obtained from the Molecular Signatures Database v7.451.

Resource Availability

Data and Code Availability

The all-biobank GWAS summary statistics are publicly available for downloading at
https://www.globalbiobankmeta.org/resources and can be browsed at the PheWeb Browser
(http://results.globalbiobankmeta.org). Custom scripts used for quality control, meta-analysis,
and loci definition are available at https://github.com/globalbiobankmeta. Other analyses utilized
publicly available tools: the R deming package for Deming regression78, PRS-CSx for polygenic
prediction (https://github.com/getian107/PRScsx), LDSC for genetic correlation
(https://github.com/bulik/ldsc), and MAGMA v1.09b for gene-set enrichment
(https://ctg.cncr.nl/software/magma).
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Supplementary Information

Supplementary Figures

Supplementary Figure 1. GBMI lead variants in TAGC. 76 of the 180 lead variants associated
with asthma discovered in the GBMI meta-analysis were found in the TAGC meta-analysis of
asthma, or had a tagging variant (r2 > 0.8) in the TAGC study, with a p-value < 0.055. The effect
sizes of these 76 variants as estimated in the TAGC vs. GBMI meta-analyses were compared
using the Deming regression method23. The intercept was set to be 0; the slope estimated from
the regression analysis is reported here.
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Supplementary Figure 2. Consistency of asthma lead variants across biobanks. For each
biobank shown on the x-axis, we computed the average ratio of effect sizes of the index variants
in the biobank vs. in the corresponding leave-that-biobank-out meta-analysis.

23

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 7, 2021. ; https://doi.org/10.1101/2021.11.30.21267108doi: medRxiv preprint 

https://doi.org/10.1101/2021.11.30.21267108
http://creativecommons.org/licenses/by-nc-nd/4.0/


24

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 7, 2021. ; https://doi.org/10.1101/2021.11.30.21267108doi: medRxiv preprint 

https://doi.org/10.1101/2021.11.30.21267108
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary Figure 3. Consistency of asthma lead variants across biobanks using
Deming regression. The effect sizes of the asthma lead variants as estimated in each biobank
GWAS vs. in the corresponding leave-that-biobank-out meta-analysis were compared using the
Deming regression method23. Intercepts were set to be 0; slopes from the regression analyses
are reported here.
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Supplementary Figure 4. Genetic correlations between asthma and heritable diseases
across UKBB and BBJ. Genetic correlations between asthma and diseases that were heritable
in BBJ, UKBB EUR, or both. On x-axis: BBJ_BBJ = BBJ GWAS of asthma vs. BBJ GWAS of
diseases on y-axis; GBMI_BBJ = GBMI-excluding-BBJ meta-analysis of asthma vs. BBJ GWAS
of diseases on y-axis; GBMI_UKB = GBMI-excluding-UKB meta-analysis of asthma vs. UKB
GWAS of diseases (EUR only) on y-axis; UKB_UKB = UKB GWAS of asthma vs. UKB GWAS of
diseases (EUR only) on y-axis
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Supplementary Figure 5. Workflow for PRS-CSx analyses. The discovery data consisted of
ancestry-specific meta-analyses, indicated by the squares on the left, that were inputs for
PRS-CSx46. PRS-CSx returned separate sets of posterior effect size estimates for each input
dataset, which were then used to construct PRS. The target cohorts were randomly evenly split;
optimal weights for the linear combination of the PRS were selected in one subset and the linear
combination of the PRS was evaluated in the other subset.
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Supplementary Figure 6. PRS performance of individual PRS vs. linear combination of
PRS using PRS-CSx across ancestries. Each panel represents a target cohort. The
performance of the individual PRS, computed from a single set of posterior effect size estimates
corresponding to each input ancestry population from PRS-CSx, is plotted here. The prediction
accuracy of the linear combination of the PRS from PRS-CSx, as well as the PRS from the
PRS-CS analyses (shown in Fig. 5), are also plotted for comparison. PRS-CS results used the
GBMI leave-BBJ-out meta-analysis and GBMI leave-UKBB-out meta-analysis as discovery data
for the BBJ and all UKBB target cohorts, respectively45. The reference dataset was the TAGC
meta-analysis5. Error bars represent standard deviation of R2 on the liability scale across 100
replicates.

Supplementary Table Legends

STable 1: Description of 18 biobanks in GBMI that contributed summary statistics for asthma
meta-analysis with sample size, ancestry, and recruitment strategy information.

STable 2: 180 lead variants discovered by GBMI asthma meta-analysis with annotations for
nearby genes, missense variants, and fine-mapped cis-eQTLs.

STable 3: Description of asthma definition used by each biobank.

STable 4: 122 of the 180 lead variants present or with tagging variant in the TAGC study with
effect sizes and p-values from GBMI and TAGC meta-analyses.

STable 5: Correlations of SNP effects of the 180 lead variants between each biobank and the
corresponding leave-that-biobank-out meta-analysis.

STable 6: Heterogeneity p-values, computed from Cochran’s Q statistic, for lead variants using
effect sizes from the AFR, AMR, EAS, EUR, and CSA meta-analyses.

STable 7: 46 lead variants discovered by GBMI COPD meta-analysis with corresponding effect
sizes, standard errors, and p-values from asthma meta-analysis.

STable 8: Genetic correlations estimated by LDSC between GBMI leave-UKBB-out
meta-analysis and UKBB EUR GWAS of heritable phenotypes with phenotype descriptions.

STable 9: Genetic correlations estimated by LDSC between GBMI asthma meta-analyses and
UKBB and BBJ GWAS of several diseases.

STable 10: Results from MAGMA gene analysis using GBMI EAS, CSA, and EUR asthma
meta-analyses. Genes with p-values < Bonferroni-corrected p-value thresholds are reported.
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STable 11: Results from MAGMA gene analysis using GBMI EAS and EUR COPD
meta-analysis. Genes with p-value < Bonferroni-corrected p-value thresholds are reported.

STable 12: Results from MAGMA gene-set enrichment analyses for asthma. Gene sets with
FDR < 0.05 are reported.

STable 13: Results from MAGMA gene-set enrichment analyses for COPD. Gene sets with
FDR < 0.05 are reported.

STable 14: Description of discovery data used in PRS-CSx and PRS-CS analyses.
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