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ABSTRACT 

INTRODUCTION 

Determining significant metabolic changes in Dementia with Lewy Bodies (DLB), a complex and 

multifactorial neurodegenerative disease, requires, in addition to the analysis of concentration changes, a 

deep understanding of functional modifications in the context of metabolic networks.  

METHODS 

Brain metabolomics data from DLB patients and healthy controls was explored using novel correlation 

analysis approaches to identify metabolites with the largest changes in their network in the disease state.  

RESULTS 

Novel clustering and correlation network analysis shows major change in the metabolic network in DLB 

brain relative to age and sex-matched controls with the largest interaction network alterations for fructose, 

propylene-glycol, pantothenate and O-acetylcarnitine, although there were no statistically significant 

changes in their concentrations.  

DISCUSSION 

Network and correlation analyses indicate major changes in the purine degradation pathway, propanoate 

and -alanine metabolism as well as an increased role of fructose and reduced significance of glucose in 

the brains of DLB patients. 
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1. Introduction 

With 10-15% of dementia patients ultimately diagnosed with an underlying aetiology of Dementia 

with Lewy bodies (DLB), it is considered the most prevalent cause of dementia after Alzheimer’s disease 

(AD). Neurodegeneration due to DLB is age-associated and is clinically characterized by cognitive 

fluctuations, extrapyramidal motor symptoms and early visual hallucinations1. Prodromal, early stage DLB 

shows similar symptoms to other dementias making precise, early diagnosis of DLB particularly difficult with 

individuals often misdiagnosed with PD, multiple system atrophy (MSA) or AD2. 

Objective diagnostic tests and therapies other than those for symptoms associated with DLB are 

currently non-existent. Accurate diagnosis is further complicated by major differences in symptoms and 

disease presentations amongst patients and the expressed variability over time3.  While some new 

information on the etiopathogenesis of DLB holds promise, progress towards the development of efficacious 

disease-modifying therapies is curtailed due to a lack of understanding of the early underlying pathological 

mechanisms. As mentioned, the limited available treatment options primarily focus on the reduction of 

individual symptoms which often leads to numerous side effects unfortunately with only minimal benefits4. 

Discovery of molecular biomarkers which can accurately diagnose DLB in its infancy would help stratify 

patients correctly and eventually lead to the development of novel therapies and prevention modalities 

which could be implemented earlier, when disease-modifying strategies are likely to be effective.  

The major role of metabolites and the metabolome in neurodegenerative diseases are being 

increasingly recognized. For example, several recent reports highlight metabolic alterations in brains of 

patients who died from DLB.  Notably, changes in mitochondria and energy metabolism, purine metabolism 

and protein synthesis observed in the frontal cortex combined with an innate inflammatory response have 

been described5,6. In PD, another Lewy body progressive neurodegenerative disorder characterised 

primarily by motor symptoms, genome-wide association studies underscore lipid-associated metabolic 

pathways and in particular their interaction with α-synuclein, in relation to the pathogenies of the disease  

(reviewed recently8,9). Further, several specific metabolite species have been delineated for their 

significance in disease development and progression such as ceramides which have been reported to be 

important to PD development due to their roles as signaling molecules, as essential elements of cell 

membranes and as regulators of lipid metabolism10. Observed changes in metabolic profiles in dementia 

patients are likely to be a combination of both environmental and genetics factors.  

Combined high-throughput analyses of metabolites and lipids by nuclear magnetic resonance 

(NMR) spectroscopy and mass spectrometry (MS) provides more comprehensive coverage of the 

metabolome and as such, a greater insight into the relevance of the observed metabolite and metabolic 

network changes. Diversity of the metabolome, extremely large dynamic range, as well as the need to 

exploit multiple platforms in order to measure a larger number of compounds presents the analysis of 

metabolite interaction networks with unique challenges. Tools for network analysis based on graph theory 

have been previously applied for the analysis of metabolic networks with some early examples exploring 

the network properties such as degree distribution11 indicating connectedness for each feature as well as 

community detection12 differentiating networks based on feature proximity based on network connections. 

In metabolic network design, recent studies also report utilization of extensive knowledge of metabolism 

and resources such as complete known metabolic network - RECON313 for the development of more 

accurate as well as directed and flux-dependent graphs14. However, when analysing the metabolome and 

lipidome, the issues of minimally described reaction networks and sparse coverage remain major hurdles. 

Recently a novel approach for correlation analysis, called distance correlation, has been introduced 

to the analysis of omics-based data. Distance correlation was developed by Székely et al.15 , as a measure 

of dependence between variables including linear and non-linear correlations as well as correlation between 

vectors of different lengths. Additionally, applications of distance correlation in genomics have shown that 

although distance correlation calculation provides only positive values, it is possible to use sign measure 

from Pearson’s correlation for the determination of signed distance correlation measure16 . In addition to 
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correlation network development, methods from clustering can provide alternative approaches for 

interaction or dependence network determination. Fuzzy c-means clustering has been previously used in 

metabolomics17, and its ability to assign features, e.g. genes or metabolites, to multiple groups is invaluable 

in biological studies, with many features involved in different processes18. This approach can also provide 

valuable information about the relationships between features through their co-clustering or classification 

dependence amongst groups.  

Herein, we detail the novel application of signed distance correlation for the determination of 

functional feature changes augmented by use of fuzzy clustering and partial correlation analysis for the 

investigation of major metabolic changes that are associated with DLB pathogenesis.  

2. Methods 

2.1 Sample characteristics 

Data used in this study was previously described in great detail7. Briefly, human brain samples, harvested 

from the neocortex (Brodmann region 7), have been collected from pathologically confirmed patients with 

DLB (n=15) and age-, and sex- matched controls with no known neurological disease (n=30). Tissues were 

obtained from the Brains for Dementia Research Group, Institute of Clinical Neurosciences, School of 

Clinical Sciences, University of Bristol, Bristol, UK as part of the study approved by the Beaumont Health 

System’s Human Investigation Committee (HIC No.: 2018-387) and following all approved guidelines. 

Further details about the patients and samples characteristics are provided in the original publication7.  

2.2 Experimental procedures  

2.2.1 NMR analysis  

Samples were analyzed as previously described by our group19-21. In brief, samples previously stored at 

−80 °C were lyophilized and milled to a fine powder under liquid nitrogen minimizing heat production. 50 

mg samples were extracted in 50% methanol/water (1 g/mL) in a sterile 2 mL Eppendorf tube. Samples 

were mixed for 20 min and sonicated for 20 min at 4 °C. Macromolecules and larger proteins were removed 

via centrifugation at 13,000×g at 4 °C for 30 min. Supernatants were collected, dried under vacuum using 

a Savant DNA SpeedVac (Thermo Scientific, Waltham, MA USA), and reconstituted in 285 μL of 50 mM 

potassium phosphate buffer (pH 7.0), 30 μL of sodium 2,2-dimethyl-2- silapentane-5-sulfonate (DSS), and 

35 μL of D2O (Ravanbakhsh et al., 2015). 200 μL of the reconstituted sample was transferred to a 3 mm 

Bruker NMR tube for analysis. All samples were housed at 4°C in a thermostatically controlled SampleJet 

autosampler (Bruker-Biospin,USA) and heated to room temperature over 3 min prior to analysis by NMR. 

All 1D 1H NMR data were recorded at 300 (±0.5) K on a Bruker Ascend HD 600 MHz spectrometer (Bruker-

Biospin, Billerica, MA, USA) coupled with a 5 mm TCI cryoprobe in a randomized fashion. For each sample, 

256 transients were collected as 64 k data points with a spectral width of 11.964 Hz (20 ppm), using a pulse 

sequence called CPP WaterSupp (Bruker pulse program: pusenoesypr1d) developed by Mercier et al. 

(Mercier et al., 2011) and an inter-pulse delay of 9.65 s. The data collection protocol included a 3 min 

equilibration period, fast 3D shimming using the z-axis profile of the 2H NMR solvent signal, receiver gain 

adjustment, and acquisition. The free induction decay signal was zero filled to 128 k points prior to Fourier 

transformation, and 0.1 Hz of line broadening was applied. The singlet produced by the DSS methyl groups 

was used as an internal standard for chemical shift referencing (set to 0 ppm, concentration 500 μM) and 

for quantification. All 1H NMR spectra were processed and analyzed using the Chenomx NMR Suite 

Professional Software package version 8.1 (Chenomx Inc, Edmonton, AB). Further details regarding 

sample preparation and analytical measurements and analysis have been provided previously7. 

2.2.2 Targeted mass spectrometry analysis 
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Metabolite quantification in postmortem brain tissue was completed as previously described by our group 

using the commercially available AbsoluteIDQ p180 Kit (Biocrates Life Sciences AG)19-21. In brief, 10 mg of 

lyophilized and powdered brain tissue was extracted using 300 μL of extraction solvent (85% ethanol and 

15% phosphate-buffered saline solution). The samples were ultrasonicated for 10 min on ice and vortexed 

for 1 min. Proteins and other impurities were removed by centrifugation at 13,000×g for 15 min at 4 °C. The 

supernatant was collected and 10 μL was used for analysis. Data were acquired using an Acquity I-class 

(Waters, USA) coupled with a Xevo TQ-S mass spectrometer (Waters, USA). Metabolite concentrations 

were calculated using the MetIDQ software (Biocrates Life Sciences AG) 

 

2.3 Data Analysis 

Prior to analysis, all features were z-score normalized across all samples if not stated otherwise. 

Imputation of missing values was performed for samples and features that had less than 30% coverage 

using the KNN imputation method with N=10 and Euclidean distance for similarity assessment.  

2.3.1 Correlation network 

2.3.1.1 Distance correlation network 

Correlation was calculated on z-score normalized features using Pearson, Spearman and Distance 

correlation analysis. Matlab routine corr was used for Pearson and Spearman correlation. Distance 

correlation was calculated following Szekely and Rizzo15  as defined in Eq. 1: 

𝑑𝐶𝑜𝑟(𝑋, 𝑌) =
𝑑𝐶𝑜𝑣(𝑋,𝑌)

√𝑑𝑉𝑎𝑟(𝑋)𝑑𝑉𝑎𝑟(𝑌)
     (1) 

While Pearson correlation uses covariance between values as: 𝐶𝑜𝑟(𝑋, 𝑌) =
𝐶𝑜𝑣(𝑋,𝑌)

√𝜎𝑋𝜎𝑌
 with covariance 

calculated as: (𝑋, 𝑌) = ∑ (𝑥𝑖 − 𝑥)(𝑦𝑖 − 𝑦)𝑛
𝑖=1 ; distance correlation depends on the distance covariance 

determined as: 𝑑𝐶𝑜𝑣(𝑋, 𝑌)2 =
1

𝑛2
∑ ∑ 𝐴𝑗,𝑘𝐵𝑗,𝑘

𝑛
𝑘=1

𝑛
𝑗=1  with A and B as simple linear functions of the pairwise 

distances between elements in samples X and Y. A and B are doubly centered distance matrices for 

variables X and Y respectively calculated from the pairwise distance between elements in each sample set 

with 𝐴𝑗,𝑘 = 𝑎𝑗,𝑘 − 𝑎𝑗. − 𝑎𝑘. + 𝑎.. where 𝑎𝑗,𝑘 = √(𝑥𝑗 − 𝑥𝑘)2 and 𝑎𝑗. and  𝑎𝑘. respectively the j-row and k-column 

mean and 𝑎.. the overall mean of A. B includes equivalent measures to A for variable Y. Distance correlation 

calculation was written in-house under Matlab using pdist2 to calculate distances between features with 

Euclidean metric as well as a Python application. Correlation was calculated between all features separately 

for sample groups. Function corr provides the p-value for the correlation measure. For distance correlation 

we calculated p-value using Student's t cumulative distribution function (tcdf function in Matlab). Distance 

correlation values with p>0.01 were set to zero keeping only the most statistically significant correlations. 

Sign of distance correlation was equated to the sign of Pearson correlation calculation as shown by16  and 

implemented in-house as: 𝑑𝐶𝑜𝑟(𝑋, 𝑌) = 𝑠𝑖𝑔𝑛 (
𝐶𝑜𝑣(𝑋,𝑌)

√𝜎𝑋𝜎𝑌
 ) ∗

𝑑𝐶𝑜𝑣(𝑋,𝑌)

√𝑑𝑉𝑎𝑟(𝑋)𝑑𝑉𝑎𝑟(𝑌)
. Calculations we performed 

using Matlab in-house routing. Signed distance correlation calculation is also provided as a Web application 

at http://complimet.ca/SiDCo with RShiny front-end for a Python implementation of the method which 

includes z-score normalization and signed distance correlation calculation for calculation of correlation 

between each feature and all other features combined (correlation with the network) and pairwise 

correlation between features.  

2.3.1.2 Partial correlation  

Partial correlation was calculated using recursive method from Spearman correlation where correlation 

between two variables i and j with exclusion of correlations with variable k is calculated as: 𝜌𝑖𝑗/𝑘 = (𝜌
𝑖𝑗

−
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𝜌
𝑖𝑘

𝜌
𝑗𝑘

)/(√1 − 𝜌
𝑖𝑘
2 √1 − 𝜌

𝑗𝑘
2  ). Partial correlation analysis was performed for distance correlation analysis 

determined significant features. Calculations were performed using Matlab 2021a (Mathworks Inc). 

2.3.1.3 Determination of functional feature changes   

Feature (metabolite) differences between control and DLB groups based on the network results are 

obtained using linear regression analysis between the two groups for each metabolite comparing values of 

edges, i.e. pairwise correlations, to all other metabolites between two groups. The level of change is 

reported as a slope of linear regression. The major changes are obtained as the largest divergence from 

the slope of 1 obtained for identical trends in correlations with a metabolite. This analysis was used to 

determine major behavioural differences between patient groups. 

 

2.3.2 Machine learning 

2.3.2.1 Fuzzy C-means clustering network  

In addition to the Principal Component Analysis (PCA) and hierarchical clustering (HCL) we have used 

Fuzzy c-means (FCM) clustering17,22. FCM allows each feature to belong to more than one group by 

providing a degree of membership, “belonging”, to each cluster by maximizing proximity between similar 

features and distance between dissimilar features. FCM is based on the minimization of the objective 

function:𝐽𝑚 = ∑ ∑ 𝑢𝑖𝑗
𝑚𝐶

𝑗=1
𝑁
𝑖=1 ‖𝑥𝑖 − 𝑐𝑗‖2 where 𝑚 ∈ (1, ∞) is the “fuzzyfication” factor, 𝑢𝑖𝑗

𝑚 is the membership 

degree for feature 𝑥𝑖 to the cluster j with 𝑐𝑗defining the cluster center. FCM clustering assigns objects to 

groups with features belonging to the same clusters showing more similarity to each other than to features 

in other clusters. Higher membership value indicates stronger belonging to the cluster with membership 

value of 1 ultimately indicating that feature is only associated with the single cluster. Calculations were 

performed using Matlab 2021a (Mathworks Inc). 

 

2.3.2.2 Feature selection 

Selection of the most significant features between different groups of samples F-test (using fsrftest running 

under Matlab) as well as machine learning method Relieff23 (Lionelle 2005) and LASSO method for 

regularization of linear models24. Correlation results are presented using circular plots using routine 

circularGraph [https://github.com/paul-kassebaum-mathworks/circularGraph] with some in-house 

modifications.  Enrichment analysis for metabolites was performed with MetaboAnalyst 5.025. 

 

3. Results 

3.1 General sample characteristics 

Combined NMR and MS metabolomics was used to accurately measure the concentration of 218 

metabolites in brain samples from DLB patients and age and sex-matched healthy controls. Sample 

information is summarized in Figure 1A. Preliminary Principal Component Analysis (PCA) and Hierarchical 

clustering (HCL) of log-corrected and z-score normalized brain metabolomics data shows some limited 

grouping of samples by diagnosis in PC2 but not a clear unsupervised separation by sample type (Figure 

1B).  Additional PCA of the two cohorts shows small correlation between PC1 and age in the control group 

and PC2 and sex in the DLB group (Figure 1B). Finally, hierarchical clustering (Figure 1B) performed on z-

score normalized data and using Ward linkage provide clustering by chemical groups but, similarly to PCA, 

only minor grouping by sample types. 
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Figure 1. Unsupervised analysis does not show significant separation of control and DLB brain samples.  
A. Overview of age and sex representation of samples in control (CTRL) and DLB cohorts; B. Principal 
Component Analysis (PCA) of log transformed and z-score normalized features. Ellipses indicate 95% 
confidence regions; Hierarchical clustering (HCL) of samples and features following z-score normalization 
of features, indicated are general metabolic groups as well as sample types; PCA of two cohorts separately 
and Pearson correlation between PC1 and PC2 and sex and age; C. Metabolites showing the most 
significant differences between DLB and CTRL remaining after removal of irrelevant features using LASSO; 
selected for their group classification power by Relieff and determined to individually show the most 
significant difference between groups using F-test analysis; features with weight value over 4 
(corresponding to p<0.02) are selected as significant and in LASSO features with weight over zero remain 
in selection. An improvement in sample classification with HCL is provided by LASSO selected features. 
Nomenclature for all metabolites is provided in Supplementary Table 2. 
 

3.2 Feature selection and clustering 
 

The analysis presented in Figure 1C indicates that overall differences in metabolite concentrations 
between DLB and control brain samples do not provide unsupervised sample separation. Specific metabolic 
differences between the two groups thus require further supervised analysis and feature selection as well 
as the analysis of differences in the behavior between metabolites.   

Selection of the most significantly changed metabolite concentrations are performed using the F-

statistics test and LASSO. Metabolites with statistically significant weight are shown in Figure 1C and the 

group of metabolites selected by LASSO to provide the most information for classification is included in 

Figure 1C.  

         The enrichment analysis by MetaboAnalyst 5.025 reveals that the most significantly different features 

between DLB and controls are part of phospholipid biosynthesis, phosphatidylcholine biosynthesis, 

spermidine and spermine biosynthesis, retinol metabolism, sphingolipid metabolism and methionine 

metabolism. Several metabolites that have been selected by both F-test and LASSO are o-phosphocholine, 

sn-glycero-3-phosphocholine (sn-G3PC), putrescine, PC(O-34:0) and hydroxyvalerylcarnitine (C5-OH (C3-
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DC-M)). Observed concentration changes can be a result of either change in production or in utilization and 

network analysis of these features, as well as analysis of major network changes, can provide further 

information about the possible sources of observed differences.  

Further metabolite grouping has been explored using fuzzy c-means clustering (FCM) (Figure 2) 

separately in the control and DLB groups. Although in both groups, features primarily cluster within their 

chemical types, in agreement with the overall clustering with HCL (Figure 1B), there are several notable 

differences. Overview of FCM membership using PCA visualization (Supplementary Figure 1A) shows a 

change in proximity, co-clustering between several groups with clearer separation of acyl carnitines, organic 

acids and sugars as well as amino acids in DLB, while glycerophosphocholines (PCs) and 

lysophosphocholines (LPCs) as well as sphingomyelins (SMs) are more crisply clustered in the control 

group further provided with lists of metabolites across five clusters (Supplementary Figure 1B and C).  

 

 

Figure 2.  Fuzzy c-means clustering of metabolites in Control and DLB cohorts.  FCM is calculated using 

fuzzyfication factor m=1.5 with 5 clusters following z-score normalization. A. Membership values over 0.1 

for two cohorts in five clusters. B. FCM cluster network created by linking features through co-clustering. 

Shown are feature links in CTRL (blue) and DLB (red) for membership values over or equal to 0.5 (upper 

right triangle) and values between 0.3 and 0.5 membership (lower right triangle). Major changed in 

clustering of several features is indicated with strong clustering of fructose with number of metabolites as 

well as, amino acids with PCs and LPCs only observed in DLB group.  

 

Investigation of individual groups shows a major shift in clustering of SM with strong association with 

carnitines in the control group and with PC and LPC in DLB. Contrastingly, fructose clusters with PC and 

LPC in control samples while in DLB fructose is strongly clustered with metabolites from galactose 

metabolism (Glucose, UDP-glucose, UDP-galactose, myo-inositol, D-fructose, ADP) (Figure 2).  
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3.3 Signed Distance correlation network analysis and explainable feature selection 

Herein we detail a data-driven approach to determine changes in the metabolic profiles and networks in 

DLB brain. We employed distance correlation15 to determine proximal as well as distant interactions with 

both non-linear and linear correlations. Combining distance correlation with Pearson’s correlation (see 

Materials and Methods) provides signed distance correlation values indicating both strength and 

directionality of correlations. Overall, metabolic networks with edges at significance level under 0.01 and 

absolute value of correlation over 0.6 (selected as value of the largest number of connections) are shown 

in the spy plot. Negative correlations show major shifts in the DLB group and are presented in detail in circo 

plots (Figure 3).  

 

Figure 3.  A. Distance correlation between each feature and all the other features is calculated for control 
and DLB groups. Shown is difference between values in control and DLB with metabolites with the largest 
differences indicated where metabolites in green have higher value in control samples. B – Pairwise, signed 
distance correlation. Signed distance correlation in control (blue dots and A) and DLB (red dots and B) with 
negative correlation shown as circo plots as well (A and B). We present correlations with an absolute value 
over 0.6 and p<0.01. The Spy plot shows positive (upper right triangle) and negative correlations (lower left 
triangle). Indicated are groups of metabolites in the spy plot as well as specific metabolites in the circo plots. 
C.  

 

Both positive and negative correlations show significant changes in DLB with a general increase in 
the number of significant correlations. This is particularly striking amongst the observed negative 
correlations between metabolites and lipids including negative correlations between glucose and several 
phospholipids, SM, spermine and acetylcarnitines, in addition to urea, proline and taurine in brains from 
DLB patients. As distance correlation allows calculation of correlation between vectors of different length, 
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the correlations between each metabolite and all other metabolites combined was also calculated in both 
control and DLB groups, indicating correlation between a specific metabolite and the network. Differences 
between these values is shown in Figure 3with metabolites with the largest change indicated. According to 
this analysis, the biggest change in the correlation with overall metabolic network is observed for ATP, 
SDMA and PC(O-C44:4) and hydroxyvalerylcarnitine (C5-OH (C3-DC-M)). All values for both groups are 
provided in Supplementary Table 1. In this analysis, increase in DLB indicates increased absolute 
correlation between metabolite and the complete network. 

Metabolites with the most significantly altered interaction network in the DLB group are shown in 
Figure 4, where Figure 4A displays the major network difference obtained from the linear regression 
analysis of metabolites 1-to-all correlations in DLB vs. control and Figure 4B is the opposite - control vs. 
DLB (see Materials and Methods). Fructose shows the largest change in its pairwise metabolic correlation 
network between DLB and control. Metabolic networks for the top three metabolites in both regression 
plots, including fructose, propylene glycol, pantothenate and O-acetylcarnitine are shown in Figure 4C-E. It 
is important to stress that none of these metabolites shows statistically significant difference in 
concentrations between control and DLB groups; however, their correlation changes, indicating that 
different pathway involvement is significant between the two groups. 

 

Figure 4. Comparison of Distance correlation analysis between control and DLB brain highlighting the 

metabolites with the largest interaction network change between the two groups. A. Metabolites with the 

largest change in the slope of the linear regression model between all correlations of each metabolite with 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 4, 2021. ; https://doi.org/10.1101/2021.10.16.21265003doi: medRxiv preprint 

https://doi.org/10.1101/2021.10.16.21265003
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 
 

all the other metabolites calculated for CTRL and DLB groups; B. Same as A except using DLB as the 

variable and CTRL as the functionally dependent factor in the linear regression analysis; C. Networks for 

the four most altered metabolites with correlation threshold of 0.6 and p<0.01 in the CTRL group; D. 

Networks for the four most affected metabolites for the DLB cohort with correlation threshold of 0.6 and 

p<0.01. Order of metabolites in C and D is fructose, propylene glycol, pantothenate, O-acetylcarnitine.  

 

Based on distance correlation network analysis (Figure 4), the fructose network changes from only a 

minimal number of significant correlations in the control group to a much larger number of significant edges 

in DLB suggesting a much more significant role for fructose in brain of DLB patients. Similarly, the second 

and the third most significantly altered metabolic networks (propylene-glycol and pantothenate metabolism) 

show more correlations with other metabolites in the DLB cohort. To the best of our knowledge, endogenous 

propylene-glycol has not been linked to dementia previously, possibly due to its limited concentration 

change.  However, several pathways related to propylene-glycol have been reported as associated with 

dementia. On the other hand, pantothenate, i.e. vitamin B5, has been previously proposed as significantly 

changed in different types of dementias27,26 . Based on distance correlation network analysis, pantothenate 

goes from no significant correlations in the control group to a number of significant correlations in the DLB 

patient group. Strong correlation partners of pantothenate include a number of metabolites that were shown 

to have significant concentration changes (Figure 1) as well as changes in clustering (Figure 2) and network 

correlation partners (Figure 4). O-acetylcarnitine has a network shift from significant correlations only with 

carnitines in the control cohort to correlations with ADP, fructose, and creatinine indicating a new 

associationin energy metabolism.  

3.4 Partial correlation analysis  

Partial correlation analysis indicates the effect of the removal of correlations for one of the partners on the 

correlations with other features there-by providing further information about likelihood of direct vs. indirect 

correlations. Partial correlation, using Spearman’s correlation as the base model was performed for 

fructose, propylene-glycol, pantothenate and O-acetylcarnitine.  
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Figure 5. Distance correlation (a) Spearman (b) and Partial correlation (c) analysis of the most significant 

distance correlation partners of fructose for control (I) and DLB cohort (II) for major correlation partners of 

fructose (A) and propylene glycol (B). snG3PC – sn-glycero-3-phosphocholine. 

 

In the control group (Figure 5I) fructose only has significant correlations with glucose and LPC(17:0) and, 

based on partial correlation analysis, the interactions are independent of each other. Conversely, if we 

remove the strongest correlator with fructose in DLB, ADP, we see removal of significant correlations with 
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all the other metabolites with exception of O-acetylcarnitine, succinate and lactate.  This suggests that the 

correlation of fructose with the majority of metabolites in the DLB group results from the effect of fructose 

on ADP metabolism in this group.  

 

The presentation of propylene-glycol as one of the metabolites with the most significant correlation change 

between control and DLB cohort is unexpected considering its very minor role in metabolism.  

 

Figure 6. Distance correlation (a), Spearman (b) and Partial correlation (c) analysis of the most significant 

distance correlation partners of propylene-glycol for control (I) and DLB cohort (II) for major correlation 

partners of pantothenate (A) and O-acetylcarnitine (B).  
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In both control and DLB groups, propylene glycol has a strong correlation with acetone. In the DLB cohort 

propylene glycol has number of additional strong correlations with several metabolites that are involved in 

propanoate metabolism including 3-hydroxybutyrate, succinate, acetate and methanol. Within the 

propanoate metabolic pathway propylene glycol is metabolised into lactate, acetate, and pyruvate and 

significant correlations with these metabolites are reported.  

The other correlation partners of propylene-glycol include pantothenate (vitamin B5), anserine, and 

dimethyl sulfone. However, the most significant partner of propylene-glycol is myo-inositol, with exclusions 

of its correlations resulting in the removal of almost all correlations for propylene-glycol as well. To a lesser 

extent, this is also achieved through correlations with dimethylamine and ATP.  

Pantothenate, has no significant correlations in the control group and partial correlations are only shown 

for the DLB cohort (Figure 6). Major partners include creatine, anserine and pyruvate, once again with their 

correlation exclusion leading to the removal of the majority of correlations between pantothenate and its 

metabolic partners.  

Finally, O-acetylcarnitine has a major change in its correlation network between control and DLB, where in 

control samples it is strongly correlated only with other acylcarnitines while in DLB samples  it has strong 

correlations with fructose, glutamine, ADP, phenylalanine and creatine. Strong correlations between O-

acetylcarnitine partners is demonstrated by the removal of correlations in the network in DLB through 

removal of partial correlations for each partner (Figure 6).  

 

4. Discussion 

Dementia with Lewy Bodies is a progressive and terminal disease for which there are currently no 

disease-modifying therapies. Furthermore, this disease can only be diagnosed based on its clinical 

presentation, as no biomarkers exists that will allow for early detection and commencement of therapy, and 

as such is often misdiagnosed. Earlier detection and proper stratification would allow for the matching of 

patients with specific and directed therapies based on an identified and mechanistically-understood 

metabolic dysregulation. Small-molecule metabolites and lipids are at the intersection of a cell or tissue’s 

genetic background and environmental history. In particular, the levels of a specific metabolite or lipid within 

a cell or tissue are a consequence of its physiological, developmental, and pathological state34. These 

levels can be used as a reflection of specific phenotypes35. Due to the sheer number of species and range 

of concentrations of lipids, only looking at the concentration of each lipid may be short-sighted. Analysis of 

the metabolic network differences between patient groups is needed in order to determine functional 

changes between metabolites and across metabolic pathways and networks. Feature selection through 

statistical or machine learning approaches focuses on the determination of features that are most relevant 

for sample classification, thus not providing information about the functional changes leading to observed 

concentration differences. The development of interaction networks is a major step in understanding the 

role of metabolites in any given disease pathophysiology and the relevance of metabolic markers for 

diagnosis. Data-driven metabolic networks can be obtained through correlation or classification methods. 

Small sample size, incomplete knowledge of all the steps in a metabolic pathway, as well as sparse 

coverage of metabolites presents a unique challenge for network derivation. Here, we present metabolic 

networks for metabolites and lipids in the brain of DLB patients and matching controls as determined using 

signed distance correlation analysis. Metabolic network is explored using FCM clustering and partial 

correlation analysis. Our analysis has revealed major changes in metabolism of fructose, propylene-glycol, 

pantothenate and O-acetylcarnitine, concentration change for O-phosphocholine, sn-glycero-3-

phosphocholine, putrescine, PC(O-34:0) and hydroxyvalerylcarnitine (C5-OH (C3-DC-M)) as well as a 

major overall change in network topology for a number of metabolic families in DLB. 

Notably, fructose’s correlation network goes from significant correlations only with glucose and 

LPC(17:0) in the control group to many significant edges in DLB. The role of fructose and its changing 
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metabolism has been previously hypothesized for different types of dementias and is considered as a risk 

factor in dementias36,42. The link between either endogenous or dietary fructose or ADP through the purine 

degradation pathway was suggested for Alzheimer’s disease36 and we report its strong correlation to DLB 

using our distance and partial correlation analysis (Figure 4-6). The purine degradation pathway is induced 

by fructose through its rapid depletion of cellular ATP levels and activation of AMP deaminase (AMPD), 

eventually leading to the production of uric acid. Changes in the level of uric acid have been previously 

linked to the risk of dementia, with low levels associated with Parkinson’s disease36,31 and high levels of 

serum uric acid linked to vascular or mixed dementia and to a lesser extent AD41.  

Distance correlation analysis shows major differences in correlation partners for fructose in patients 

with DLB compared to healthy controls, including significant correlations with several other metabolites that 

are part of purine metabolism including ADP,  adenine, inosine and urea. Significant changes, especially in 

certain acylcarnitine and LPC levels, have been previously associated with a high fructose diet5. A number 

of metabolites in the fructose network are also part of lactose synthesis and galactose metabolism.  These 

include glucose, UDP glucose, UDP galactose, ADP and fructose. Fructose production from glucose 

through the polyol pathway has been previously observed in different tissues including brain28.The 

production of fructose through this pathway stimulates triglyceride and uric acid accumulation and is 

hypothesized to be a relevant factor in the development of metabolic syndrome. Up-regulation of aldose 

reductase, a rate-limiting enzyme in this pathway, has been shown in aging and as a response to a number 

of dementia risk factors36. It is important to point out that the concentration of fructose does not show a 

significant difference between control and DLB cohorts, suggesting a significant change in the fructose 

metabolic pathway rather than its accumulation or depletion in these patients 

It is important to emphasize that in the DLB group, removal of correlations with the strongest 

connection to fructose (ADP) leads to the elimination of correlations with all other metabolites except O-

acetylcarnitine, succinate and lactate. This result suggests that correlation with most metabolites results 

from the effect of fructose, either endogenous from the polyol pathway or from the diet, on ADP metabolism. 

This indicates that in DLB patients, as was previously hypothesized for AD36, fructose induces the purine 

degradation pathway by increasing ATP consumption, resulting in the production of uric acid. Adenine, 

inosine, urea, and glutamine all partake in purine metabolism. However, O-acetylcarnitine and succinate 

are part of the Oxidation of Branched Chain Fatty Acids pathway. Profound effects of fructose on cell 

metabolism and in particular mitochondrial function have been reported previously43 and include divergent 

effects of fructose and glucose on mitochondrial function and fatty acid oxidation.  

In both control and DLB cohorts, propylene glycol has a strong correlation with acetone which may 

indicate a link via propanoate metabolism that has been previously linked to aging and AD38. Propylene 

glycol is metabolised to lactate, acetate, and pyruvate and significant correlations with these metabolites 

are presented in the DLB group. In fact, propylene glycol as well as several of its correlation partners, i.e., 

succinate, acetate, lactate, acetone, pyruvate, 2-hydroxybutyrate are all involved in propanoate metabolism 

(based on KEGG map00640 pathway list). Additionally, through -Alanine metabolism, propylene glycol is 

once again linked to the propanoate metabolic pathways which includes anserine (part of -Alanine 

metabolism) and pantothenate, both of which correlated strongly with propylene-glycol in DLB. Several 

metabolites from the propanoate pathway have previously been reported as significantly different in saliva 

of dementia patients32  and this pathway has been shown to be affected in AD patients39. Further, propylene-

glycol is used as a solvent for several intravenously administered drugs including lorazepam and diazepam, 

both of which are used to treat symptoms associated with DLB.  Its correlation needs further examination 

as we are unsure if the patients studied herein were treated with said drugs. Moreover, pantothenate 

(vitamin B5), anserine, dimethyl sulfone, could also be considered results of therapy either as drugs or 

supplements30. For example, anserine is a supplement used to improve symptoms of dementia; dimethyl 

sulfone is an anti-pain, inflammatory and osteoarthritis drug (https://go.drugbank.com/drugs/DB14090) and 

pantothenate or vitamin B5 is a recommended supplement for dementia patients.  
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Pantothenate shows the third most significant network change with strong correlations to propylene 

glycol, anserine and dimethyl sulfone. Pantothenate has a significant metabolic role with involvement in -

alanine metabolism and CoA biosynthesis. In the control group, pantothenate has no significant correlation 

partners at correlation level over 0.6 and p-value below 0.01. In the DLB group, pantothenate gains several 

strong correlation partners, including 4-aminobutanoate, a by-product of one of the steps of -alanine 

synthesis, as well as anserine, suggesting its role in metabolism changes in DLB patients. 

There are several strengths of the present study. These include the standardized brain collections, 

the use of age- and sex-matched controls of this unique cohort, a combined quantitative metabolomic 

approach delivering the most comprehensive metabolite coverage of the DLB brain metabolome and 

implementation of novel, analytical approaches within the realm of DLB metabolomics. The small sample 

size of this unique cohort is a major limitation; however, one should be cognisant of the problems in 

obtaining such a specialized and well characterized post-mortem brain cohort. Through the examination of 

well characterized samples, even at this sample size, we can develop models of high diagnostic accuracy. 

It would be worthwhile to expand the analysis carried out here to other brain regions to assess the wider 

metabolic disturbances in the DLB brain. Brain tissue is far from an ideal matrix for discovering dementia 

biomarkers, and it will be necessary to validate our findings in more accessible, non-invasive biomatrices 

such as blood serum/plasma as evidenced by Varma et al. for AD44. Another major limitation which may 

have provided some additional, useful insight to our exploratory study is the lack of a detailed medical report 

with important information regarding medications and supplements. 

         In this study, we introduce a novel approach of signed distance in addition to the novel application of 
partial correlation analysis and FCM clustering for the study of DLB.  The application of these novel 
analytical approaches on such a unique metabolomics data set highlights fructose, propylene-glycol and 
pantothenate acid as well as their associated metabolic pathways as key factors associated with DLB 
pathology. Our findings have the potential to provide new insight into the pathophysiology of DLB which 
could lead to the development of novel therapeutics and novel diagnostic methods capable of accurately 
discriminating DLB from control brain with a high degree of accuracy. Although brain tissue is not an ideal 
matrix for developing biomarker tests, understanding of the major changes in brain 
metabolism/biochemistry are crucial for future treatment development. Additionally, methods presented in 
this work are made available for future use for the analysis of functional metabolic markers of DLB in more 
accessible tissues. 

Research in Context 

1. Systematic review: We performed extensive literature review using publication databases (e.g. 
PubMed) and focusing on dementias, DLB and role of metabolism and metabolites in the disease 
development and progression.  

2. Interpretation: Using a novel approach for analysis of metabolic network we have shown major 
changes in metabolism of fructose, o-acetylcarnitine, propylene glycol and pantothenate in brain 
tissue of DBL patients 

3. Future directions: Focus on metabolic network changes rather than only metabolite concentration 
alterations will bring novel insight into the DLB development and provide new therapeutic targets. 
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