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Abstract 

 

Compliance with infectious disease control measures can benefit public health but be 

burdensome for individuals.  This raises ethical questions regarding the value of the public 

health benefit created by individual and collective compliance. Answering such questions 

requires estimating the total benefit from an individual’s compliance, and how much of that 

benefit is experienced by others.  This is complicated by “overdetermination” in infectious 

disease transmission: each susceptible person may have contact with more than one infectious 

individual, such that preventing one transmission may have no net effect if the same 

susceptible person is infected later.  This article explores mathematical techniques enabling 

quantification of the impacts of individuals and groups complying with three types of public 

health measures: quarantine of arrivals, isolation of infected individuals, and 

vaccination/prophylaxis.  The models presented suggest that these interventions all exhibit 

synergy: each intervention becomes more effective on a per-individual basis as the number 

complying increases, because overdetermination of outcomes is reduced, Thus additional 

compliance reduces transmission to a greater degree. 

 

 

Introduction 

 

Infectious diseases and the public health policies used to control them can both impose 

significant burdens on societies and individuals.  Notably, the ongoing COVID-19 pandemic 

and response have had severe worldwide health and economic impacts.  Collective action 

plays a significant role in public health interventions against infectious disease.  This is 

because the actions one individual takes can have significant impact on whether others are 

exposed to infection, and thus they affect outcomes that others experience.  Further, the 

magnitude of the impact of one individual’s actions on others may be increased or 

undermined by the actions of others. 

 

Increased population compliance with effective measures against infectious disease can lead 

to larger health benefits.  However, many people may be unwilling to comply with public 

health measures, especially where they suffer a large personal cost but gain very little, or 
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perhaps no, individual benefit from their own compliance.  Examples include cases where the 

individual is expected to have only mild disease (if infected) but severity is high for others 

(who the individual might end up infecting), or where the individual is unlikely to be infected 

but if infected would be likely to cause many additional infections.  The potential conflicts 

highlighted here lead to challenging questions about the potential ethical acceptability (or 

lack thereof) of policy involving coercion of compliance with public health measures.  There 

has, to date, been relatively little mathematically-informed ethical analysis of public health 

policy (1, 2). 

 

Ethical evaluations of infectious disease control policies should partly depend on the 

anticipated benefits and burdens of compliance with public health measures.  Among other 

considerations, burdensome public health policies are arguably more ethically justifiable to 

the extent that the policies are expected to produce net public health benefits (outweighing 

the burdens or harms of the interventions).  Further, policies that involve limitations on 

individual freedom might be more justifiable to the extent that the behavior restricted by 

policy is likely to result in harm to others that otherwise would not have occurred. 

 

Significant mathematical modeling efforts have focused on health and economic impacts of 

SARS, pandemic influenza, and COVID-19 as well as the impacts of public health 

interventions(3, 4).  However, although numerous ethical considerations are directly relevant 

to the justification of epidemic control policies (5), investigations of the ethical implications 

of pandemic response in general and the COVID-19 response in particular have typically 

focused on allocation of scarce resources (5–9), disparities in health outcomes(10), and issues 

of research ethics (11, 12), as opposed to quantitatively-informed ethical analysis of the 

benefits and harms of control policies and individual compliance with public health 

measures. 

 

This article examines mathematical modeling techniques we have developed to explore how 

individual and collective behavior changes can affect two specific outcomes: 

• The probability an epidemic becomes established in a population. 

• The total number of infections that occur once an epidemic is established. 

 

Our modeling approaches allow us to quantify the impact of a single individual’s behavior on 

these population outcomes.  The models are designed to measure the impact of ethically 

salient aspects of transmission dynamics, including overdetermination and superspreading. 

• Overdetermination occurs when a given outcome has more than one sufficient 

cause.  For example, whether (i) an epidemic becomes established in a population or 

whether (ii) a specific individual becomes infected in an epidemic may be 

“overdetermined” when, respectively, (i) there are multiple introductions into a 

population (each of which would have been sufficient to cause an epidemic) and (ii) 

an individual is exposed to multiple infectious people (where each exposure would 

have been sufficient to infect the individual in question).  This might be ethically 

salient because where overdetermination is significant (e.g., where there are multiple 

introductions into a population or in high transmission settings where each susceptible 

person experiences multiple exposures to infection), one person changing their 

behavior to reduce their risk of infecting others might make less difference to harmful 

outcomes because these outcomes will be more likely to occur in any case, due to the 

risk imposition of others . 

• Superspreading diseases, including COVID-19, are characterized by the tendency 

for a small fraction of infected individuals to cause a large proportion of all 
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transmissions, while most cause few or even no transmissions (13–17).  Among other 

things, this affects the probability that a single introduction leads to established 

transmission in the population(17, 18).  Because most individuals cause very little 

transmission, the disease typically only becomes established if there is an early 

superspreading event. We therefore explore the impact of superspreading (or 

`dispersion’ of the offspring distribution) by comparing the expected spread of an 

epidemic where superspreading is uncommon with an epidemic where superspreading 

accounts for a high proportion of transmissions, but holding the average number of 

transmissions caused (the reproduction number, 0 ) constant. 

The primary goal in this article is to examine the development and application of 

mathematical models to investigate the impact of individuals’ compliance with infectious 

disease control measures.  We measure the effectiveness of relevant behaviors in terms of 

their impact on (i) the probability of an epidemic occurring and (ii) the total number of 

infections caused in an epidemic.  These are both affected by overdetermination and 

superspreading, both of which are closely connected to random (stochastic) events.  The 

methods we develop allow us to understand how stochasticity influences outcomes.  The 

specific behaviors we investigate are isolating to prevent an epidemic from starting, and—if 

an epidemic is established—behavior changes to avoid infection or onwards transmission. 

We begin this paper by describing the major results of our model, showing that the benefit of 

interventions can be significant, but much of the benefit can be experienced by people other 

than those who are changing their behavior.  Then we discuss the ethical implications of the 

results, with a focus on the fact that as more individuals comply with an intervention, the 

population benefit is increased, though much of the benefit may be experienced by those who 

are not experiencing the cost of the intervention.  Finally, we end the paper with a derivation 

of the mathematical tools that allow us to quantify the benefit from behavior change at the 

individual scale. 

 

Results  

 

We focus on the impact of three behaviors: 
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• Border Quarantine: Some individuals may quarantine upon arriving at a population to 

prevent an epidemic from occurring 

• Post-exposure isolation: In an ongoing epidemic, some newly infected individuals may 

isolate to prevent transmitting to others. 

• Vaccination or Prophylaxis : In an ongoing epidemic, some individuals may take extra 

actions such as vaccination or prophylaxis to reduce their own risk of becoming infected 

and thereby reduce their risk of transmitting to others. 

 As a general rule, we find that the per-individual impact of multiple individuals changing 

behavior generally increases as more individuals change behavior.  Motivated by this, for each 

of these three interventions we are interested in answering three questions: 

• What is the expected impact if a single individual adopts the behavior while everyone 

else continues as normal? 

• What is the average impact of individuals if a fraction of the population adopts the 

behavior? 

• What is the marginal impact if one more individual were to adopt (or abandon) the 

behavior after a fraction has adopted it? 

Quarantine to Prevent an Epidemic 

 

Many communities have historically had restrictions to prevent the introduction of individuals 

with infections from one geographic area or (sub-)population to another.  Recently quarantines 

have been widely used in response to COVID-19.  If an infected individual enters the 

population either by skipping quarantine or due to ineffective quarantine, there is a chance that 

an epidemic may result.  However, by random chance, the infected individual perhaps would 

not cause any transmissions or only start a small chain of infections that dies out quickly. 

 

We start by analyzing how an individual isolating impacts the probability that an epidemic 

occurs.  Mathematically, this requires only some well-known results of probability generating 

functions and some basic results from probability.  The results allow us to investigate the role 

of overdetermination on the start of an epidemic, and to introduce the framework by which we 

will evaluate individual actions to reduce epidemic spread. 

 

To quantify the impact of quarantining arrivals to a location, we begin by considering the 

introduction of a single infected individual into a large completely susceptible population.  

Based on assumed knowledge about the offspring distribution we calculate the probability that 

this single introduction results in an epidemic.  From this it is a simple calculation to look at 

what happens if multiple introductions occur. 

 

Given a known offspring distribution, the probability  that a single introduction into a large 

completely susceptible population results in an epidemic can be calculated using probability 

generating functions (17, 18).  For 1c   we find 0= , while for 1c   we find 0 .  

The epidemic probability tends to increase with c  and decrease as the offspring distribution 

becomes more heterogeneous.  It should be noted however, that in the case of higher 

heterogeneity, those outbreaks that do become established epidemics typically have an initially 
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larger growth than expected on average because they are likely to be seeded by superspreading 

events (18). 

 

Figure 1: The probability a single infected individual entering a completely susceptible 

population causes an epidemic, assuming no other introductions.  The offspring distribution 

follows either a Poisson distribution or a negative binomial distribution with a dispersion 

parameter of 0.16. 

Figure 1 shows the probability that a single infected individual entering a completely 

susceptible well-mixed population would cause an epidemic, as a function of c  for our two 

offspring distributions.  If this single infected individual undergoes effective isolation, and no 

other infected individuals arrive, then Figure 1 would show the reduction in epidemic 

probability.  However, if other infected individuals are not isolated, then they can trigger an 

epidemic instead.  If an epidemic occurs, the first individual’s isolation would be futile.  In 

other words, transmission chains beginning from multiple introduced infections may each be 

separately sufficient to spark an epidemic.  That is, the establishment of an epidemic may be 

overdetermined. 
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Figure 2 The benefit measured as the reduction in probability of an epidemic.  We use a 

Poisson offspring distribution and a Negative Binomial offspring distribution with dispersion 

0.16.  We assume that L  infected individuals enter the population of whom M  isolate.  Left 

(note different vertical scales): The reduction in epidemic probability if 1M = (only one 

isolates) as a function of the number ( 1L − ) who do not isolate.  Due to overdetermination, 

this decreases as L  increases.  Right (note different horizontal scales): The reduction in 

probability if M isolate out of 50L = introduced cases.  This shows the total reduction in 

epidemic probability (solid line), the reduction averaged across the M  isolating individuals 

(dashed line), and the marginal benefit of one more isolating individual, (i.e., the increased 

reduction in probability if one more were to isolate) (dash-dot line).  As a consequence of 

overdetermination each additional individual who isolates increases the average impact of 

all isolating individuals. 

 

The impact of a single isolating infectious individual on the probability of an epidemic depends 

on the number of total infectious individuals ( M ) and how many of them isolate ( L ) as shown 

in Figure 2.  Overdetermination plays a large role in the trends in these figures.  Each individual 

who does not isolate has an independent chance of triggering an epidemic.  If even a single 

individual does trigger an epidemic, then those who isolate have no impact on the epidemic 

probability.  Thus the effectiveness of those who do isolate is increased as the number that 

isolate increases.  We see that if the probability that a single infected individual would trigger 

an epidemic is larger (larger c ), only a small number of nonisolating infected individuals are 

needed to effectively eliminate the impact of all those who isolate.  Thus, isolating to prevent 

an epidemic is unlikely to be effective unless almost all infected individuals isolate (it should 

be noted that although it is a low probability event the societal benefit would be large).  
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Conversely, if almost every infection is isolating, the impact of one individual not isolating is 

significantly larger. 

 

The burdens of quarantine largely fall on the quarantined population.  As many of these may 

not be infected, in calculating the benefit achieved per quarantined individual it must be scaled 

by the probability of being infected.  However, the general trend remains consistent: to 

significantly reduce the probability of an epidemic, almost all infected individuals must isolate, 

and so in the absence of an effective screening test, the quarantine must apply broadly, 

significantly increasing the burdens.  It might be said that, as more individuals quarantine, the 

impact is synergistic: each additional quarantining individual increases the effectiveness of the 

others who quarantine.  The impact of quarantine grows faster than linearly with increasing 

numbers of individuals quarantining.  If even a few individuals fail to quarantine, however, this 

may significantly undermine the efforts of those who quarantine.  As greater numbers of 

individuals quarantine, therefore, the stakes regarding individual behavior with regard to 

additional compliance and/or continuing lack thereof become higher:  the benefits of an 

additional individual’s compliance and the risks attached to one’s continuing noncompliance 

both become greater.    

 

 

Isolation following infection 

 

We now analyze the impact of behavior changes on the total number of infections in a 

population assuming an epidemic is established.  We consider two different actions an 

individual could take:  

• actions taken after exposure to avoid potentially transmitting further (such as isolation 

after a rapid test or after being identified through contact tracing) which does not affect 

one’s own probability of becoming infected but does protect others or  

• actions taken in advance to avoid infection and hence also onwards transmission (such 

as vaccine or prophylactic medication). 

We begin here focusing on the mathematically simpler of these two, isolation of a newly-

infected individual.  As before, we look first at the effect of a single individual and then the 

effect of a collective behavior change.  We assume the control measures remain constant for 

the duration of the epidemic. 

 

We now consider the expected (average) number of averted infections from a single individual 

isolating after she is exposed, but before she becomes infectious.  So we assume that her 

probability of infection is unaffected, but that if infected she causes 0 additional infections.  

This model is appropriate for a setting with strong contact tracing or with good access to rapid 

testing. 

 

We denote the expected total number of averted infections from a single newly infected 

individual isolating by ( )c .  We account for overdetermination when calculating ( )c .  

That is, in calculating ( )c  we exclude those who would be infected anyways through 

another transmission chain (overdetermination), but otherwise consider all “descendants”.  For 
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1c  , overdetermination plays a role and the impact of overdetermination grows with c .  

For 1c  , overdetermination is negligible (for large populations).  Perhaps surprisingly, the 

value of  is independent of the details of the offspring distribution, it depends only on the 

average, c .  It turns out [see methods for derivation] that if 1c   then ( )
1

c
c

c

=
−

.  

However if 1c  , then ( )
1

c




=
−

 where (1 ) c = −  is the effective reproduction 

number at the end of the epidemic. 

 

 

Figure 3 The expected number of averted infections, ( )c , due to a single infected individual 

isolating after infection and not transmitting, after accounting for overdetermination.  The 

result is independent of the specific offspring distribution.  This depends only on the average, 

c .  Note the divergence to   as the reproduction number 1c → , and the decay to 0 as c

decreases towards 0 or increases towards  . 

 

Figure 3 shows a striking effect.  Close to 1c =  the value of ( )c  is very large, 

approaching infinity in the limit.  So the expected number of infections averted if one newly-

infected individual successfully isolates and avoids causing any infections is very large if c  

is close to 1.  However, it becomes quite small if c  is either large (because of 

overdetermination) or small (because there is little transmission).  In practical terms, this 

analysis will be valid for large or small c , but when c  is close to 1, this analysis will 

break down if ( )c  is comparable to the population size.  If ( )c  is less than 1% of the 

population size, we expect this to be a very good approximation. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 5, 2021. ; https://doi.org/10.1101/2021.12.02.21267207doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.02.21267207
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Figure 4: The distribution of the number of infections averted if a single individual isolates 

after infection.  Calculated for Poisson and Negative binomial distribution (with dispersion 

parameter 0.16).  For 1c =  the result is a power law distribution.  If c is larger or smaller 

than 1, the distribution falls off quicker.  For a given c , both distributions have the same 

mean, but the Negative binomial distribution results in a more heterogeneous outcome. 

 

In addition to the expected number of infections averted, ( )c , it is possible to calculate the 

distribution of the number of infections averted.  This is shown in Figure 4 for the Poisson and 

Negative binomial distributions.  Although the averages ( )c  are the same, the distributions 

are different.  In the Negative binomial case it is more common that either 0 infections are 

averted or a large number of infections are averted.  As is often seen in systems at the critical 

threshold, when 1c =  the distributions are given by powerlaws.  This figure shows that 

although it is rare for the number of averted infections to be large, the large events are frequent 

enough to produce a large average, ( )c , near 1c = . 

 

If the individual does not isolate immediately and so is infectious for a short time, then 

obviously the benefit is smaller.  If the expected number of transmissions is reduced to c  

where 0 1  , then the expected number of infections averted is )(1 () c− .   

 

Having analyzed the impact of a single individual who isolates following infection, let us now 

consider what happens if some nonzero fraction of the infected individuals isolate.  If the 

number is not large enough to materially affect c , then each isolation is effectively 

independent, and to find the expected benefit, we can simply multiply ( )c  by the number 

who isolate.  However if a nonvanishing fraction isolate this will alter c .  Then we see an 

increasing marginal benefit of collective compliance until c  reaches 1.  Each additional 
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individual who isolates increases the effectiveness of those who have already isolated by 

reducing the level of overdetermination. 

 

  

Figure 5: Measuring the effectiveness of many individuals isolating.  Left The average 

impact assuming that others interventions set a starting value of c , but in addition to that 

an additional fraction of the infected individuals isolate.  Calculations are done in the limit of 

an infinite population.  As the fraction of infections isolating increases, the size of the 

epidemic decreases.  Eventually a larger fraction isolating translates to a smaller absolute 

number isolating due to the smaller epidemic.  When enough isolate to drive the resulting c  

close to 1 almost all infections are averted while only a small fraction of the total population 

isolate, so the number of infections averted per isolating individual diverges.  Beyond this 

threshold (white region), epidemics are impossible and the number of infections averted per 

infected individual is infinite.  Right The marginal benefit of one more infected individual 

isolating.  That is, given the fraction isolating and the initial c , this gives the number of 

infections averted if one additional infected individual who would not isolate is successfully 

identified and isolated. 

Figure 5 shows a similar trend to Figure 2.  Namely, if a larger fraction of infected 

individuals isolate, the expected number of infections averted per isolating individual grows.  

So their combined impact grows faster than linearly in the fraction isolating.  That is, we 

again see a synergistic effect.  If c  is large and very few infected individuals are isolating, 

then those who do have little impact.  However as the fraction of infectious individuals who 

isolate increases, the average impact grows.  As the system nears the epidemic threshold the 

average impact grows large, and the impact of each additional infected individual isolating 

diverges.  Past the threshold where epidemics become impossible, the average impact is 

infinite (in the large-population limit) because only a small number of individuals isolate, but 

in doing so they eliminate the epidemic.  In this region (where epidemics are not possible) if 

one infected individual who would not have isolated changes to isolating the marginal benefit 

begins to shrink as a larger fraction isolate (but very few infections occur). 

Action taken to avoid infection 

 

Above we considered individuals acting to prevent onwards transmission only after their 

infection.  This has no direct benefit to the individual.  Now we instead consider an individual 

acting to escape infection.  This protects the individual and prevents onwards transmission.  

This would require the individual to either receive a vaccine or some other one-off treatment 

which prevents infection or to be taking long term actions such as a prophylactic medication to 
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avoid infection.  The latter case requires sustained action, and so may have significant cost to 

the individual. 

 

We first consider the impact of a single individual taking proactive actions to prevent her 

infection.  We assume these actions are fully effective.  The probability that she would be 

infected if she did not take those actions is equal to the fraction of the population infected in 

the epidemic (often called the attack rate).  Assuming that the population is well-mixed and 

susceptibility is uniform across the population, the attack rate  depends only on the mean of 

the offspring distribution, not on any other details of the distribution.  It can be calculated from 

the implicit final size relation (19–21) 

 1 ce
−

= −  

We can think of the attack rate as a function of c , that is ( )c= .  If a single individual 

takes perfectly effective measures to eliminate her probability of being infected, then with 

probability ( )c  she avoids her own infection.  This also prevents transmissions from her 

to those who would otherwise have been her “descendants”.  So if she would have been 

infected, this reduces the expected number of additional cases by an amount ( )c .  The 

total reduction in expected infections is ( )[1 ( )]c c+ .  The first factor ( )c  

represents the probability that the vaccine prevents an infection that would have happened.  

In the second factor, 1 ( )c+ , the 1 represents the individual preventing her own infection, 

while ( )c  represents the infections averted due to the lack of onwards transmission.   

 

Figure 6: The expected number of infections averted by an individual taking sufficient action 

(such as a vaccine or prophylactic medication) to prevent her own infection (top blue curve).  

This is partly from the probability that she prevents her own infection [bottom orange curve, 

equal to ( )c ].  The difference between the two curves (shaded yellow) is ( ) ( )c c , 
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the expected number of descendants who would avoid infection due to her actions to avoid 

her own infection. 

Figure 6 tells a surprising story.  We consider an individual in the population who avoids 

infection through vaccine, prophylactic medication, or some other method.  When she takes 

this action, we have no prior knowledge of whether she would be infected or otherwise.  The 

probability her action prevents her own infection is equal to the probability she would have 

been infected without the action, in other words it is the attack rate ( )c , shown in the 

orange curve.  This increases from 0 at 1c =  to near 1 at 4c =  (and approaches 1 as c  

increases further).  Because ( )c  is small for large c , even though the individual is very 

likely to prevent her own infection, the expected number of additional infections this avoids 

is very small.  So the expected combined number of infections averted (including her own) is 

just above 1, with her own benefit constituting almost all of that. 

For smaller c  however, the probability that the action protects herself drops.  At the same 

time, the expected number of additional infections averted if infected grows.  The combined 

effect is larger for smaller c .  Remarkably, for values of c  near 1, the expected number of 

additional infections averted approaches 2, even as the probability that any infections are 

averted goes to 0.  A key additional observation is that if 1c  , then on the expected 

number of infections prevented by each vaccine administered is greater than 1.  

To make this clearer, consider the example of 1.01c = .  The probability a given vaccination 

directly protects the recipient is small, equal to 0.0197 .  However, in those rare cases in 

which the recipient does become infected, the number of additional infections comes from a 

distribution as in Figure 4.  From Figure 3, the expected number of additional infections 

would be ( ) 99.66c  .  The expected number of individuals whose infections are averted 

due to indirect protection from the vaccine is 1.9670  (shaded part of Figure 6).  The 

combined benefit is about 70.0197 1.967 1. 60 98+  (top line of Figure 6). 

 

  
Figure 7: Measuring the impact of many individuals taking actions (such as a vaccine or 

prophylactic medication) to avoid infection.  Left: The number of infections averted over the 

entire population taking protective action.  Until enough individuals take action to prevent an 

epidemic, the average is greater than 1, and the average increases until the threshold is 
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reached after which it begins to fall.  Right: The marginal reduction in infections from one 

more individual changing behavior.  The marginal benefit increases until the epidemic 

threshold is reached.  Near the epidemic threshold, on average each additional individual 

taking action prevents about 2 infections.  Once the epidemic threshold is crossed each 

additional individual has no net impact. 

In Figure 7 we see the impact of multiple individuals taking a vaccine or prophylactic 

medication or otherwise avoiding infection.  A key observation is that as more individuals 

take self-protective actions, the marginal benefit of the next individual to act increases, until 

the epidemic threshold is reached and epidemics are eliminated.  So the average benefit 

increases as more individuals act until the threshold is crossed.  After this, the marginal 

benefit is 0, and so having more individuals act reduces the benefit averaged over those who 

act.  Remarkably, until the epidemic threshold is reached, each individual that acts prevents 

(on average) greater than 1 infection.   

 

Discussion  

 

We have analyzed the impact of individual and collective behavior modifications related to 

several important public health measures to control spread of infectious disease, namely 

quarantine of arrivals, isolation of infected individuals, and the use of vaccines/prophylaxis to 

prevent infections.  A common theme of our results is that there is a synergistic impact: as a 

larger proportion of the population adopt a protective behavior, the benefit created per 

individual changing behavior increases faster than linearly. 

 

We now discuss some of the implications our observations have for the ethical policy 

decision-making. 

 

Quarantine to prevent epidemic 

Quarantines have shown that they can prevent the introduction of infection into a population.  

However, they are rarely perfectly effective and leaks have occurred in many.  If we expect 

that the benefits of quarantine are almost entirely lost if the disease manages to successfully 

establish itself within the community, the strategy cannot allow even one single successful 

incursion (i.e., an introduction that results in sustained transmission). 

 

With this standard, our analysis shows that any single individual’s compliance with 

quarantine will only have a large impact where there is near perfect compliance amongst 

others.  This is because, if an epidemic will happen anyways, then the impact of an additional 

introduction from a quarantine breach is generally minimal.  The impact of a quarantine leak 

once disease spread is already established in the population is equivalent to having an 

infected individual who could isolate failing to isolate, which is discussed below. 

 

It should be noted that if we assume that the community will be able to introduce burdensome 

interventions and would successfully eliminate the introduction, then the balance changes 

somewhat.  In this case the cost of introductions (provided they occur during a period of 

elimination) is additive, and so each individual who does not comply with the intervention 

poses a separate risk to the population. 
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Isolation to avoid transmission 

We find that isolation after infection can be a highly efficient intervention. The high 

efficiency is for two reasons.   

• First, as a larger fraction of the infected individuals isolate, the total number infected 

drops, which tends to limit the number that will isolate.  Once the fraction isolating 

becomes large enough, the drop in total cases is sufficient that the number who isolate 

also drops. 

• Second the intervention only targets those who are infected, and only when they are 

infected.  This means that those who are never infected are not burdened by the 

intervention (although they benefit from the compliance of infected individuals). 

Isolation is most efficient on a per-individual basis when the reproduction number is close to 

1, or if a large enough fraction is already isolating to reduce the reproduction to near 1.  Near 

the epidemic threshold each individual who isolates prevents, on average, the infection of a 

large number of people (though still small compared to the population size).  At the epidemic 

threshold, the distribution of number of infections prevented is a power-law (a straight line on 

a logarithmic plot).  In these situations, large outbreaks are rare, but they are not so 

uncommon that we can ignore them.  Their large size outweighs their rarity.  In fact it turns 

out that the average outbreak size at the epidemic threshold is infinite.  

 

Isolation of newly infected individals requires the ability to quickly identify infected 

individuals, perhaps through the use of rapid tests or effective contact tracing.  In cases where 

there is asymptomatic or presymptomatic transmission, this will generally be more difficult 

(22, 23)   

 

The costs of this intervention are borne by individuals who do not experience the benefits of 

reduced transmission.  So while it is highly efficient, the individuals who are protected from 

infection do not incur any costs. 

 

Actions taken to avoid individual infection 

An individual may avoid infection in several ways.  If an effective vaccine or prophylactic 

medication is available, then he may be able to use these to avoid infection.  Alternately, the 

use of personal protective equipment (PPE), or behavior changes can reduce the probability 

of infection.  If the measures taken are less than 100% effective, the impact will be scaled by 

the corresponding factor.   

 

These options to avoid infection may impose costs on the individual even though we do not 

know in advance whether he would ever be infected without them.  This cost can be 

mitigated in part by changing the level of protection based on local prevalence, e.g., by 

wearing PPE only when the risk of infection is high.   
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A key observation is that for an intervention such as a perfect vaccine, unless the control 

threshold is crossed and the epidemic is eliminated, every vaccine prevents on average more 

than one infection.  Our analysis allows us to quantify how that benefit is distributed.  Most 

of the benefit goes to the vaccine recipient if c  is large.  In contrast, if c  is near 1, the 

protective measure has almost no impact on the individual’s probability of infection, but it 

has a large indirect effect on others in those rare cases where an individual does become 

infected.  This is because overdetermination is reduced in low transmission settings, so that 

the net expected number of infections averted approaches 2.  For the example of 1.01c =  

shown in the results section, the probability that vaccine prevents infection of the recipient is 

about 2%.  But when this happens, on average about 100 subsequent infections are prevented.  

So on average about 2% 100 2 =  infections are averted, but about 99%  of the benefit is due 

to indirect protection of those not vaccinated. 

 

Ethical Implications 

Some of our results are relatively unsurprising: if compliance with a quarantine is low, then 

the burden on those who do comply is hard to justify if the goal is to prevent an epidemic.  

However, some of our other results are more unexpected.  Specifically, when c  is just a 

little above 1, individual actions have more impact than when c  is well above 1. 

 

In the case of isolating after infection, the expected benefit can be very large if c  is close to 

1.  However that benefit is enjoyed by someone other than the one enduring the burden of 

compliance.  In the case of perfect vaccination/prophylaxis the expected number of infections 

averted is always at least 1 if 1c  .  However, when c  is close to 1 the benefit is almost 

entirely experienced by those not receiving the intervention.  These observations provide 

quantitative data to inform ethical policy design for interventions in cases where the burden 

of compliance is borne by individuals who receive little or no benefit from compliance. 

 

As a general rule, we see that these interventions are most effective on a per individual basis 

when the reproduction number is close to 1.  When more individuals comply with an 

intervention, this acts to reduce the overall reproduction number, and the public health 

benefits per individual increase faster than linearly – each additional individual complying 

increases the average effectiveness of those already complying due to reductions in 

overdetermination. 

 

This leads to interesting conceptual questions about how to attribute “credit” for the benefit 

that comes from compliance.  Do all individuals who comply contribute equally to the total 

benefit?  Or do the later ones play a larger role?  This conceptual question becomes more 

practical when incentives and/or coercive measures are used to increase compliance.  If 

incentives are given to those who comply, should they share equally?  Should the last ones to 

comply (who might be considered to create the largest marginal benefit) be given a larger 

incentive?  If coercive measures are used, should the punishment increase as compliance 

increases?  Should it be calibrated to the average benefit of those who are complying or 

expected to comply? 
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Promoting collective compliance 

Our observations lend support to the argument that for a highly infectious disease, if 

compliance is not high, then there is little ethical rationale for compliance on the basis that 

each individual makes little difference to overall population-level harm (although in this 

scenario vaccination/prophylaxis provides a significant direct individual benefit and we are 

ignoring health system capacity constraints in this analysis).  Population benefits of collective 

compliance increase with greater compliance.  One implication might be that public health 

messaging should promote high levels of compliance as a good to society rather than 

stigmatize those who fail to comply.  It is perhaps not widely recognized by the public that 

large numbers of people acting together to reduce transmission of an infectious disease result 

in synergistic public health benefits.  To the extent that individuals are aware of such patterns 

and act on this knowledge, this might reinforce behavior that improves epidemic control 

through higher compliance. 

 

Our modeling illustrates that the public health consequences directly related to an 

individual’s noncompliance with interventions is largest when c  is near 1, for which 

overdetermination is rare and the epidemic might seem small and/or manageable.  

Communicating the benefits of collective action might help to improve public cooperation 

with control measures, especially by making people aware that in a highly susceptible 

population it is all the more important that people (continue to) contribute to control measures 

as they drive c  close to 1, where someone might reasonably conclude his individual 

incentive to comply is low (as his risk of infection is negligible) (Figure 3 and Figure 6). 

 

A key consequence of our results is that there is a disparity in who receives the benefits from 

individual actions.  Near 1c =  an individual’s action produces much more public benefit 

than private benefit.  This suggests that policies that mitigate the individual costs of 

compliance are likely to be an important part of ethical interventions. 

 

Limitations and future work: 

 

There are a number of limitations to this work that should be addressed in future analysis. 

 

Mathematically, we have studied a relatively simple model of disease – using an SIR model 

without any incubating or asymptomatic stages.  We treat the population as fully mixed, with 

all individuals equally susceptible and ignore variable risks of severe outcomes.  We have 

focused our attention on measuring the benefit of an intervention – the costs should be 

explicitly measured as well to balance against those benefits.  A more nuanced model will be 

needed to investigate issues related to more complex disease and population structure.  

Additionally, our focus has been on basic measures of impact, namely the prevention of an 

epidemic and reduction in infections.  We have not considered the fact that infected 

individuals may occupy health care resources that prevent others from accessing care.  Nor 

have we considered issues such as the importance of minimizing the epidemic peak as a 

separate issue from minimizing total infections. 

 

We have assumed that the background conditions are constant.  The interventions are 

assumed to be unchanging, while in reality they may change in response to the epidemic 

dynamics.  In a real-world scenario we might expect that treatment methods might improve 
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over time, thus a delayed infection might be less severe than an earlier infection.  We might 

also anticipate that a vaccine may be developed, thus a delayed infection may actually end up 

being a prevented infection or a less-severe infection.  On the other hand, we have also 

assumed that the disease remains unchanged.  In reality we expect a more transmissible 

variant may emerge, and so delaying early transmission may come at the cost of a 

significantly larger later epidemic.  Similarly if the disease spreads best in winter, efforts to 

reduce transmission in summer may lead to an enhanced winter wave. 

 

 

Materials and Methods 

In this section we derive our mathematical approaches and perform some of the technical 

analysis of the model.  We begin by briefly describing the model assumptions and providing 

two small examples demonstrating key features of stochastic infection spread. We then derive 

the mathematical approaches.  Finally we perform some of the analysis, ending with a 

rigorous derivation of the observation that as 1c
+→  the expected number of infections 

prevented by a vaccine approaches 2. 

 

Model Assumptions 

 

We assume a stochastic model of infection spread, based on the standard Susceptible-

Infected-Recovered (SIR) model (24, 25).  Each infected individual potentially transmits to k  

others, chosen uniformly at random from the population, where k  is chosen from some 

distribution.  If the recipient of a transmission is susceptible, an infection event occurs.  If 

not, the transmission has no effect.  The distribution of the number of transmissions k  is 

known as the offspring distribution, with kp  denoting the probability of k  transmissions.  

After transmitting to its offspring the infected individual recovers with immunity. 

 

If there are no interventions in place, then the average of the offspring distribution is the 

basic reproduction number 0 .  If interventions are in place, then the average of the 

offspring distribution after accounting for those interventions is the reproduction number 

under control c .  We assume that c  remains constant for the duration of the epidemic.  

Because transmissions have no effect when the recipient has already been infected, we also 

introduce the effective reproduction number eff ( )t  which measures the average number of 

successful transmissions from an infected individual.  This equals c times the proportion of 

the population that is susceptible.  eff  accounts for both the intervention and the immunity 

that the population has developed. 

 

It is known that the probability an epidemic becomes established is sensitive to the frequency 

of superspreading, the tendency that a small fraction of the infected individuals cause a large 

fraction of the transmissions (14, 16–18).  To investigate the significance of superspreading 

in our analysis, we consider the impact of a Poisson offspring distribution and a Negative 

Binomial distribution.  The Poisson distribution is parametrized by a single variable, the 

mean c , and individuals who transmit significantly more than average are negligibly rare.  

The Negative Binomial distribution is parametrized by the mean c  and a dispersion 
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parameter, which we take to be 0.16, which includes significant superspreading.  This is 

consistent with estimates for SARS (17) and allows us to clearly show what impact (if any) 

superspreading has.  More recent estimates for COVID-19 suggest that the dispersion 

parameter should be larger (16); however our goal is to investigate the qualitative impact of 

superspreading rather than making exact predictions for a particular disease.  

 

Example Outbreaks 

 

In Figure 8, we show transmission chains in two outbreaks in populations of 50  individuals.  

The two populations have 1.5c =  and 2.5c = .  Each infected individual transmits 

independently to each of the other 49  individuals with probability / 49c , resulting in a 

distribution that is approximately Poisson with mean c .  In both cases, the outbreak 

successfully establishes and only terminates because eventually a significant number of 

transmissions go to previously infected individuals.  In a larger population, those blocked 

transmissions would have gone to other susceptible individuals, resulting in a large-scale 

outbreak, that is, an epidemic. 

 

 

 

Figure 8 Two sample outbreaks with 1.5c =  (top) and 2.5c =  (bottom), each starting 

from a single infection in a population of 50 individuals.  Only the eventually infected nodes 

are shown.  The red lines denote successful transmissions while the gray lines denote 

transmissions from an infectious individual to one who had already been infected.  Note that 

given the transmissions in the 1.5c =  case, had individual 36 (second row on right) been 

the initial infection, only individuals 36, 4, and 8 would have been infected.  Additionally, had 

individual 49 (fifth row on right) isolated after infection (or been effectively protected from 

infection), this would have prevented the infections of 32, 39, 40, and 17.  In the 2.5c =  

case, there are many more (potential) transmission chains: more infections occur, 
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transmission chains tend to be longer, and removing one individual tends to protect fewer 

others. 

 

Figure 8 shows that although many epidemics spread far and are limited only by the 

population size, outbreaks starting from some individuals would not spread far.  For example, 

in the top plot if the infection introduced in individual 42 (second node in third level) rather 

than individual 0 or if in the bottom plot infection started with 28  (last node in third level), 

these would not lead to long transmission chains.  However, many of the other individuals 

would spark large-scale transmission through the population.  So, if multiple introductions 

occur, there is a likelihood that more than one of them is sufficient to spark an epidemic.  

This is more likely for larger c .  This illustrates how epidemics can be overdetermined, 

which plays an important role in our analysis. 

 

Additionally, we see that individual cases of infection may or may not be overdetermined. If 

we blocked transmission from some individuals it would provide effective protection to 

others.  For example, in the top plot preventing transmissions from individual 49  (lower 

right) would be sufficient to prevent the infection of 32 , 39 , 40 , and 17 .  However, many 

infections are overdetermined because there are alternate transmission routes.  For example, 

in the top plot preventing transmissions from 10  (first node in second level) would prevent 

the infection of 25 , but all other descendants would eventually be infected through alternate 

chains of transmission.  The existence of multiple transmission chains to the same individual 

becomes more likely for larger c . 

 

In a practical setting we do not know a priori which transmissions would occur.  Based on 

the offspring distribution, we can calculate the probability that an introduced infection results 

in an epidemic.  We can also calculate the distribution of the number of infections averted by 

one individual’s behavior change.  However, due to the stochasticity inherent in the system, 

for a specific infected individual introduced to a population, we cannot know in advance 

whether he would spark an epidemic, or in an ongoing epidemic, we do not know exactly 

how many infections another individual might avert by changing her behavior.  Thus, our 

analysis will focus on the expected (i.e., the average) impact over many realizations. 

 

The key quantities we focus on are: 

• The expected impact of a single infected individual acting alone or multiple infected 

individuals acting together to isolate prior to entering a community to prevent an 

epidemic. 

• The expected impact of a single individual acting alone or multiple individuals acting 

together to reduce the total number of infections occurring in an epidemic. 

 

Mathematical Methods 

We now build up the mathematical methods used to analyze the sort of outbreaks that can 

occur.  We will assume throughout that the population size is very large.  Under this 

assumption two typical outcomes occur in large populations: either an outbreak remains small 
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and dies out quickly or it becomes an epidemic that grows until it is limited by the population 

size.  If 1c   only small outbreaks occur.  If 1c   large epidemics can occur but small 

outbreaks are still possible.  The size distribution of the number infected in small outbreaks is 

independent of the population size but does depend on the offspring distribution.  In contrast, 

in a large epidemic the proportion infected is independent of the population size (so the 

number infected is proportional to the population size) and the proportion is independent of 

the offspring distribution. 

 

Probability Generating Functions 

In this section we briefly introduce some properties of probability generating functions 

(PGFs).  More complete details can be found in (18, 26).  

 

The number of outgoing edges from a particular node is chosen from the offspring 

distribution.  If 0p , 1p , … represent the probability of zero, one, … offspring, then the PGF 

of the distribution (26) is defined to be 
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In many cases it may be difficult to find the coefficients of a PGF ( )x  directly, but it is 

possible to calculate the values of ( )x  to high precision on the unit circle in the complex 

plane.  Then we can use a Cauchy integral to find arbitrary coefficients of ( )x  [see section 

A.1 of (18)] (in fact if we parametrize the unit circle by the angle  , then ( )x  becomes a 

complex-valued Fourier Series in  , and the Cauchy integral becomes the formula for the 

coefficients of a Fourier Series).  In the context of disease spread, if ( )x  is the PGF for 

the final size distribution when the reproduction number is less than 1, using approaches 

shown below, it is possible to calculate ( )x  at arbitrary values of x .  Then this approach 

can be used to find the coefficients of the series expansion of ( )x  (18). 

 

The final size relation 

We have assumed homogeneous susceptibility in a well-mixed population.  It is well-known 

that the final size of epidemics under these assumptions is independent of the offspring 

distribution in the large population limit (it depends only on the average of the distribution).  

Here we briefly derive the final size relation following (19, 21) [see also (20)].  We let 

( )c  denote the expected proportion of the population infected in an epidemic.  The total 
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number of transmissions that occur in the epidemic is well-approximated by ( )c c N   

where N  is the population size.  On average each member of the population thus receives 

( )c c  transmissions.  In the large population limit, we can reasonably assume 

independence of these events.  This means that the number of transmissions received is 

Poisson-distributed with mean c .  The probability of receiving no transmissions is 
( )c ce

− 
.  However, because this is the probability of not being infected it also equals the 

proportion of the population that remains susceptible.  We arrive at the final size relation 

 
( )

( 1) c c

c e
−

= −  

This can be solved iteratively by setting 1=1- e c g

g

−

+  with 0 1= . 

Calculating epidemic probability 

To calculate the epidemic probability, we consider a process known as the Galton-Watson 

process (or birth-death process).  Let   denote the probability that a given individual in a 

branching process has a finite number of descendants.  Then 1 −  is the probability of an 

infinite number of descendants.  The number of descendants is finite exactly when every 

single offspring has a finite number of descendants.  Since each offspring has a finite number 

of descendants also with probability   we find 

 ( )i

i

i

p   ==  

Thus, the probability of an infinite number of descendants can be calculated by finding the 

roots of ( )  =  where ( )x  is the PGF.  One root is always 1 =  corresponding to never 

having an infinite number of descendants, but if there is another root, it will lie between 0 and 

1, and it is the correct root to choose.  This other root exists when 1c  . 

 

In practice we can find   by setting 0 0 =  and letting 1 ( )g g  + = , until the values found 

for g  converge.  In this approach, g  can be interpreted as the probability that the outbreak 

terminates by generation g . 

 

Calculating the impact of isolation after infection. 
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Figure 9: A schematic showing the descendants of u  with filled circles showing those whose 

infections would be averted if u ’s transmissions were prevented by u  isolating.  Dashed 

hollow circles denote infected individuals that are not descendants of u  who provide 

additional transmission paths to some descendants of u .  Hollow circles with solid edges 

denote the individuals whose infection is overdetermined. 

 

To determine the expected impact of isolation of u  after becoming infected, we need to 

calculate the expected number of descendants an individual who would not be infected 

through some transmission path not through u , as shown in Figure 9.  To determine this, we 

consider the residual offspring distribution, that is the distribution of the number of direct 

offspring who would not be reachable along any other transmission chain.  If an individual 

would cause i  transmissions, a fraction ( )c  of them go to individuals who would 

otherwise be infected through a different chain, as would all their descendants. 

 

The average of the residual offspring distribution is ( )][1 c c = − , which is the initial 

reproduction number multiplied by the fraction who remain susceptible at the end.  This is the 

reproduction number at the end of the epidemic.  If 1c  , then ( ) 0c =  and we find 

c = , while if 1c  , then   is less than 1.  The expected number of infections 

averted among those who are reachable from a path of g  generations from u  ends up being 
g

 .  Summing this over all g , we find that the initial infected individual’s isolation prevents 
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infections, where [1 ( )]c c = −  is the effective reproduction number at the end of 

transmission in a population having reproduction number under control of c .Note that when 

  is close to 1, this is a large number.  This happens when c  is close to 1. 
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To go further, we can calculate the distribution of the total number of infections averted.  The 

PGF for the residual distribution is ( 1- )x  + .  Following methods derived in (18), the 

PGF for the size distribution of the number of infections averted is 

( ) (1 ( ))xxx     = − + .  This can be calculated for arbitrary values of x  by iterating 

1 ( +( ) 1 ( ))g gx x x+   = −  , starting with 0 ( ) 1x = .  Iterating for values of x  on the 

complex unit circle until the results converge allows us to calculate the individual coefficients 

of ( )x  through a Cauchy integral, from which we know the distribution of the total 

number of infections averted. 

 

To calculate the impact of multiple individuals isolating, we note that if a fraction   of the 

population isolate after infection, then the offspring distribution is modified.  With 

probability   an infected individual isolates and causes no infections, while with probability 

1 −  they cause a number of infections chosen from the original distribution.  This means 

that c  is effectively multiplied by 1 − .  We can redo the calculations for final size and 

individual impact above using (1 ) c−  instead of c . 

 

Calculating the impact of avoiding infection 

If an individual either gets a 100% effective vaccine or prophylactic medication, she can 

avoid infection.  Doing so, she prevents her own infection with probability ( )c , as it has 

no effect if she would have avoided infection anyways.  When she prevents her own 

infection, the total number of infections averted due to this is 1 ( )c+  where the 1 accounts 

for protection of herself and ( )c  accounts for protection of others.  Combining this 

reduction with the probability that the reduction occurs, we find that the expected reduction 

in infections de to a single individual taking measures to prevent her own infection is 

( )[1 ( )]c c+ . 

 

To calculate the impact of multiple individuals getting vaccinated or otherwise avoiding 

infection, we note that if a fraction   of the population is immune to infection, then the 

offspring distribution is modified.  With probability   a random transmission is blocked by 

the protection to the recipient.  This means that c  is effectively multiplied by 1 − , though 

for a different reason than before.  We can redo the calculations for final size and individual 

impact above using (1 ) c−  instead of c . 

 

We now derive the number of infections averted for the limit approaching 1c =  from above, 

showing that it matches the apparent limit shown by the numerics.  We need to calculate 

1
lim ( ) ( ))(1
c

c c
+→

+  where 1( ) c
c e−= −  and 

( ) / (1 ) [1 ( )] / (1 [1 ( )] )c c c c c − == − − − .  To find this value, we invert the 

relationship between  and c , writing 
1

) ln(1 )(c = − − .  Then 

( ) [1 ] ) / (1 [1 ] ))( (c c= − − − .  We now take the limit 
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0

(1 ) ( )
lim 1

1 (1 ) ( )

c

c
+→

 −
+ 

− − 
.  Substituting for ( )c  and noting that the 1 inside the 

parenthesis will not matter in the limit, we get 

 
0 0

(1 ) ( ) (1 ) ln(1 )
lim 1 lim

1 (1 ) ( ) (1 ) ln(1 )

c

c
+ +→ →

 − − −
+ = 

− − − − − − 
 

Taking one round of L’Hopital’s rule yields 

 
0 0 0

(1 ) ln(1 ) (1 2 ) ln(1 )
lim lim 1 lim

(1 ) ln(1 ) ln(1 ) ln(1 )+ + +→ → →

− − − − −
= = −

− − − − − −
 

Applying L’Hopital’s rule one again yields 

 
0 0 0

1
1 lim 1 lim 1 lim (1 )

1ln(1 )

1

+ + +→ → →
− = − = + −

−
−

−

 

which is 2. 
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