SUPPLEMENTARY MATERIALS

Long-term ozone exposure and associated cause-specific mortality risks with adjusted metrics by cohort studies: A systematic review and meta-analysis

Authors

Haitong Zhe Sun^{1,2}, Pei Yu³, Changxin Lan^{4,5}, Michelle Wan¹, Sebastian Hickman¹, Jayaprakash Murulitharan¹, Huizhong Shen⁶, Le Yuan¹, Yuming Guo³*, Alexander Archibald^{1,7}*

Affiliations

- ¹ Centre for Atmospheric Science, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
- ² Department of Earth Sciences, University of Cambridge, Cambridge CB2 3EQ, United Kingdom
- ³ School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria 3004, Australia
- ⁴ Institute of Reproductive and Child Health, Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing 100191, China
- ⁵ Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
- ⁶ School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- ⁷ National Centre for Atmospheric Science, Cambridge CB2 1EW, United Kingdom
- Corresponding authors:
 Alexander T. Archibald (<u>ata27@cam.ac.uk</u>) and Yuming Guo (<u>yuming.guo@monash.edu</u>)

Supplementary Texts

S1. Imputation procedures for exposure distribution

To reproduce the distribution, we first extracted the arithmetic means and standard deviations (σ) reported by literatures included for meta-analysis; if unavailable, we estimated the arithmetic means and standard deviations based on the reported descriptive statistics including median, first- and thirdquartile, and all the other percentiles; and finally identified the corresponding distribution by Gaussian normal distribution assumption. Reported values were always treated as priority when multiple distribution parameters were given; and we also compared the reported values and our speculated values to check the credibility of our method.

During the process of exposure distribution reproducing, Gaussian normal distribution was presumed prior to log-normal distribution unless violated severely. The centric level, the arithmetic means and medians, were treated as exchangeable, but the arithmetic means were preferred. Theoretically, the minimum and maximum values of the distribution were not deductible, and thus 1st and 99th percentiles were used as proxies. Calculations for σ from key percentiles followed: 75th%ile = mean + 0.6745 σ , 95th%ile = mean + 1.6449 σ , and 99th%ile = mean + 2.3263 σ . If IQRs were stated then IQR = 1.3490 σ ; if the 5–95th percentile ranges were reported then range₅₋₉₅ = 3.2898 σ ; if full minimum-maximum ranges were given then range = 4.6527 σ . If more than one distribution features were provided, IQRs were more preferred for σ estimation for higher robustness.

The resampled distributions of O_3 exposure were listed in Table A for original reported metrics and in Table B for harmonised metric into 6mDMA8. By comparing the reported percentiles with distribution-based reproduced estimation values, reasonability of the distribution resampling was verified (Figure A) as the fitting $R^2 = 0.84$, RMSE = 2.78 ppbV. Theoretically, the minimum and maximum values of the distribution were not deductible, and thus 1st and 99th percentiles were used as surrogates.

Study	Metric (ppbV)	Mean	STD	Min	5%	25%	Median	75%	95%	Max	IQR	Range
Abbey et al. 1999	ADA24	26.1	7.7	(8.3)	(13.5)	(21.0)	(26.1)	(31.3)	(38.7)	(43.9)	12.0 (10.3)	43.9 (35.6)
Lin fort et al. 2006	ADMA1	84.2	10.2	38.5 (60.5)	(67.4)	(77.3)	(84.2)	(91.1)	(101)	112 (108)	(13.8)	(73.5)
Lipiert et al. 2006	ADA24	54.6	6.5	24.3 (39.5)	(43.9)	(50.2)	(54.6)	(59.0)	(65.3)	72.1 (69.7)	(8.8)	(47.8)
Jerrett et al. 2009	6mDMA1											
Krewski et al. 2009	6mDMA1	$(60.5)^1$	(15.2)	33.3	(35.5)	(50.3)	(60.5)	(70.7)	(85.5)	104	(20.5)	70.7
Smith et al. 2009	6mDMA1											
Lipsett et al. 2011	ADMA8	48.1	8.7	25.4	(33.8)	(42.2)	(48.1)	(54.0)	(62.5)	82.6	11.2	57.2
Zanobetti et al. 2011	6mDMA8	46.0	5.2	26.6 ²	(40.2)	44.2	48.6	51.2	(52.6)	71.4	7.0	44.8
Carey et al. 2013	ADA24	26.4	1.2	22.7 (23.6)	(24.4)	(25.6)	(26.4)	(27.2)	(28.4)	32.1 (29.2)	1.5 (1.6)	9.4 (5.6)
Jerrett et al. 2013	ADMA8	50.4	14.6	17.1 (16.8)	28.8 (26.8)	36.8 (41.0)	50.8	61.0 (60.6)	74.2 (74.8)	89.3 (84.8)	24.2 (19.6)	72.2 (68.0)
Bentayeb et al. 2015	6mDMA8	49.5	4.9	(20.4)	(25.5)	(45.7)	49.0	(52.3)	(57.1)	(60.4)	6.3 (6.6)	(40.0)
Crouse et al. 2015	6mDMA8	39.6	(7.3)	10.7 (22.0)	(26.9)	34.3 (34.1)	39.0	44.2 (43.9)	(51.1)	60.0 (56.0)	9.9 (9.8)	(49.3)

Table A. Originally reported and statistically reproduced long-term O₃ exposure distributions statistics for all meta-analysis included studies. The originally reported long-term O₃ exposure levels from literatures were marked in **Bold** font, and the statistically reproduced exposure levels were denoted in brackets. All the exposure concentrations were uniformly scaled into ppbV.

Study	Metric (ppbV)	Mean	STD	Min	5%	25%	Median	75%	95%	Max	IQR	Range
Tonne et al. 2016	ADA24	20.6	2.0	(15.9)	(17.3)	19.3 (19.4)	20.7	22.0 (22.0)	(24.0)	(25.4)	2.7	(9.5)
Turner et al. 2016	ADMA8	38.2	4.0	26.7 (28.9)	(31.6)	(35.5)	(38.2)	(40.9)	(44.8)	59.3 (47.5)	(5.4)	32.6 (18.6)
Weichenthal et al. 2017	6mDMA8	(38.2)	(6.6)	1.0 (22.7)	27.6 (27.2)	33.7	38.1	42.6	50.5 (49.0)	60.5 (53.5)	9.0	59.5 (30.8)
Cakmak et al. 2018	6mDMA8	39.2	6.7	0.0 (23.6)	(28.2)	(34.7)	(39.2)	(43.7)	(50.2)	58.8 (54.7)	(9.0)	58.8 (31.1)
Di et al. 2018	6mDA24	46.3	(6.0)	(32.4)	36.3	(42.3)	46.3	(50.3)	55.9	(60.2)	(8.0)	(27.7)
Hvidtfeldt et al. 2019	ADA24	(28.3)	(2.5)	(22.5)	22.8	(26.6)	28.3	(29.9)	31.0	(34.1)	(3.4)	(11.6)
1	ADMA8	39.0	4.6	26.8 (28.3)	(31.4)	(35.9)	(39.0)	(42.1)	(46.6)	56.3 (49.7)	(6.2)	29.5 (21.4)
Lim et al. 2019	6mDMA8	46.2	7.6	29.5 (28.5)	(33.7)	(41.1)	(46.2)	(51.3)	(58.7)	70.4 (63.9)	(10.3)	40.9 (35.4)
Kazemiparkouhi et al. 2019	6mDMA1	(55.0)	(7.4)	(37.8)	(42.8)	50.0	55.0	60.0	(67.2)	(72.2)	10.0	(34.5)
Paul et al. 2020	6mDMA8	46.9	(4.7)	(35.9)	(39.1)	(43.7)	(46.9)	(50.1)	(54.7)	(57.9)	6.4	(22.0)

 $\frac{1}{2}$ Jerrett et al. 2009 did not report the arithmetic mean and standard deviation directly. The values were deducted by weighted averaging the centric concentrations of 4 exposure intervals on the populations given in Table 1 from the original literature. \perp Zanobetti et al. 2011 did not report the exposure distribution features directly. The quartiles were extracted from the legends provided in Figure 1 of the original literature.

Table B. Statistically resampled distributions of O₃ exposure levels for each study included for metaanalysis. The distribution features included arithmetic mean, standard deviation (STD), minimum, 5^{th} , 25^{th} , 50^{th} (median), 75^{th} , and 95^{th} percentile, maximum, inter-quartile range (IQR), and full range, based on O₃ exposure concentrations scaled by 6mDMA8 metric in ppbV. Values in **Bold** font represented the statistics reported by literature, while the rest indicated resampled values.

Study	Mean	STD	Min	5%	25%	Median	75%	95%	Max	IQR	Range
Abbey et al. 1999	50.4	14.9	16.1	26.1	40.6	50.4	60.5	74.8	84.9	23.2	84.9
Lipfert et al. 2006	80.1	9.7	36.6	64.2	73.5	80.1	86.7	96.1	106.6	13.2	69.9
Jerrett et al. 2009											
Krewski et al. 2009	50.1	12.6	27.5	30.0	41.6	50.1	58.5	70.7	86.1	17.0	58.5
Smith et al. 2009											
Lipsett et al. 2011	55.6	10.1	29.4	39.1	48.8	55.6	62.4	72.3	95.5	12.9	66.1
Zanobetti et al. 2011	45.9	5.2	26.6	40.1	44.0	48.4	51.1	52.5	71.2	6.9	44.7
Carey et al. 2013	51.0	2.3	43.8	47.2	49.5	51.0	52.6	54.9	62.0	2.9	18.1
Jerrett et al. 2013	58.3	16.9	19.8	33.3	42.5	58. 7	70.5	85.8	103.2	28.0	83.5
Bentayeb et al. 2015	49.4	4.9	20.3	25.4	45.5	48.9	52.1	57.0	60.2	6.2	39.9
Crouse et al. 2015	39.5	7.3	10.7	26.8	34.2	39.0	44.0	51.0	59.9	9.8	49.1
Tonne et al. 2016	39.8	3.8	30.7	33.4	37.3	40.0	42.5	46.4	49.0	5.2	18.4
Turner et al. 2016	44.2	4.6	30.1	36.5	41.0	44.2	47.3	51.8	68.6	6.2	37.7
Weichenthal et al. 2017	38.1	6.6	1.0	27.5	33.6	38.0	42.5	50.4	60.3	9.0	59.3
Cakmak et al. 2018	39.1	6.7	0.0	28.1	34.6	39.1	43.6	50.1	58.6	9.0	58.6
Di et al. 2018	77.1	9.9	54.0	60.5	70.5	77.1	83.8	93.2	100.2	13.3	46.1
Hvidtfeldt et al. 2019	54.7	4.9	43.5	44.0	51.3	54.7	57.8	59.9	65.9	6.6	22.4
Kazemiparkouhi et al. 2019	45.1	5.3	31.0	36.3	41.5	45.1	48.7	53.9	65.1	7.2	34.1
Lim et al. 2019	45.5	6.1	31.3	35.4	41.4	45.5	49.7	55.6	59.8	8.3	28.6
Paul et al. 2020	46.8	4.7	35.8	39.0	43.6	46.8	49.9	54.6	57.8	6.4	22.0

Figure A. Accuracy evaluation of imputed distribution statistics for 20 studies included for systematic review and meta-analysis. The left panel indicated pair-wise accuracies for all distribution statistics including minimum, 5^{th} , 25^{th} , 75^{th} , 95^{th} percentile, and maximum, and the right panel excluded the minimum. Non-intercept linear models were applied to estimate the coefficients of determination (R²).

S2. Enhanced integrated exposure-response curve-fitting

Exposure-response quantitative relationships were regarded as an additive credit to risk association estimations, as in many cases the adverse health outcomes would respond to exposures in non-linear patterns.¹ We developed the exposure-response non-linear relationships following the integrated exposure-response (IER) curve-fitting approach,² based on the mathematical function as:

$$RR(x) = \begin{cases} 1, & x < x_{cf} \\ \\ 1 + \alpha (1 - e^{-\gamma (x - x_{cf})^{\delta}}), & x \ge x_{cf} \end{cases}$$

where the subscript *cf* refers to a counterfactual concentration below which no additional health risks are assumed, exchangeable with the concept of "threshold" or "low concentration cut-off" (LCC).³

However, this method required more sufficient sampling of the exposure levels, since small number of studies could only provide limited exposure values to be fitted, which would impair the stability of the curve estimations. In addition, simply drawing an averaged exposure level from a highquality environmental health study would lose exposure variability information. In this event, we intended to take better advantage of the variabilities in exposure levels by statistically imputing the exposure distributions for each study from the provided statistics mainly including the mean, standard deviation, and percentiles, rather than just using a simple centric averaged exposure concentration, for curve fitting.

To enhance the exposure-response trend construction, we first set the exposure interval nodes by every 5-ppbV ranging between the minimum and maximum exposures reported from all included literatures. In the second step, we selected the studies of which the exposure levels contained each specific node. Thirdly, the counterfactual concentrations were defined as the lowest 5th percentile following a previous research,³ based on which the cumulative risks at the prescribed nodes were calculated for each study. Fourthly, the individual cumulative risks were pooled into a synthesised risk with 95% UI for each exposure node. As for the fifth step, we generated 10,000 groups of concentration-risk pairs by Monte Carlo random draws according to the pooled risks with 95% UIs, and for each draw the counterfactual concentration was randomly sampled from a uniform distribution between the minimum and 5th lowest percentile concentrations, based on which the draw-specific curve-shape parameters (α , γ , and δ) were estimated. At last, we summarised the distribution patterns of the parameters from all randomised draws, and reproduced the concentration-response curve by another 10,000-time Monte Carlo simulation to characterise the uncertainties. The Monte Carlo simulations were performed in MathWorks[®] MATLAB 2016b, and the curve fittings were finished in Python 3.8.5 by package Scipy 1.5.2.

S3. Demonstrative procedures of enhanced exposure-response trend curve-fitting

Here is a detailed elaborative demonstration for COPD mortality risk curve-fitting by 6mDMA8 metric.

First, identify studies covering each exposure concentration interval level, hereafter called as "*nodes*". According to the resampled exposure distribution, 25.4 ppbV was the lowest 5th%ile concentration reported (Table B), and thence 30 ppbV could be set as the starting node, followed with every 5-ppbV increment as 35, 40, ..., 80 ppbV. For an instance, treating the lowest 5th percentile as the effective lowest exposure level for each study, 5 studies as Abbey et al. (1999), Bentayeb et al. (2015), Crouse et al. (2015), Weichenthal et al. (2017) and Cakmak et al. (2018) covered the minimum node as 30 ppbV by 6mDMA8 metric (Table B), and likewise for the rest nodes. Among the 5 studies identified, only 2 studies as Crouse et al. (2015) and Cakmak et al. (2018) would be used when exploring COPD mortality risks since the rest 3 did not involve COPD studies.

Second, for each exposure node, calculate the study-specific cumulative RRs. Taking Crouse et al. (2015) as an example from the 2 studies covering 30-ppbV exposure, the 5th percentile exposure, 26.8 ppbV by 6mDMA8 metric, was set as the threshold, and hence the cumulative RR for COPD mortality at 30 ppbV exposure should be $e^{(ln0.959 \times \frac{30-26.8}{10})} = 0.987$, together with its 95% CI: 0.975-0.999. Cumulative RRs for the rest studies and other cause-specific mortalities were calculated in the same way.

Third, pool the study-specific individual risks into overall cumulative RRs at each note by metaregression within each mortality cause. For COPD mortality risks at 30-ppbV exposure, the cumulative RR by Crouse et al. (2015) was 0.987 (95% CI: 0.975–0.999), and by Cakmak et al. (2018) was 1.000 (95% CI: 0.998–1.002), pooling from which the overall cumulative RR was 0.997 (95% CI:0.990–1.003). The rest intervals followed the same procedure, as summarised in Table C, which could then be applied onto other mortality causes as listed in Table D.

Fourth, for each exposure node, draw a random cumulative risk value based on the normal distribution presumption; and generate a random value between 0 and the lowest 5th percentile across all included studies as the overall threshold level. Then, fit the drawn "node-risk" combinations by the prescribed mathematical formula as presented in Supplementary Text S1, from which three parameters α , δ , and γ could be estimated.

Fifth, duplicate the fourth procedure for 10,000 times with Monte Carlo simulation, and acquire 10,000 groups of the estimated parameter sets, based on which the arithmetic mean, 2.5th and 97.5th percentiles were generated.

Finally, the exposure-response trend curves were reproduced by another Monte Carlo simulation using the estimated 3 parameters together with the uniformly distribution presumed threshold level (between 0 and the cross-study lowest 5th percentile level) to calculate the cumulative RRs through the full range of exposures. The integrated exposure-response curves were plotted in Figure B.

Study	30 ppbV	35 ppbV	40 ppbV	45 ppbV	50 ppbV	55 ppbV	60 ppbV
Zanobetti et al. 2011		1.23 (1.13, 1.30)	1.33 (1.18, 1.43)	1.43 (1.23, 1.58)	1.55 (1.29, 1.75)	1.68 (1.35, 1.93)	1.81 (1.41, 2.14)
Crouse et al. 2015	0.99 (0.98, 1.00)	0.96 (0.83, 0.99)	0.93 (0.88, 0.99)	0.90 (0.83, 0.99)	0.87 (0.78, 0.99)		
Turner et al. 2016		1.19 (1.11, 1.28)	1.27 (1.15, 1.41)	1.35 (1.19, 1.55)	1.44 (1.24, 1.71)	1.54 (1.29, 1.88)	
Cakmak et al. 2018	1.00 (0.99, 1.00)	1.00 (0.96, 1.05)	1.00 (0.94, 1.06)	1.00 (0.92, 1.08)	1.00 (0.91, 1.10)		
Kazemiparkouhi et al. 2019		1.16 (1.15, 1.17)	1.22 (1.21, 1.24)	1.30 (1.28, 1.32)	1.37 (1.35, 1.40)		
Lim et al. 2019		1.09 (1.02, 1.19)	1.13 (1.02, 1.27)	1.17 (1.03, 1.35)	1.21 (1.03, 1.44)	1.25 (1.04, 1.54)	
Heterogeneity I ²	65.3%	94.7%	94.7%	94.7%	94.7%	58.7%	-
Pooled RRs	1.00 (0.99, 1.00)	1.09 (1.01, 1.19)	1.13 (1.01, 1.27)	1.17 (1.02, 1.35)	1.21 (1.02, 1.44)	1.48 (1.25, 1.76)	1.81 (1.41, 2.14)

Table C. Cumulative relative risks of chronic obstructive pulmonary disease (COPD) mortality by reproduced O₃ exposure distribution.

Table D. Relative risks of all-cause, respiratory, cardiovascular and congestive heart failure mortality by distribution-reproduced O₃ exposures.

Concentrations	RR	LB	UB	I ²
All-cause Mortality				
30 ppbV	1.003	1.002	1.003	93.2%
35 ppbV	1.008	1.007	1.009	93.8%
40 ppbV	1.006	1.004	1.008	93.2%
45 ppbV	1.008	1.005	1.010	93.7%
50 ppbV	1.009	1.006	1.012	93.5%
55 ppbV	1.021	1.019	1.023	85.6%
60 ppbV	1.025	1.022	1.027	84.1%
65 ppbV	1.028	1.025	1.030	84.1%
70 ppbV	1.039	1.035	1.043	84.1%
75 ppbV	1.040	1.036	1.043	84.7%
80 ppbV	1.040	1.036	1.043	84.7%
Respiratory Mortalit	y			
30 ppbV	1.088	1.079	1.096	94.5%
35 ppbV	1.090	1.082	1.098	97.0%
40 ppbV	1.094	1.089	1.100	94.3%
45 ppbV	1.094	1.089	1.100	96.0%
50 ppbV	1.096	1.090	1.102	96.1%
55 ppbV	1.099	1.093	1.106	93.6%
60 ppbV	1.098	1.094	1.101	51.7%
65 ppbV	1.098	1.094	1.101	48.7%
70 ppbV	1.098	1.094	1.101	46.4%
75 ppbV	1.093	1.067	1.118	5.5%
Cardiovascular Mor	tality			
30 ppbV	1.028	0.984	1.071	98.5%
35 ppbV	1.042	1.007	1.079	98.1%
40 ppbV	1.048	1.003	1.096	97.9%
45 ppbV	1.062	1.003	1.125	97.9%
50 ppbV	1.077	1.003	1.154	97.9%
55 ppbV	1.010	0.965	1.057	83.4%
60 ppbV	1.008	0.955	1.063	79.6%
65 ppbV	1.009	0.949	1.072	79.6%
70 ppbV	1.010	0.944	1.081	79.6%
Congestive Heart Fai	ilure Mortal	ity		
35 ppbV	1.095	1.051	1.142	84.9%
40 ppbV	1.134	1.071	1.201	84.9%
45 ppbV	1.174	1.091	1.264	84.9%
50 ppbV	1.216	1.112	1.330	84.9%
55 ppbV	1.234	1.030	1.478	87.5%
60 ppbV	1.254	1.122	1.349	-

Figure B. Estimated exposure-response curves for mortality risks from all-cause (AC), all respiratory diseases (RESP), chronic obstructive pulmonary disease (COPD), all cardiovascular diseases (CVD), and congestive heart failure (CHF). The trend curves were plotted by centric cumulative relative risk values with 95% uncertainty intervals (95% UI). Estimates of 3 parameters were shown with 95% confidence intervals (95% CI).

Mathematically speaking, the cumulative risks will flatten at $1 + \alpha$, which indicates the anticipated highest risks. For all-cause O₃-associated mortality, the cumulative risk would saturate at around RR = 1.12 by 6mDMA8 metric of O₃ exposure; respiratory mortality at RR = 1.11; cardiovascular mortality at RR = 1.30; and congestive heart failure mortality at RR = 1.68; while COPD mortality risks did not manifest level-off tendency in observed exposure range, as the cumulative risks kept speedily climbing till 80 ppbV.

Large uncertainties were observed in the Monte-Carlo fitted exposure-response curves, which should mainly be ascribed to the limited number of large-scale cohort-based epidemiological studies. We therefore suggest researchers critically scrutinise this methodology and cautiously use our results.

S4. Undefined metric imputation

For Carey et al. (2013), the O₃ exposure metric was not stated clearly, but exposure concentrations were reported as 26.4 ± 1.2 ranging between 22.7-32.1 ppbV. Since the cohort study was conducted in UK, we checked the corresponding concentrations spatiotemporal closely from TOAR observations, and we found by

ADA24 metric the average O_3 level was 25.7 ± 8.3 ppbV, with IQR 19.8–31.3 ppbV. We thus deduced the metric should be ADA24.

For Jerrett et al. (2009), not any O_3 exposure distributions were reported, but only the minimummaximum range was given as 33.3–104.0 ppbV. We calculated the average level by our own, as weighting the population with interval centric point: 43.2 ppbV by 126 206, 55.3 ppbV by 95 740, 59.95 ppbV by 106 545, and 83.25 ppbV by 120 359, to obtain the estimated average as 60.5 ppbV. According to the US observations by TOAR, the average levels were around 62.8 ppbV by warm-season DMA1 and 50.9 by full-year DMA1, the former of which was closer to the literature-generated value, 60.5 ppbV, and we thus inferred the exposure metric should be 6mDMA1 more reasonably.

Jerrett et al. (2013) did not report which metric they used, but detailed distribution patterns were provided. Based on TOAR observations by ADMA8 in US, O₃ concentrations were 54.1 ± 16.1 (IQR: 42.4-65.5, range: 17.6-102.5) ppbV, closer to the reported values as 50.4 ± 14.6 (IQR: 36.8-61.0, range: 17.1-89.3) ppbV than 6mDMA8 which was of average levels as 63.1 ± 18.2 ppbV.

S5. Interpretation and procedure of cross-metric linear conversion

For direct cross-metric linear conversion, taking conversion from ADA24 to ADMA8 as an interpretation example, the prediction could be approximated by ADMA8 = $1.67 \times ADA24$ (R² = 0.97, Figure 2), which means each 10-ppbV change by ADA24 metric should correspond to 16.7-ppbV change by ADMA8 metric, and likewise for the rest conversions. The conversion factors deviant from 1 revealed that unit changes in O₃ concentrations by different metrics could be of discrepant realistic implications, and hence unifications of O₃ exposure metrics should be necessary prior to meta-analysis.

For cross-metric relative risk conversion, taking Smith et al. (2009) as an example, the originally reported all respiratory mortality HR = 1.0057 (95% CI: 1.0020-1.0094) by every $1-\mu \text{g/m}^3$ incremental O₃ exposure by 6mMDA1, equally HR = 1.0585 (95% CI: 1.0202-1.0981) by every $10-\mu \text{g/m}^3$ (equal to 10/1.96 = 5.10-ppbV) incremental O₃ exposure. Converting $\mu \text{g/m}^3$ into ppbV, every 10-ppbV increasing O₃ exposure by 6mMDA1 should correspond to HR = 1.1179 (95% CI: 1.0400-1.2013). Following the metric-conversion coefficient estimation, 10-ppbV by 6mMDA1 was identical to 8.31-ppbV by 6mDMA8 (Figure 2), and thus HR should be scaled to 1.1435 (95% CI: 1.0483-1.2470) for every 10-ppbV incremental exposure by 6mDMA8.

S6. Detailed study assessment

For cohort study quality assessment (**Table S4**), 6 studies were ranked as "Good" and the rest 14 as "Fair" in summary. All studies well met 10 out of 14 assessment items, while 9 studies did not clarify their inclusion and exclusion criteria;⁴⁻¹² 2 re-analysis study reports did not clearly state the O₃ exposures;^{5, 13} 2 studies were of relatively insufficient follow-up durations, e.g. less than 5 years, to observe the outcomes;^{7, 11} and 10 studies were of methodological deficiencies in identifying the exposures,^{4-7, 12-17} most of which were studies published before 2013 when data assimilation techniques were not adequately mature to fuse observations with other full spatial coverage products such as satellite-based remote sensing and atmospheric mechanistic simulations. The satisfactory assessment results indicated that the overall risks of bias were reasonably low, laying the reliable foundation for further meta-analyses.

For the epidemiological evidence credibility assessment (**Table S5**), the overall GRADE judgements for all-cause, respiratory, and lung cancer mortality risks were "High", while for cerebrovascular mortality risk was "Low", and the rest cause-specific mortality risks were all "Moderate". Due to inconsistency in centric risk effects, 8 out of 9 cause-specific mortality risk assessments were downgraded, except for the congestive heart failure induced mortality risk. There were 4 studies examining the exposure-response trends,^{10, 15, 18, 19} which upgraded the ratings of all-cause, respiratory and cardiovascular mortality risks accordingly. Cakmak et al. (2018) found confounding effects towards null hypothesis that adjusting the confounders had increased the positive mortality,²⁰ which upgraded the GRADE rating of all-cause, ischaemic heart disease and lung cancer mortality risks associated with long-term O₃ exposure. Due to limited studies screened out for meta-analysis, GRADE ratings were not conducted on long-term O₃ exposure-associated ischaemic stroke or pneumonia mortality risks.

Supplementary Tables and Figures

Table S1 Searching strategy.

- #21 #17 AND #18 AND #19 AND #20
- #20 #14 OR #15 OR #16
- #19 #11 OR #12 OR #13
- #18 #3 OR #4 OR #5 OR #6 OR #7 OR #8 OR #9 OR #10
- #17 #1 OR #2
- #16 (ozone OR O3 OR "O 3" OR "O(3)" OR "O-3" OR "air pollution").TW.
- #15 (ozone OR O3 OR "O 3" OR "O(3)" OR "O-3" OR "air pollution").NM.
- #14 (ozone OR "air pollution").SH.
- #13 (long-term OR "long term").TW.
- #12 (cohort OR Cox OR hazard OR HR OR risk OR prospective OR retrospective). TW.
- #11 (cohort studies).SH.
- #10 (lung cancer).TW.
- #9 ("cerebrovascular disease" OR stroke). TW.
- #8 ("congestive heart failure" OR CHF).TW.
- #7 ("ischemic heart disease" OR "ischaemic heart disease" OR IHD). TW.
- #6 (cardiovascular OR CVD).TW.
- #5 (respiratory OR "chronic obstructive pulmonary disease" OR COPD OR pneumonia).TW.
- #4 (cardiopulmonary disease).TW.
- #3 (all-cause OR "all cause"). TW.
- #2 (mortality OR death OR "premature death").TW.
- #1 (mortality OR death OR "premature death").SH.
- Search timeline: 1 September 2015 to 15 July 2021

SH: MeSH subject headings. NM: Name of substance word. TW: Text word.

Table S2 Quality assessment tool for observational cohort and cross-sectional studies.

A. Was the research question or objective in this paper clearly stated?

- B. Was the study population clearly specified and defined?
- C. Was the participation rate of eligible persons at least 50%?

D. Were all the subjects selected or recruited from the same or similar populations (including the same time period)? Were inclusion and exclusion criteria for being in the study prespecified and applied uniformly to all participants?

E. Was a sample size justification, power description, or variance and effect estimates provided?

- F. For the analyses in this paper, were the exposure(s) of interest measured prior to the outcome(s) being measured?
- G. Was the timeframe sufficient so that one could reasonably expect to see an association between exposure and outcome if it existed?

H. For exposures that can vary in amount or level, did the study examine different levels of the exposure as related to the outcome (e.g., categories of exposure, or exposure measured as continuous variable)?

I. Were the exposure measures (independent variables) clearly defined, valid, reliable, and implemented consistently across all study participants?

J. Was the exposure(s) assessed more than once over time?

K. Were the outcome measures (dependent variables) clearly defined, valid, reliable, and implemented consistently across all study participants?

L. Were the outcome assessors blinded to the exposure status of participants?

M. Was loss to follow-up after baseline 20% or less?

N. Were key potential confounding variables measured and adjusted statistically for their impact on the relationship between exposure(s) and outcome(s)?

Source: https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools.

1 and 3 3 1 3 1 3 1 3 1 1 1 1 1 1 1 1 1 1	Table S3 Harmonised	l relative risks of 8	causes of mortality	by 10-ppbV	vincremental O3 ex	posures in 6mDMA8 metric
---	----------------------------	-----------------------	---------------------	------------	--------------------	--------------------------

				, pp			
Study	RR	LB	UB	Study	RR	LB	UB
All-cause (AC)				Weichenthal et al. 2017	1.054	1.044	1.062
Abbey et al. 1999 (male cohort)	1.058	0.966	1.159	Cakmak et al. 2018	1.073	1.018	1.129
Abbey et al. 1999 (female cohort)	0.966	0.898	1.040	Di et al. 2018	1.006	1.006	1.006
Lipfert et al. 2006b	1.030	1.011	1.049	Hvidtfeldt et al. 2019	0.954	0.915	1.000
Jerrett et al. 2009	0.988	0.979	0.995	Kazemiparkouhi et al. 2019	1.002	1.001	1.003
Krewski et al. 2009	1.022	1.011	1.033	Lim et al. 2019	1.000	0.990	1.010
Smith et al. 2009	1.004	0.982	1.031				
Lipsett et al. 2011	0.994	0.987	1.002	Chronic obstructive pulmonary	disease (CO	PD)	
Carey et al. 2013	0.880	0.798	0.939	Zanobetti et al. 2011	1.133	1.075	1.172
Jerrett et al. 2013	1.000	0.992	1.007	Crouse et al. 2015	0.962	0.930	0.996
Bentayeb et al. 2015	0.829	0.668	1.029	Turner et al. 2016	1.110	1.063	1.164
Crouse et al. 2015	1.017	1.010	1.025	Cakmak et al. 2018	1.000	0.972	1.028
Tonne et al. 2016	0.965	0.847	1.090	Kazemiparkouhi et al. 2019	1.094	1.088	1.099
Turner et al. 2016	1.016	1.008	1.032	Lim et al. 2019	1.055	1.010	1.110

Table S3 (cont'd) Harmonised relativ	e risks (of 8 caus	ses of morta	lity by 10-ppbV incremental O ₃ exposu	res in 6n	nDMA8	metric.
Study	RR	LB	UB	Study	RR	LB	UB
Respiratory diseases (RESP)				Ischaemic heart diseases (IHD)			
Abbey et al. 1999 (male cohort)	1.078	0.898	1.290	Jerrett et al. 2009	0.970	0.954	0.986
Abbey et al. 1999 (female cohort)	1.033	0.877	1.219	Krewski et al. 2009	1.011	0.989	1.022
Jerrett et al. 2009	1.044	1.014	1.075	Lipsett et al. 2011	1.018	1.002	1.036
Smith et al. 2009	1.132	1.044	1.226	Jerrett et al. 2013	1.020	1.004	1.036
Lipsett et al. 2011	1.018	0.994	1.040	Crouse et al. 2015	1.060	1.044	1.077
Carey et al. 2013	0.798	0.720	0.880	Turner et al. 2016	0.984	0.960	1.000
Jerrett et al. 2013	1.003	0.980	1.028	Cakmak et al. 2018	1.110	1.092	1.119
Bentayeb et al. 2015	0.956	0.580	1.606	Kazemiparkouhi et al. 2019	0.995	0.992	0.999
Crouse et al. 2015	0.982	0.956	1.007	Lim et al. 2019	1.028	1.000	1.055
Turner et al. 2016	1.094	1.063	1.125				
Weichenthal et al. 2017	1.038	1.010	1.065				
Hvidtfeldt et al. 2019	0.972	0.897	1.047	Cerebrovascular diseases (CEVD)			
Kazemiparkouhi et al. 2019	1.036	1.033	1.041	Lipsett et al. 2011	0.998	0.974	1.020
Lim et al. 2019	1.036	1.000	1.073	Crouse et al. 2015	1.022	0.993	1.053
				Turner et al. 2016	1.024	0.984	1.055
Cardiovascular diseases (CVD)				Kazemiparkouhi et al. 2019	0.986	0.980	0.990
Jerrett et al. 2009	0.981	0.968	0.994	Lim et al. 2019	0.926	0.870	0.982
Smith et al. 2009	1.049	1.014	1.105				
Lipsett et al. 2011	1.004	0.991	1.014				
Jerrett et al. 2013	1.009	0.998	1.021	Lung cancer (LC)			
Bentayeb et al. 2015	0.842	0.427	1.657	Abbey et al. 1999 (male cohort)	1.634	0.994	2.682
Crouse et al. 2015	1.037	1.023	1.051	Abbey et al. 1999 (female cohort)	0.841	0.518	1.371
Turner et al. 2016	1.024	1.008	1.040	Krewski et al. 2009	0.989	0.956	1.022
Weichenthal et al. 2017	1.148	1.132	1.163	Lipsett et al. 2011	0.990	0.960	1.020
Hvidtfeldt et al. 2019	0.941	0.910	0.981	Carey et al. 2013	0.825	0.720	0.939
Kazemiparkouhi et al. 2019	0.997	0.994	0.999	Jerrett et al. 2013	0.971	0.944	0.998
Lim et al. 2019	1.018	0.990	1.028	Crouse et al. 2015	0.974	0.951	0.997
Paul et al. 2020	1.097	1.071	1.122	Turner et al. 2016	0.968	0.928	1.000
				Cakmak et al. 2018	1.036	0.972	1.110
Congestive heart failure (CHF)				Kazemiparkouhi et al. 2019	1.017	1.012	1.023
Zanobetti et al. 2011	1.056	1.029	1.075	Lim et al. 2019	0.982	0.954	1.000
Turner et al. 2016	1.118	1.079	1.156				
Kazemiparkouhi et al. 2019	1.080	1.070	1.089				
Lim et al. 2019	1.010	0.972	1.046				

Table S4 Quality assessment of 20 included cohort studies for meta-analysis.

Study	А	В	С	D	Е	F	G	Н	Ι	J	K	L	Μ	Ν	Score
Abbey et al. 1999															Fair
Lipfert et al. 2006	\checkmark		\checkmark					\checkmark			\checkmark	\checkmark			Fair
Jerrett et al. 2009	\checkmark		\checkmark	\checkmark			\checkmark	\checkmark			\checkmark	\checkmark			Fair
Krewski et al. 2009	\checkmark		\checkmark	\checkmark			\checkmark	\checkmark			\checkmark	\checkmark			Fair
Smith et al. 2009	\checkmark		\checkmark					\checkmark			\checkmark	\checkmark			Fair
Lipsett et al. 2011	\checkmark		\checkmark					\checkmark			\checkmark	\checkmark			Fair
Zanobetti et al. 2011	\checkmark		\checkmark					\checkmark			\checkmark	\checkmark			Fair
Carey et al. 2013	\checkmark		\checkmark					\checkmark			\checkmark	\checkmark			Fair
Jerrett et al. 2013	\checkmark		\checkmark	\checkmark			\checkmark	\checkmark			\checkmark	\checkmark			Fair
Bentayeb et al. 2015	\checkmark		\checkmark				\checkmark	\checkmark			\checkmark	\checkmark			Fair
Crouse et al. 2015	\checkmark		\checkmark				\checkmark	\checkmark			\checkmark	\checkmark			Fair
Tonne et al. 2016	\checkmark		\checkmark	\checkmark			\checkmark	\checkmark			\checkmark	\checkmark			Good
Turner et al. 2016	\checkmark		\checkmark	\checkmark			\checkmark	\checkmark			\checkmark	\checkmark			Good
Weichenthal et al. 2017	\checkmark		\checkmark	\checkmark			\checkmark	\checkmark			\checkmark	\checkmark			Good
Cakmak et al. 2018	\checkmark		\checkmark	\checkmark			\checkmark	\checkmark			\checkmark	\checkmark			Good
Di et al. 2018	\checkmark		\checkmark					\checkmark			\checkmark	\checkmark			Fair
Hvidtfeldt et al. 2019			\checkmark		\checkmark			\checkmark			\checkmark	\checkmark		\checkmark	Fair
Lim et al. 2019	\checkmark		\checkmark	\checkmark	\checkmark			\checkmark			\checkmark	\checkmark			Good
Kazemiparkouhi et al. 2019		\checkmark	\checkmark		\checkmark						\checkmark				Fair
Paul et al. 2020	\checkmark	\checkmark		\checkmark	\checkmark			\checkmark	\checkmark	\checkmark				\checkmark	Good

Mortality Cause: All Causes		
Domains	Assessment	Downgrade/Upgrade
Start Level	All cohort studies.	High
Risk of Bias	The overall risk of bias in all cohorts was low.	No change
Imprecision	All studies included reported the 95% confidence interval around the best estimate of the absolute effect.	No change
Inconsistency	The values of effect sizes across the studies were inconsistent, as the point estimates were in the range of 0.79 to 1.09.	Downgrade
Indirectness	All studies included the desired population, exposures and outcomes.	No change
Publication Bias	Given the comprehensive search, it seemed little publication bias.	No change
Magnitude of Associations	The magnitude of effect sizes was not large enough to upgrade the level of evidence.	No change
Dose-Response Trend	Linear dose-response relationship was assumed in all studies, and Di et al. 2017 checked the dose-response trends.	Upgrade
Plausible Confounding towards Null	Cakmak et al. 2018 reported higher RR after adjusting confounders.	Upgrade
Overall Judgment	High	
Mortality Cause: All Resniratory Dis	2.92.62	
Domains	Assessment	Downgrade/Upgrade
Start Level	All cohort studies.	High
Risk of Bias	The overall risk of bias in all cohorts was low.	No change
Imprecision	All studies included reported the 95% confidence interval around the best estimate of the absolute effect.	No change
Inconsistency	The values of effect sizes across the studies were inconsistent, as the point estimates were in the range of 0.75 to 1.17	Downgrade
Indirectness	All studies included the desired population, exposures and outcomes.	No change
Publication Bias	Given the comprehensive search, it seemed little publication bias.	No change
Magnitude of Associations	The magnitude of effect sizes was not large enough to upgrade the level of evidence.	No change
Dose-Response Trend	Linear dose-response relationship was assumed in all studies, and 2 out of 20 studies (Jerrett et al. 2009; Lim et al. 2019) testec dose-response trends.	1 Upgrade
Plausible Confounding towards Null	No crude and adjusted risks were provided for each study.	No change
Overall Judgment	High	
Mortality Cause: Chronic Obstructiv	ve Pulmonary Disease (COPD)	
Domains	Assessment	Downgrade/Upgrade
Start Level	All cohort studies.	High
Risk of Bias	The overall risk of bias in all cohorts was low.	No change
Imprecision	All studies included reported the 95% confidence interval around the best estimate of the absolute effect.	No change
Inconsistency	The values of effect sizes across the studies were inconsistent, as the point estimates were in the range of 0.95 to 1.17.	Downgrade
Indirectness	All studies included the desired population, exposures and outcomes.	No change
Publication Bias	Given the comprehensive search, there is no need to consider publication bias.	No change
Magnitude of Associations	The magnitude of effect sizes was not large enough to upgrade the level of evidence.	No change
Dose-Response Trend	Linear dose-response relationship was assumed in all studies, but no studies considered dose-response trends.	No change
Plausible Confounding towards Null	No crude and adjusted risks were provided for each study.	No change
Overall Judgment	Moderate	

specific mortality risks. 2 hup Č m. Jono 5 viation hets on the enidemiological evider ent for Table S5 GRADE as

Table S5 (cont'd) GRADE assessment	nt for epidemiological evidences on the association between long-term O ₃ exposure and cause-specific mortality risks.	
Mortality Cause: Cardiovascular Dis	eases (CVD)	
Domains	Assessment	Downgrade/Upgrade
Start Level	All cohort studies.	High
Risk of Bias	The overall risk of bias in all cohorts was low.	No change
Imprecision	All studies included reported the 95% confidence interval around the best estimate of the absolute effect.	No change
Inconsistency	The values of effect sizes across the studies were inconsistent, as the point estimates were in the range of 0.80 to 1.19.	Downgrade
Indirectness	All studies included the desired population, exposures and outcomes.	No change
Publication Bias	Positive publication bias was detected.	Downgrade
Magnitude of Associations	The magnitude of effect sizes was not large enough to upgrade the level of evidence.	No change
Dose-Response Trend	Linear dose-response relationship was assumed in all studies, and 2 studies (Lim et al. 2019; Paul et al. 2020) checked the dose- response trends	Upgrade
Plausible Confounding towards Null	No crude and adjusted risks were provided for each study.	No change
Overall Judgment	Moderate	
Mortality Cause: Ischaemic Heart Di	sease (IHD)	
Domains	Assessment	Downgrade/Upgrade
Start Level	All cohort studies.	High
Risk of Bias	The overall risk of bias in all cohorts was low.	No change
Imprecision	All studies included reported the 95% confidence interval around the best estimate of the absolute effect.	No change
Inconsistency	The values of effect sizes across the studies were inconsistent, as the point estimates were in the range of 0.96 to 1.14.	Downgrade
Indirectness	All studies included the desired population, exposures and outcomes.	No change
Publication Bias	Given the comprehensive search, there is no need to consider publication bias.	No change
Magnitude of Associations	The magnitude of effect sizes was not large enough to upgrade the level of evidence.	No change
Dose-Response Trend	Linear dose-response relationship was assumed in all studies, but no studies considered dose-response trends.	No change
Plausible Confounding towards Null	Cakmak et al. 2018 reported higher RR after adjusting confounders.	No change
Overall Judgment	Moderate	
Mortality Cause: Lung Cancer (LC)		
Domains	Assessment	Downgrade/Upgrade
Start Level	All cohort studies.	High
Risk of Bias	The overall risk of bias in all cohorts was low.	No change
Imprecision	All studies included reported the 95% confidence interval around the best estimate of the absolute effect.	No change
Inconsistency	The values of effect sizes across the studies were inconsistent, as the point estimates were in the range of 0.80 to 1.85.	Downgrade
Indirectness	All studies included the desired population, exposures and outcomes.	No change
Publication Bias	Given the comprehensive search, it seemed little publication bias.	No change
Magnitude of Associations	The magnitude of effect sizes was not large enough to upgrade the level of evidence.	No change
Dose-Response Trend	Linear dose-response relationship was assumed in all studies, but no studies considered dose-response trends.	No change
Plausible Confounding towards Null	Cakmak et al. 2018 reported higher RR after adjusting confounders.	Upgrade
Overall Judgment	Hioh	

Table S5 (cont'd) GRADE assessmen	t for epidemiological evidences on the association between long-term O ₃ exposure and cause-specific mortality risks.	
Mortality Cause: Cerebrovascular Di	sease (CEVD)	
Domains	Assessment	Downgrade/Upgrade
Start Level	All cohort studies.	High
Risk of Bias	The overall risk of bias in all cohorts was low.	No change
Imprecision	All studies included reported the 95% confidence interval around the best estimate of the absolute effect.	No change
Inconsistency	The values of effect sizes across the studies were inconsistent, as the point estimates were in the range of 0.91 to 1.03.	Downgrade
Indirectness	All studies included the desired population, exposures and outcomes.	No change
Publication Bias	Positive publication bias was detected.	Downgrade
Magnitude of Associations	The magnitude of effect sizes was not large enough to upgrade the level of evidence.	No change
Dose-Response Trend	Linear dose-response relationship was assumed in all studies, but no studies considered dose-response trends.	No change
Plausible Confounding towards Null	No crude and adjusted risks were provided for each study.	No change
Overall Judgment	Low	
Mortality Cause: Congestive Heart F	allure (CHF)	
Domains	Assessment	Downgrade/Upgrade
Start Level	All cohort studies.	High
Risk of Bias	The overall risk of bias in all cohorts was low.	No change
Imprecision	All studies included reported the 95% confidence interval around the best estimate of the absolute effect.	No change
Inconsistency	The values of effect sizes across the studies were consistent, as the point estimates were in the range of 1.01 to 1.30.	Upgrade
Indirectness	All studies included the desired population, exposures and outcomes	No change
Publication Bias	Given the comprehensive search, it seemed little publication bias.	No change
Magnitude of Associations	The magnitude of effect sizes was not large enough to upgrade the level of evidence.	No change
Dose-Response Trend	Linear dose-response relationship was assumed in all studies, but no studies considered dose-response trends.	No change
Plausible Confounding towards Null	No crude and adjusted risks were provided for each study.	No change
Overall Judgment	High	

rick 401:44 ifi ć . ł + f. nt'd) GRADE Y h

Table S6 One-dropout sensitivity analysis of long-term O3 exposure-associated all-cause, respiratory diseases, COPD, cardiovascular diseases, congestive heart failure, ischaemic heart disease, cerebrovascular diseases, and lung cancer mortality risks by 6mDMA8 exposure metric. The pooled relative risks (RR), 95% confidence intervals (95% CI) presented in lower bounds (LB) and upper bounds (UB), and heterogeneity I^2 were estimated after excluding each study.

Study	RR	LB	UB	I ²
All-cause Mortality				
Abbey et al. 1999	1.007	1.003	1.011	93.9%
Lipfert et al. 2006	1.006	1.002	1.010	93.5%
Jerrett et al. 2009	1.009	1.004	1.013	93.2%
Krewski et al. 2009	1.006	1.002	1.010	93.4%
Smith et al. 2009	1.008	1.003	1.012	93.6%
Lipsett et al. 2011	1.008	1.003	1.013	93.4%
Carey et al. 2013	1.008	1.003	1.013	93.3%
Jerrett et al. 2013	1.008	1.003	1.012	93.6%
Bentayeb et al. 2015	1.007	1.003	1.012	93.5%
Crouse et al. 2015	1.006	1.002	1.010	93.4%
Tonne et al. 2016	1.007	1.003	1.012	93.6%
Turner et al. 2016	1.006	1.002	1.011	93.5%
Weichenthal et al. 2017	1.003	0.999	1.007	86.9%
Cakmak et al. 2018	1.007	1.002	1.011	93.5%
Di et al. 2018	1.007	0.997	1.016	92.9%
Hvidtfeldt et al. 2019	1.009	1.003	1.013	93.4%
Kazemiparkouhi et al. 2019	1.007	0.998	1.016	92.6%
Lim et al. 2019	1.008	1.003	1.012	93.6%
Respiratory Mortality				
Abbev et al. 1999	1.020	1.000	1.041	89.4%
Jerrett et al. 2009	1.018	0.997	1.041	88.4%
Smith et al. 2009	1.020	0.997	1.042	88.5%
Lipsett et al. 2011	1.021	0.999	1.043	88.3%
Carev et al. 2013	1.028	1.012	1.046	78.8%
Jerrett et al. 2013	1.022	1.001	1.045	87.9%
Bentaveb et al. 2015	1.022	1.001	1.042	88.5%
Crouse et al. 2015	1.025	1.004	1.046	86.7%
Turner et al. 2016	1.014	0.994	1.034	86.3%
Weichenthal et al. 2017	1.019	0.997	1.041	88.5%
Hvidtfeldt et al. 2019	1.024	1.003	1.046	86.7%
Kazemiparkouhi et al. 2019	1.019	0.994	1.045	85.2%
Lim et al. 2019	1.019	0.998	1.041	88.5%
COPD Mortality				
Zanobetti et al. 2011	1.047	0.984	1.112	95.6%
Crouse et al. 2015	1.083	1.035	1.134	91.0%
Turner et al. 2016	1.051	0.988	1.118	95.7%
Cakmak et al. 2018	1.075	1.016	1.137	93.1%
Kazemiparkouhi et al. 2019	1.053	0.986	1.124	91.9%
Lim et al. 2019	1.062	0.998	1.129	95.7%

Std	חח	ID	UD	12
Study	KK	LR	UB	1~
Cardiovascular Mortality				
Jerrett et al. 2009	1.031	1.003	1.059	98.1%
Smith et al. 2009	1.028	0.999	1.057	98.1%
Lipsett et al. 2011	1.028	1.000	1.058	98.1%
Jerrett et al. 2013	1.028	1.000	1.058	98.1%
Bentaveb et al. 2015	1.028	1.003	1.053	98.1%
Crouse et al. 2015	1.025	0.998	1.053	98.0%
Turner et al. 2016	1.027	0.999	1.054	98.1%
Weichenthal et al. 2017	1.014	0.999	1.028	92.8%
Hvidtfeldt et al. 2019	1.033	1.005	1.060	98.1%
Kazemiparkouhi et al. 2019	1.029	0.997	1.063	97.5%
Lim et al. 2019	1.027	1.000	1.055	98.1%
Paul et al. 2020	1.020	0.995	1.046	97.9%
Congestive Heart Failura Mortal	lity			
Zanobetti et al. 2011	1 076	1 025	1 1 20	88 2%
Turner et al. 2016	1.070	1 020	1.129	86.6%
Kazeminarkouhi et al. 2019	1.050	1.020	1.000	87.5%
Lim et al. 2019	1.000	1.061	1 1 1 1 6	73 4%
	1.007	1.001	1.110	73.470
Ischaemic Heart Disease Mortali	ty			
Jerrett et al. 2009	1.030	0.997	1.065	97.9%
Krewski et al. 2009	1.024	0.990	1.060	98.0%
Lipsett et al. 2011	1.023	0.989	1.059	98.0%
Jerrett et al. 2013	1.023	0.989	1.059	98.0%
Crouse et al. 2015	1.018	0.985	1.052	97.7%
Turner et al. 2016	1.028	0.994	1.063	98.0%
Cakmak et al. 2018	1.011	0.992	1.030	92.1%
Kazemiparkouhi et al. 2019	1.027	0.990	1.065	96.9%
Lim et al. 2019	1.022	0.989	1.057	98.0%
Cerebrovascular Mortality				
Linsett et al. 2011	0 995	0.963	1 028	79.1%
Crouse et al. 2015	0.990	0.966	1 014	68.9%
Turner et al 2016	0.990	0.966	1.011	72 7%
Kazeminarkouhi et al. 2019	1 000	0.967	1 034	69.5%
Lim et al. 2019	1.000	0.982	1.025	72.2%
Lung Cancor Mortality				
Abbay at al 1000	0.084	0.062	1 006	8/ 20/
Krewski et al. 2000	0.204	0.902	1 000	04.2/0 83 10/
$\frac{1}{10000000000000000000000000000000000$	0.904	0.939	1.009	03.170 83.00/
Carey et al. 2013	0.204	0.939	1.009	03.070 70 10/
Larrett et al. 2013	0.909	0.90/	1.011	17.170 80.00/
Crouse et al. 2015	0.200	0.903	1.010	80.7/0 80.10/
Turner et al. 2013	0.700	0.903	1.010	00.170 Q1 00/
Calmak et al. 2010	0.900	0.903	1.010	01.970
Caninar Clai. 2010 Kazaminarkouhi at al. 2010	0.901	0.957	0.004	03.470
Lim et al. 2019	0.970	0.903	1 010	25.070
Lini vi al. 2017	0.204	0.200	1.010	01.//0

Study	Risk Ratio	RR	95% CI	Weight
Metric: ADMA8 Abbey et al. 1999 (male cohort) Abbey et al. 1999 (female cohort) Turner et al. 2016 Random effects model Heterogeneity: $l^2 = 23\%$, $\tau^2 = 0.0004$, $p = 0.27$		1.07 0.96 1.02 1.02	[0.96, 1.20] [0.87, 1.05] [1.00, 1.04] [0.98, 1.06]	0.3% 0.4% 5.1% 5.8%
Metric: ADMA1 Lipfert et al. 2006 Random effects model Heterogeneity: Not Applicable	*	1.04 1.04	[1.01, 1.06] [1.01, 1.06]	4.2% 4.2%
Metric: 6mDMA1 Jerrett et al. 2009 Krewski et al. 2009 Smith et al. 2009 Kazemiparkouhi et al. 2019 Random effects model Heterogeneity: $l^2 = 88\%$, $\tau^2 = 0.0002$, $p < 0.01$		0.98 1.03 1.01 1.00 1.00	[0.98, 0.99] [1.01, 1.04] [0.97, 1.04] [1.00, 1.00] [0.99, 1.02]	9.0% 7.3% 2.5% 12.1% 30.9%
Metric: ADA24 Lipsett et al. 2011 Carey et al. 2013 Jerrett et al. 2013 Tonne et al. 2016 Hvidtfeldt et al. 2019 Random effects model Heterogeneity: $l^2 = 79\%$, $\tau^2 = 0.0004$, $p < 0.01$		0.99 0.85 1.00 0.96 0.94 0.98	[0.98, 1.00] [0.79, 0.92] [0.99, 1.01] [0.82, 1.11] [0.89, 1.00] [0.95, 1.00]	8.7% 0.5% 9.3% 0.1% 0.9% 19.5%
Metric: 6mDMA8 Bentayeb et al. 2015 Crouse et al. 2015 Weichenthal et al. 2017 Cakmak et al. 2018 Lim et al. 2019 Random effects model Heterogeneity: $l^2 = 96\%$, $\tau^2 = 0.0011$, $p < 0.01$		0.79 1.02 1.07 1.09 1.00 1.03	[0.60, 1.04] [1.01, 1.03] [1.06, 1.08] [1.03, 1.16] [0.99, 1.01] [1.00, 1.07]	0.0% 9.2% 9.3% 0.8% 8.2% 27.5%
Metric: 6mDA24 Di et al. 2018 Random effects model Heterogeneity: Not Applicable		1.01 1.01	[1.01, 1.01] [1.01, 1.01]	12.2% 12.2%
Random effects model Heterogeneity: $l^2 = 94\%$, $\tau^2 < 0.0001$, $p < 0.01$ Test for subgroup differences: $\tau_c^2 = 15.09$. df = 5 (<i>u</i>)	2 < 0.01) 0.75 1 1.5	1.01	[1.01, 1.02]	100.0%

Test for subgroup differences: $\chi_5^2 = 15.09$, df = 5 (p < 0.01) 0.75 1 1.5 **Figure S1 Sub-group meta-analyses by metrics of non-accidental all-cause** mortality risks attributable to every 10-ppbV incremental long-term O₃ exposure.

Study	Risk Ratio R	R	95% CI	Weight
Region: North America				
Abbey et al. 1999 (male cohort)	1.0)7	[0.96, 1.20]	0.3%
Abbey et al. 1999 (female cohort)	0.9	96	[0.87, 1.05]	0.4%
Lipfert et al. 2006	= 1.0)4	[1.01, 1.06]	4.2%
Jerrett et al. 2009	0.9	8	[0.98, 0.99]	9.0%
Krewski et al. 2009	1.0)3	[1.01, 1.04]	7.3%
Smith et al. 2009	+ 1.0)1	[0.97, 1.04]	2.5%
Lipsett et al. 2011	0.9	99	[0.98, 1.00]	8.7%
Jerrett et al. 2013	1.0	00	[0.99, 1.01]	9.3%
Crouse et al. 2015	1.0)2	[1.01, 1.03]	9.2%
Turner et al. 2016	1.0)2	[1.00, 1.04]	5.1%
Weichenthal et al. 2017	· 1.0)7	[1.06, 1.08]	9.3%
Cakmak et al. 2018	1.0)9	[1.03, 1.16]	0.8%
Di et al. 2018	1.0)1	[1.01, 1.01]	12.2%
Kazemiparkouhi et al. 2019	1.0	00	[1.00, 1.00]	12.1%
Lim et al. 2019	1.0	00	[0.99, 1.01]	8.2%
Random effects model	1.0)1	[1.01, 1.02]	98.5%
Heterogeneity: $I^2 = 95\%$, $\tau^2 = < 0.0001$, $p < 0.01$				
Pagion: Europa				
Carev et al. 2013		25	10 70 0 021	0.5%
Bentaveb et al. 2015	- 0.2	70	[0.79, 0.92]	0.0%
Tonne et al. 2016		96	[0.82 1 11]	0.0%
Hvidtfeldt et al. 2019		14	[0.89 1.00]	0.9%
Random effects model		, , ,	[0.84 0.97]	1.5%
Heterogeneity: $I^2 = 42\%$, $\tau^2 = 0.0021$, $p = 0.16$			[0.04, 0.57]	1.5 /0
Bandom effects model	10) 1 [[1 01 1 02]	100.0%
Heterogeneity: $l^2 = 94\%$, $\tau^2 < 0.0001$, $p < 0.01$. 1	[100.070

Test for subgroup differences: $\chi_1^2 = 10.18$, df = 1 (p < 0.01) 0.75 1 1.5

Figure S2 Sub-group meta-analyses by cohort population ethnicity of non-accidental all-cause mortality risks attributable to every 10-ppbV incremental long-term O_3 exposure.

Figure S3 Publication bias test by trim-and-fill method for 9 causes of O₃-exposure attributable mortality risks. Biases were highlighted by statistically filled values to reach symmetry between risks higher and lower than pooled values.

Study	Risk Ratio	RR	95% Cl Weight
Metric: ADMA8 Abbey et al. 1999 (male cohort) Abbey et al. 1999 (female cohort) Turner et al. 2016 Random effects model Heterogeneity: $J^2 = 0\%$, $\tau^2 = 0$, $p = 0.79$		1.10 1.04 1.12 1.12	[0.88, 1.38] 1.2% [0.85, 1.28] 1.3% [1.08, 1.16] 10.2% [1.08, 1.16] 12.7%
Metric: 6mDMA1 Jerrett et al. 2009 Smith et al. 2009 Kazemiparkouhi et al. 2019 Random effects model Heterogeneity: $J^2 = 59\%$, $\tau^2 = 0.0004$, $p = 0.09$	- <u>∓</u> -	1.06 1.17 1.05 1.06	[1.02, 1.09] 10.1% [1.06, 1.29] 4.3% [1.04, 1.05] 12.6% [1.03, 1.09] 27.0%
Metric: ADA24 Lipsett et al. 2011 Carey et al. 2013 Jerrett et al. 2013 Hvidtfeldt et al. 2019 Random effects model Heterogeneity: $l^2 = 87\%$, $\tau^2 = 0.0035$, $p < 0.01$	*	1.02 0.75 1.00 0.96 0.96	[1.00, 1.05] 11.1% [0.67, 0.85] 3.2% [0.97, 1.03] 10.8% [0.88, 1.06] 4.7% [0.89, 1.02] 29.8%
Metric: 6mDMA8 Bentayeb et al. 2015 Crouse et al. 2015 Weichenthal et al. 2017 Lim et al. 2019 Random effects model Heterogeneity: $l^2 = 73\%$, $t^2 = 0.0013$, $p = 0.01$		0.95 0.98 1.05 1.05 1.02	[0.49, 1.81] 0.2% [0.95, 1.01] 10.6% [1.01, 1.08] 10.5% [1.00, 1.09] 9.2% [0.98, 1.07] 30.5%
Random effects model Heterogeneity: $I^2 = 83\%$, $\tau^2 = 0.0013$, $\rho < 0.01$	0.5 1	1.03	[1.01, 1.06] 100.0%

Figure S4 Sub-group meta-analyses by metrics of all respiratory mortality risks attributable to every 10-ppbV incremental long-term O_3 exposure.

Study	Risk Ratio	RR	95% CI	Weight
Region: North America	1			
Abbey et al. 1999 (male cohort)		1.10	[0.88, 1.38]	1.2%
Abbey et al. 1999 (female cohort)		1.04	[0.85, 1.28]	1.3%
Jerrett et al. 2009	<u>in</u>	1.06	[1.02, 1.09]	10.1%
Smith et al. 2009		1.17	[1.06, 1.29]	4.3%
Lipsett et al. 2011	÷	1.02	[1.00, 1.05]	11.1%
Jerrett et al. 2013		1.00	[0.97, 1.03]	10.8%
Crouse et al. 2015		0.98	[0.95, 1.01]	10.6%
Weichenthal et al. 2017		1.05	[1.01, 1.08]	10.5%
Kazemiparkouhi et al. 2019		1.05	[1.04, 1.05]	12.6%
Lim et al. 2019		1.05	[1.00, 1.09]	9.2%
Random effects model	0	1.03	[1.01, 1.05]	81.7%
Heterogeneity: $l^2 = 71\%$, $\tau^2 = 0.0005$, $p < 0.01$				
Region: Europe				
Carey et al. 2013		0.75	[0.67, 0.85]	3.2%
Bentayeb et al. 2015		0.95	[0.49, 1.81]	0.2%
Turner et al. 2016		1.12	[1.08, 1.16]	10.2%
Hvidtfeldt et al. 2019		0.96	[0.88, 1.06]	4.7%
Random effects model		0.94	[0.77, 1.15]	18.3%
Heterogeneity: $I^2 = 93\%$, $\tau^2 = 0.0324$, $p < 0.01$				
Random effects model	Ø	1.03	[1.01, 1.06]	100.0%
Heterogeneity: I ² = 83%, τ ² = 0.0013, p < 0.01	1 1			
Test for subgroup differences: $\chi_1^2 = 0.82$, df = 1 (p = 0.000)	.36) 1 2	2		

Figure S5 Sub-group meta-analyses by cohort population ethnicity of all respiratory mortality risks attributable to every 10-ppbV incremental long-term O₃ exposure.

Study	Risk Ratio	RR	95% CI	Weight
Metric: 6mDMA1 Jerrett et al. 2009 Smith et al. 2009 Kazemiparkouhi et al. 2019 Random effects model Heterogeneity: $l^2 = 80\%$, $\tau^2 = 0.0002$, $p < 0.01$	4	0.98 1.06 1.00 0.99	[0.96, 0.99] [0.99, 1.13] [0.99, 1.00] [0.97, 1.02]	9.6% 6.6% 9.8% 26.0%
Metric: ADA24 Lipsett et al. 2011 Jerrett et al. 2013 Hvidtfeldt et al. 2019 Random effects model Heterogeneity: $P^2 = 80\%$, $\tau^2 = 0.0004$, $p < 0.01$		1.01 1.01 0.93 0.99	[0.99, 1.02] [1.00, 1.03] [0.88, 0.98] [0.97, 1.02]	9.7% 9.6% 7.5% 26.7%
Metric: 6mDMA8 Bentayeb et al. 2015 Crouse et al. 2015 Weichenthal et al. 2017 Lim et al. 2019 Paul et al. 2020 Random effects model Heterogeneity: I ² = 98%, τ ² = 0.0054, p < 0.01		0.81 1.05 1.19 1.02 1.12 1.09	[0.34, 1.89] [1.03, 1.06] [1.17, 1.21] [1.01, 1.03] [1.09, 1.16] [1.01, 1.17]	0.1% 9.5% 9.5% 9.7% 9.0% 37.8%
Metric: ADMA8 Turner et al. 2016 Random effects model Heterogeneity: Not Applicable	¢	1.03 1.03	[1.01, 1.05] [1.01, 1.05]	9.4% 9.4%
Random effects model Heterogeneity: $l^2 = 98\%$, $\tau^2 = 0.0023$, $p < 0.01$ Test for subgroup differences: $\chi_3^2 = 11.88$, df = 3 (p	p < 0.01) 1 2	1.03	[1.00, 1.07]	100.0%

Figure S6 Sub-group meta-analyses by metrics of cardiovascular mortality risks attributable to every 10-ppbV incremental long-term O_3 exposure.

Study	Risk Ratio	RR	95% CI	Weight
Region: North America				
Jerrett et al. 2009	+	0.98	[0.96, 0.99]	9.6%
Smith et al. 2009	-	1.06	[0.99, 1.13]	6.6%
Lipsett et al. 2011		1.01	[0.99, 1.02]	9.7%
Jerrett et al. 2013		1.01	[1.00, 1.03]	9.6%
Crouse et al. 2015		1.05	[1.03, 1.06]	9.5%
Turner et al. 2016	+	1.03	[1.01, 1.05]	9.4%
Weichenthal et al. 2017	+	1.19	[1.17, 1.21]	9.5%
Kazemiparkouhi et al. 2019	- <u>-</u>	1.00	[0.99, 1.00]	9.8%
Lim et al. 2019	*	1.02	[1.01, 1.03]	9.7%
Paul et al. 2020	+	1.12	[1.09, 1.16]	9.0%
Random effects model	•	1.04	[1.01, 1.08]	92.4%
Heterogeneity: $I^{2} = 98\%$, $\tau^{2} = 0.0023$, $p < 0.01$				
Region: Europe			10.04.4.001	0.40/
Bentayeb et al. 2015		0.81	[0.34, 1.89]	0.1%
Rvidtreidt et al. 2019		0.93	[0.88, 0.98]	7.5%
Hotorogonoity: $l^2 = 0\%$, $r^2 = 0$, $p = 0.75$	~	0.95	[0.00, 0.90]	1.0%
neterogeneity. $T = 0.76, \tau = 0, p = 0.75$				
Random effects model	•	1.03	[1.00, 1.07]	100.0%
neterogeneity. $r = 96\%$, $\tau = 0.0023$, $p < 0.01$	0.5 1 2			

Figure S7 Sub-group meta-analyses by cohort population ethnicity of cardiovascular mortality risks attributable to every 10-ppbV incremental long-term O₃ exposure.

REFERENCES

- Bell, M. L.; Peng, R. D.; Dominici, F., The exposureresponse curve for ozone and risk of mortality and the adequacy of current ozone regulations. *Environ Health Perspect* 2006, *114*, (4), 532-6.
- Burnett, R. T.; Pope, C. A., 3rd; Ezzati, M.; Olives, C.; Lim, S. S.; Mehta, S.; Shin, H. H.; Singh, G.; Hubbell, B.; Brauer, M.; Anderson, H. R.; Smith, K. R.; Balmes, J. R.; Bruce, N. G.; Kan, H.; Laden, F.; Pruss-Ustun, A.; Turner, M. C.; Gapstur, S. M.; Diver, W. R.; Cohen, A., An integrated risk function for estimating the global burden of disease attributable to ambient fine particulate matter exposure. *Environ Health Perspect* **2014**, *122*, (4), 397-403.
- Malley, C. S.; Henze, D. K.; Kuylenstierna, J. C. I.; Vallack, H. W.; Davila, Y.; Anenberg, S. C.; Turner, M. C.; Ashmore, M. R., Updated Global Estimates of Respiratory Mortality in Adults ≥30 Years of Age Attributable to Long-Term Ozone Exposure. *Environ Health Perspect* 2017, *125*, (8), 087021.
- Lipfert, F. W.; Wyzga, R. E.; Baty, J. D.; Miller, J. P., Traffic density as a surrogate measure of environmental exposures in studies of air pollution health effects: Longterm mortality in a cohort of US veterans. *Atmos Environ* 2006, 40, (1), 154-169.
- Smith, K. R.; Jerrett, M.; Anderson, H. R.; Burnett, R. T.; Stone, V.; Derwent, R.; Atkinson, R. W.; Cohen, A.; Shonkoff, S. B.; Krewski, D.; Pope, C. A., 3rd; Thun, M. J.; Thurston, G., Public health benefits of strategies to reduce greenhouse-gas emissions: health implications of shortlived greenhouse pollutants. *Lancet* 2009, *374*, (9707), 2091-2103.
- Lipsett, M. J.; Ostro, B. D.; Reynolds, P.; Goldberg, D.; Hertz, A.; Jerrett, M.; Smith, D. F.; Garcia, C.; Chang, E. T.; Bernstein, L., Long-term exposure to air pollution and cardiorespiratory disease in the California teachers study cohort. *Am J Respir Crit Care Med* **2011**, *184*, (7), 828-35.
- Carey, I. M.; Atkinson, R. W.; Kent, A. J.; van Staa, T.; Cook, D. G.; Anderson, H. R., Mortality associations with long-term exposure to outdoor air pollution in a national English cohort. *Am J Respir Crit Care Med* **2013**, *187*, (11), 1226-33.
- Bentayeb, M.; Wagner, V.; Stempfelet, M.; Zins, M.; Goldberg, M.; Pascal, M.; Larrieu, S.; Beaudeau, P.; Cassadou, S.; Eilstein, D., Association between long-term exposure to air pollution and mortality in France: a 25-year follow-up study. *Environ Int* 2015, *85*, 5-14.
- Crouse, D. L.; Peters, P. A.; Hystad, P.; Brook, J. R.; van Donkelaar, A.; Martin, R. V.; Villeneuve, P. J.; Jerrett, M.; Goldberg, M. S.; Pope III, C. A., Ambient PM_{2.5}, O₃, and NO₂ exposures and associations with mortality over 16 years of follow-up in the Canadian Census Health and Environment Cohort (CanCHEC). *Environ Health Perspect* **2015**, *123*, (11), 1180-1186.
- Di, Q.; Wang, Y.; Zanobetti, A.; Wang, Y.; Koutrakis, P.; Choirat, C.; Dominici, F.; Schwartz, J. D., Air Pollution and Mortality in the Medicare Population. *N Engl J Med* **2017**, *376*, (26), 2513-2522.
- Hvidtfeldt, U. A.; Sorensen, M.; Geels, C.; Ketzel, M.; Khan, J.; Tjonneland, A.; Overvad, K.; Brandt, J.;

Raaschou-Nielsen, O., Long-term residential exposure to PM_{2.5}, PM₁₀, black carbon, NO₂, and ozone and mortality in a Danish cohort. *Environ Int* **2019**, *123*, 265-272.

- Kazemiparkouhi, F.; Eum, K. D.; Wang, B.; Manjourides, J.; Suh, H. H., Long-term ozone exposures and causespecific mortality in a US Medicare cohort. *J Exp Sci Environ Epidemiol* 2020, *30*, (4), 650-658.
- Krewski, D.; Jerrett, M.; Burnett, R. T.; Ma, R.; Hughes, E.; Shi, Y.; Turner, M. C.; Pope III, C. A.; Thurston, G.; Calle, E. E., *Extended follow-up and spatial analysis of the American Cancer Society study linking particulate air pollution and mortality*. Health Effects Institute Boston, MA: 2009.
- Abbey, D. E.; Nishino, N.; McDonnell, W. F.; Burchette, R. J.; Knutsen, S. F.; Lawrence Beeson, W.; Yang, J. X., Long-term inhalable particles and other air pollutants related to mortality in nonsmokers. *Am J Respir Crit Care Med* **1999**, *159*, (2), 373-82.
- Jerrett, M.; Burnett, R. T.; Pope, C. A., 3rd; Ito, K.; Thurston, G.; Krewski, D.; Shi, Y.; Calle, E.; Thun, M., Long-term ozone exposure and mortality. *N Engl J Med* 2009, *360*, (11), 1085-95.
- Jerrett, M.; Burnett, R. T.; Beckerman, B. S.; Turner, M. C.; Krewski, D.; Thurston, G.; Martin, R. V.; van Donkelaar, A.; Hughes, E.; Shi, Y.; Gapstur, S. M.; Thun, M. J.; Pope, C. A., 3rd, Spatial analysis of air pollution and mortality in California. *Am J Respir Crit Care Med* 2013, *188*, (5), 593-9.
- 17. Zanobetti, A.; Schwartz, J., Ozone and survival in four cohorts with potentially predisposing diseases. *Am J Respir Crit Care Med* **2011**, *184*, (7), 836-41.
- Lim, C. C.; Hayes, R. B.; Ahn, J.; Shao, Y.; Silverman, D. T.; Jones, R. R.; Garcia, C.; Bell, M. L.; Thurston, G. D., Long-Term Exposure to Ozone and Cause-Specific Mortality Risk in the United States. *Am J Respir Crit Care Med* 2019, 200, (8), 1022-1031.
- Paul, L. A.; Burnett, R. T.; Kwong, J. C.; Hystad, P.; van Donkelaar, A.; Bai, L.; Goldberg, M. S.; Lavigne, E.; Copes, R.; Martin, R. V., The impact of air pollution on the incidence of diabetes and survival among prevalent diabetes cases. *Environ Int* **2020**, *134*, 105333.
- Cakmak, S.; Hebbern, C.; Pinault, L.; Lavigne, E.; Vanos, J.; Crouse, D. L.; Tjepkema, M., Associations between long-term PM_{2.5} and ozone exposure and mortality in the Canadian Census Health and Environment Cohort (CANCHEC), by spatial synoptic classification zone. *Environ Int* **2018**, *111*, 200-211.