Supplemental Material

Expected results from simulations

Here we show the root mean square error (RMSE) of $z - \bar{z}$ as an estimate for h should be ≈ 0.74 in our simulation scheme. First we write the expression for the RMSE:

$$RMSE = \sqrt{\frac{\sum_{i}^{N} (z - \bar{z} - h)^2}{N}}$$
(13)

Note that $z - \overline{z}$ differs from h due to a viral effect and an environmental effect. So the term inside the square root equals the combined variance of these two effects:

$$RMSE = \sqrt{\sigma_{g_v}^2 + \sigma_{\epsilon}^2} \tag{14}$$

We can calculate the variance due to these two effects because the total variance in spVL σ_z^2 , and the fraction of the total variance due to host genetic effects, $\sigma_{g_h}^2$, are fixed parameters in our simulation scheme.

$$\sigma_{g_h}^2 + \sigma_{g_v}^2 + \sigma_{\epsilon}^2 = \sigma_z^2$$

$$0.25 * \sigma_z^2 + \sigma_{g_v}^2 + \sigma_{\epsilon}^2 = \sigma_z^2$$

$$\sigma_{g_v}^2 + \sigma_{\epsilon}^2 = 0.75 * \sigma_z^2$$

$$\sigma_{g_v}^2 + \sigma_{\epsilon}^2 = 0.75 * 0.73$$

$$\sigma_{g_v}^2 + \sigma_{\epsilon}^2 = 0.55$$
(15)

Therefore, we can expect the RMSE for $z - \bar{z}$ as an estimate for h to be around $\sqrt{0.55} \approx 0.74$.

Figure S1: A graphical model representation of our simulation scheme, following the recommendations in Höhna et al. (2014). Variables in solid squares are constants, with the two master control variables that we vary from simulation to simulation highlighted in red. Variables in solid circles are realizations of random variables and variables in dashed circles are determined as a function of other variables. Arrows represent dependencies among variables and the dashed square represents repetition. All parameters are defined in Table 2, as well as the values or expressions used for them. (A) shows how the variance in the simulated environmental effect σ_{ϵ}^2 is smaller if the master pathogen heritability value $H_{\bar{t}}^2$ is higher and vice-versa. (B) shows the OU parameters and the pathogen phylogeny, which generate the Gaussian-distributed pathogen effects. The OU parameters θ and g_0 are fixed, whereas σ is a deterministic function of the variance in the pathogen effect and the value of α . In other words, we use σ to maintain the desired pathogen heritability while varying α . We generate a new random phylogeny for each simulation. (C) shows how host genotypes are drawn to generate host effects. The host genotype matrix G contains the number of copies (0, 1, or 2) for each of M causal variants with effect size δ . We assume half the variants have a positive effect and half have a negative effect. The allele frequency p for the causal variants set so that we achieve the desired variance in the host effects. (D) shows that the environmental effect is drawn from a Gaussian distribution with mean zero and variance as determined in part (A).

Figure S2: A comparison of different ways to calculate spVL based on viral load measurements provided by the SHCS. The stricter filtering excludes all measurements possibly < 6 months after infection and after treatment or AIDS, whereas the more lenient filtering excludes only measurements after treatment. We used the lenient filter, mean measurement values because these correlate well with the values from the stricter filter but allow us to retain many more individuals from the cohort for our study.

Figure S3: Inferred HIV-1 *pol* gene phylogeny with tips colored by (A) calculated spVL, (B) estimated non-pathogen effects on spVL and (C) estimated pathogen effects on spVL.

Figure S4: A comparison of measured (calculated) spVL values versus our estimated non-pathogen effect on spVL for each SHCS cohort member used in the study. The histograms show the marginal distribution of each value across the individuals.

Figure S5: Posterior distributions compared to the prior for POUMM parameter estimates based on SHCS data. We ran two different MCMC chains to ensure the estimates converged. The black point on the x-axis shows the posterior mean value, which was used to estimate the pathogen- and non-pathogen effects on spVL.

Figure S6: Quartile-quartile plots from association tests. The dashed green line shows the y = x line.

Figure S7: SHCS individuals and HapMap3 individuals plotted along the top three principle components of genetic variation. Points with black borders are within the thresholds used to select individuals of likely European ancestry.

Parameter	Posterior mean	95% HPD
g_0	4.23	(1.72, 6.71)
heta	4.47	(4.37, 4.58)
σ	5.25	(2.37, 7.9)
α	57.65	(19.49, 95.2)
σ_e	0.54	(0.43,0.65)
$H_{\bar{t}}^2$	0.45	(0.24,0.67)

Table S1: POUMM parameter estimates for spVL based on SHCS data. HPD = Highest posterior density.

Table S2: Effect size and p-values from the top most strongly associated variants in the *CCR5* and MCR regions from each of the two GWAS performed in our study. "Standard" means the GWAS with standard spVL trait values and "Corrected" means the GWAS with the estimated non-pathogen part of the trait. Entries above the dividing line are the top-associated variants from the "Standard" GWAS and entries below the dividing line are the top-associated variants from the "Corrected" GWAS. Many entries overlap between the two.

Region	Position	Variant	Standard	Standard	Corrected	Corrected
			effect size	p-value	effect size	p-value
CCR5	46531144	rs9845968	-0.16	5.6×10^{-9}	-0.083	1.2×10^{-7}
CCR5	46537849	rs867620	-0.16	3.2×10^{-9}	-0.085	6×10^{-8}
CCR5	46539864	rs11130092	-0.16	1.1×10^{-9}	-0.087	2.6×10^{-8}
CCR5	46540932	rs10865942	-0.16	8.4×10^{-9}	-0.081	4×10^{-7}
CCR5	46541147	rs7430431	-0.17	9.2×10^{-10}	-0.088	$2.3 imes 10^{-8}$
MHC	31274380	rs9264942	-0.21	4.5×10^{-13}	-0.12	3.7×10^{-13}
MHC	31321919	rs1055821	-0.33	9.4×10^{-13}	-0.19	1.4×10^{-12}
MHC	31380034	rs112243036	-0.32	$9.9 imes 10^{-16}$	-0.17	$3.7 imes 10^{-14}$
MHC	31391401	rs4418214	-0.34	$2.4 imes 10^{-14}$	-0.18	2.5×10^{-12}
MHC	31400137	rs138130755	-0.46	1×10^{-12}	-0.26	2.6×10^{-12}
MHC	31400705	rs138117378	-0.46	1×10^{-12}	-0.26	2.6×10^{-12}
MHC	31402358	rs148792134	-0.46	1×10^{-12}	-0.26	2.6×10^{-12}
MHC	31409677	rs140991764	-0.46	1×10^{-12}	-0.26	2.6×10^{-12}
CCR5	46531144	rs9845968	-0.16	5.6×10^{-9}	-0.083	1.2×10^{-7}
CCR5	46537849	rs867620	-0.16	3.2×10^{-9}	-0.085	6×10^{-8}
CCR5	46539864	rs11130092	-0.16	1.1×10^{-9}	-0.087	$2.6 imes 10^{-8}$
CCR5	46541147	rs7430431	-0.17	9.2×10^{-10}	-0.088	$2.3 imes 10^{-8}$
CCR5	46556835	rs6808142	0.15	$8.3 imes 10^{-8}$	0.082	3.3×10^{-7}
MHC	31274380	rs9264942	-0.21	4.5×10^{-13}	-0.12	3.7×10^{-13}
MHC	31321919	rs1055821	-0.33	9.4×10^{-13}	-0.19	1.4×10^{-12}
MHC	31367874	rs111281598	-0.37	1.5×10^{-12}	-0.22	2.1×10^{-12}
MHC	31376266	rs73400361	-0.37	1.4×10^{-12}	-0.22	2.1×10^{-12}
MHC	31380034	rs112243036	-0.32	$9.9 imes 10^{-16}$	-0.17	$3.7 imes 10^{-14}$

Measurement	Value	Reference
\overline{z}	≈ 4.5	Mitov and Stadler (2018)
\overline{z}	4.4	Blanquart et al. (2017)
\overline{z}	≈ 4.5	Bonhoeffer $et \ al. \ (2015)$
σ_z^2	0.73	Mitov and Stadler (2018)
σ_z^2	0.50	Blanquart et al. (2017)
σ_z^2	pprox 0.5	Bonhoeffer $et \ al. \ (2015)$

Table S3: Summary statistics for log spVL in previously sampled populations. \bar{z} is average spVL (log copies/mL) and σ_z^2 is variance in measured spVL (log copies²/mL²). Values from (Blanquart *et al.*, 2017; Mitov and Stadler, 2018) are empirical; values from (Bonhoeffer *et al.*, 2015) were estimated by fitting a normal distribution to the data.

Table S4: POUMM parameter estimates for spVL from previous studies.

Parameter	Value (Uncertainty)	Reference	Notes
g_0	5.54 (4.04 - 7.25)	Mitov and Stadler (2018)	8,483 UK HIV cohort indi-
			viduals, pol tree
θ	4.45 (4.41 - 4.49)	Mitov and Stadler (2018)	
θ	4.0(1.6 - 4.))	Bertels et al. (2018)	3,036 SHCS individuals, pol
			tree
θ	4.1 (3.5 - 4.9)	Blanquart et al. (2017)	1,581 subtype B individuals
			from Europe, whole genome
			tree
α	28.78 (16.64 - 46.93)	Mitov and Stadler (2018)	
lpha	$32.7 \ (0.03 - 57.6)$	Bertels et al. (2018)	
lpha	7.6(1.2 - 10)	Blanquart et al. (2017)	**limited α to ≤ 10
σ	$2.97 \ (1.95 - 4.37)$	Mitov and Stadler (2018)	
σ	$1.3 \ (0.66 \ -1.87)$	Blanquart et al. (2017)	
σ_e	$0.77\ (0.73,\ 0.8)$	Mitov and Stadler (2018)	
σ_e	$0.61 \ (0.54, \ 0.65)$	Blanquart et al. (2017)	

Sample filter	Number of samples remaining
Subtype B pol sequences	1516
With paired spVL measurement	1516
> 750 characters in sequence	1493
Individual is of European ancestry	1396
Kinship coefficient > 0.09375	1392

Table S5: Number of samples for GWAS after sequential filtering steps.

Table S6: Number of variants for GWAS after sequential filtering steps.

Variant filter	Number of variants remaining
Raw data	76979521
Missing genotype rate > 0.05	11590002
Hardy-Weinburg exact test p-value $<5\times 10^{-5}$	11589246
Minor allele frequency < 0.01	6228626