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1 Log likelihood calculation

The first step in calculating the log likelihood is to initialize the means and covariance
of our process model’s state variables to their values on the beginning of the day of
the first observation, which corresponds to March, 2, 2020. The initial value of 〈L〉 is
a model parameter, which we denote L0. The initial values of 〈Y 〉, 〈Z〉, 〈H〉, and 〈D〉
are calculated from L0 assuming that the time derivatives in equation 1 in the main
text are zero, using the values of any time-dependent parameters when t = 1. This
assumption is not intended to be highly accurate but rather to generate values that
are plausible. The prediction-updates described later will serve to sharpen this initial
estimate based on observations. The initial value of 〈X〉 is set toN−〈L〉−〈Y 〉−〈H〉−〈D〉.
The initial values of 〈Zr〉, 〈A〉, and 〈Dr〉 are all set to zero, since these variables are
meant to represent the accumulation reported cases, hospital admissions, and deaths
over the coming day. Sometimes, during optimization, these initial values can become
unreasonable and lead to numerical problems in calculating the likelihood. To avoid
such problems, we do not allow any values to be greater than N , and we do not allow
the intial value of 〈X〉 to be less than N/10. All of these initial values for means are
collected in a vector denoted x̂0|0. This is the initial vector of means for our process
model. The initial covariance matrix for this model is denoted P0|0 and is set to a
diagonal matrix in which all elements are 1 except for those corresponding to 〈Zr〉, 〈A〉,
and 〈Dr〉. These values are equal to zero at the beginning of the day by definition so
their variances are set to zero. Similar to the means, the covariance matrix estimate is
simply a rough approximation which the algorithm will sharpen. With the process model
fully initialized, the next step is to generate a predictive distribution for the observed
data based on the process model.

The predictive distribution for the next observations are generated by numerical
integration of the system of equations in equations 1 and 2 over a time span of 1 day,
where we used the convention of 365.25 days per year. For this step we used the Tsit5 [1]
integrator in the DifferentialEquations.jl package [2]. When solved with starting values
from time t, the resulting vector of means is denoted x̂t+1|t and the resulting covariance
matrix Pt+1|t. If any elements of x̂t+1|t are negative, this must be due to numerical
errors, so we set them to zero. Similarly, if any negative values appear on the diagonal
of Pt+1|t, the corresponding rows and columns are set to zero. The next step is to
iteratively update these predictions for the mean and covariance based on the observed
data.

The update of the prediction is done by using equations that minimize squared
prediction error when the process model is linear, and which remain relatively accurate
when the model is non-linear. An intermediate step in this update is to calculate the
Kalman gain matrix Kt. This matrix determines the weight to give to two types of
predictions: (1) predictions of the state variables on day t calculated as described in the
previous paragraph by projecting past estimates of the state variables forward according
to the process model, and (2) predictions of values of the state variables on day t based
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solely on observations on day t and the observation model. The equation for Kt is

Kt = Pt|t−1H
TΣ−1t , (S1)

where H is a matrix that maps the state variables to observed variables and Σt is the
sum of the covariance matrix Rt of the observation model and the projection of the
covariance matrix of the process model into the observed coordinates. The matrix H is
3× 9 and contains zeros except for one column in each row, which corresponds to the
state variables Zr, A, and Dr respectively in rows 1, 2, and 3. The matrix Rt follows

Rt =

τc,t〈Y 〉t−1 + 1 0 0
0 τh + 1 0
0 0 τd + 1

 , (S2)

where 〈Y 〉t−1 is the estimate of Y in xt−t|t−1. The ones on the diagonal of R prevent
numerical problems that could occur if the τ parameters are all nearly zero. The matrix
Σt follows

Σt = HPt|t−1H
T + Rt. (S3)

Next, a prediction error, denoted ỹt|t−1, for the process model is calculated as

ỹt|t−1 = zt −Hx̂t|t−1, (S4)

where zt is a column vector containing the observed number of reported cases, hospital
admissions, and reported deaths for day t respectively in rows 1, 2, and 3. The data-
updated estimate of the state variables, x̂t|t now follows as

x̂t|t = x̂t|t−1 + Ktỹt|t−1. (S5)

The data-updated covariance estimate, Pt|t, satisfies

Pt|t = (I−KtH)Pt|t−1, (S6)

where I denotes the identity matrix. After setting the means and covariances of the
variables Zr, A, and Dr in these updated estimates to zero, they can be used as initial
values for projecting the process model forward to obtain x̂t+1|t and Pt+1|t. In this way,
process model predictions are obtained for all observations. Any missing observations,
such as hospital admissions in data sets from early in the epidemic, are handled by
setting the corresponding column in Kt to zero. Then, the results of these calculations
may be used in an equation for the log likelihood.

The log likelihood of our model is calculated as the sum of the likelihood for the
one-step ahead predictions of our process model and the step sizes in our random walk
models for time-dependent parameters. The expression for the log likelihood of our
process model predictions—i.e., the marginal log likelihood of the Kalman filter—is

− 0.5
∑
t

[ỹT
t|t−1,nmΣ−1t,nmỹt|t−1,nm + log detΣt,nm + dnm log(2π)], (S7)

where the subscript ‘nm’, which stands for ‘non missing’, indicates that rows and columns
which correspond to missing observations in zt have been omitted and dnm is the number
of non-missing observations in zt. The log likelihoods for the random walk steps are
simply mean-zero Gaussian log-likelihoods with the appropriate variances.
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2 Parameter initialization

In most cases, we initialize parameters by using theparameters estimated from a version
of the observed data issued one week earlier for a particular location, which we refer to
as a warm start. Any new random walk step parameters introduced by extension of the
number of observations are assumed to be zero. In the first data set containing hospital
admissions, the parameter τh is initialized with the sample variance of all non-missing
observations, and the parameter ph is initialized as the quotient of the sum of all hospital
admissions divided by the sum of all reported cases on days when hospital admissions
were nonmissing.

In the first data set fitted, which in this study is the data set available on June 29,
2020, all parameter initializations had to be estimated from the data. We found that
the following rough estimates lead to a satisfactory fit. All τc,t were intialized as the
sample variance of cases divided by the mean number of cases. τd was initialized with
the sample variance of observed deaths. If either of these values were less than 1, they
were replaced with 1. An estimate of the unobserved time series of Y was calculated
by dividing the observed cases time series by γρtdt, in which dt is the daily time step
in our process model. The mean of the first 7 values of this time series times γ/η was
added to 1 to initialize L0. The estimate of the time series of Y times γph/γh was used
to generate an estimate of the unobserved hospitalization time series. The parameter
pd was initialized to the sum of observed deaths divided by the sum of these estimated
hospitalizations. If this value was less than 0.01, the initialization was raised to 0.01.
All γz,w and γd,w were initialized at the values given in Table 2.

An estimate of the time series of the effective reproduction numberRe = (βt/γ)(X(t)/N)
was calculated to generate initial values of βres and β0,t. Let cases on day t be denoted
ct. Our raw estimate of Re was (ct+7/ρt+7)/(ct/ρt). These raw values were next clipped
to be within 0.1 and 4 and then smoothed by applying a Savitzky-Golay filter of order 2
and length 21. To avoid bias from incomplete windows, the first and last 10 elements of
output were considered missing. An estimate of a time series of X was calculated by
first initializing it with the same value that would be used in the process model given
the initial value of L0. Then, successive values were calculated by subtracting ct+7/ρt+7

from the estimate of X on day t− 1. Then, a time series of βt estimates was calculated
by multiplying the smoothed Re estimate by γN and dividing by the estimate of X.
Missing values on the ends of the time series were filled in by repetition of the first and
last non-missing value. The slope from a linear regression of log βt on residentialt
then provided the initial value of βres. The residuals of this linear fit were grouped by
week and averaged to provide the initialization of β0,t. We have now described how all
parameters were initialized.
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Fig S1. Quantile-quantile plot of distribution of 1-step ahead forecast errors
in fit to California data. The specific residuals in the panels are the elements of
ỹt|t−1 in equation S4 divided by the square root of variances on the diagonal of Σt in
equation S3. These are quantiles from a fit to the data available on April 26, 2021, and
thus represent a fit to data spanning the majority of the available data.
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Fig S2. MASE of fits to California data. Weekly indicates whether MASE were
calculated by using the previous observation from the same day of the week as the naive
prediction (Weekly = TRUE) or whether MASE were calculated by using the previous
day’s observation as the naive prediction (Weekly = FALSE).
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Fig S3. The effect of time spent in residential areas on the transmission
rate βres changes as more data become available. Error bars are 95% confidence
intervals. Estimates come from modes fitted with data available up to the forecast date
on the x axis.
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Fig S4. Estimated probability of hospitalization ph over time in California
model. Points are maximum likelihood estimates and error bars are 95% confidence
intervals.
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Fig S5. Estimated transmission rate intercept β0,t over time in California
model. Points are maximum likelihood estimates and error bars are 95% confidence
intervals.
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Fig S6. Variance in observation error τc over time in California model. Points
are maximum likelihood estimates and error bars are 95% confidence intervals.
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Fig S7. Performance of short-term forecasts of cases and deaths by date.
The panel labels at right are the number of weeks in the forecast horizon. Lower scores
indicate better performance.
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Fig S8. Performance of short-term forecasts of hospital admissions by date
for selected horizons. The panel labels at right are the number of days in the forecast
horizon. Lower scores indicate better performance.
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Fig S9. Time required to estimate GISST parameters. The spike in November
was due to additional iterations due to the addition of hospital admissions data.
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