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Abstract 19 

During the COVID-19 pandemic, non-pharmaceutical interventions (NPIs) including school 20 

closures, workplace closures and social distancing policies have been employed worldwide to 21 

reduce transmission and prevent local outbreaks. However, transmission and the effectiveness of 22 
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NPIs depend strongly on age-related factors including heterogeneities in contact patterns and 23 

pathophysiology. Here, using SARS-CoV-2 as a case study, we develop a branching process 24 

model for assessing the risk that an infectious case arriving in a new location will initiate a local 25 

outbreak, accounting for the age distribution of the host population. We show that the risk of a 26 

local outbreak depends on the age of the index case, and we explore the effects of NPIs targeting 27 

individuals of different ages. Social distancing policies that reduce contacts outside of schools 28 

and workplaces and target individuals of all ages are predicted to reduce local outbreak risks 29 

substantially, whereas school closures have a more limited impact. In the scenarios considered 30 

here, when different NPIs are used in combination the risk of local outbreaks can be eliminated. 31 

We also show that heightened surveillance of infectious individuals reduces the level of NPIs 32 

required to prevent local outbreaks, particularly if enhanced surveillance of symptomatic cases is 33 

combined with efforts to find and isolate nonsymptomatic infected individuals. Our results 34 

reflect real-world experience of the COVID-19 pandemic, during which combinations of intense 35 

NPIs have reduced transmission and the risk of local outbreaks. The general modelling 36 

framework that we present can be used to estimate local outbreak risks during future epidemics 37 

of a range of pathogens, accounting fully for age-related factors. 38 

 39 
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1. Introduction 44 

Throughout the COVID-19 pandemic, policy makers worldwide have relied on non-45 

pharmaceutical interventions (NPIs) to limit the spread of SARS-CoV-2. Commonly introduced 46 

NPIs have included school closures, workplace closures and population-wide social distancing 47 

policies, all of which aim to reduce the numbers of contacts between individuals and disrupt 48 

potential chains of transmission [1-4]. Similar measures have previously been adopted for 49 

countering other infectious diseases such as Ebola and pandemic influenza [5-7], and are likely 50 

to remain a key line of defence against emerging pathogens that are directly transmitted between 51 

hosts. NPIs are particularly important when no effective treatment or vaccine is available, and 52 

they are also beneficial when vaccination programmes are being rolled out [8-10]. If vaccines do 53 

not prevent transmission completely, then NPIs may be important even when vaccination is 54 

widespread [11]. However, the negative economic, social and non-disease health consequences 55 

of NPIs have been widely discussed, with the impact of school closures on the academic progress 56 

and wellbeing of school-aged individuals a particular concern [7, 12-16]. Therefore, assessing 57 

the effectiveness of different NPIs at reducing transmission is critical for determining whether or 58 

not they should be used. 59 

 60 

Since NPIs such as school and workplace closures affect distinct age groups within the 61 

population, when evaluating their effectiveness it is important to account for age-dependent 62 

factors that influence transmission. Multiple studies have documented marked heterogeneities in 63 

the patterns of contacts between individuals in different age groups, with school-aged individuals 64 

tending to have more contacts each day than older individuals [17-23]. Since close contact 65 

between individuals is a key driver of transmission for respiratory pathogens such as influenza 66 
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viruses and SARS-CoV-2, these contact patterns influence transmission dynamics and 67 

consequently the effects of interventions that target different age groups [18, 19, 24-27]. 68 

Additionally, many diseases are characterised by significant age-related variations in 69 

pathophysiology. For example, for SARS-CoV-2, children may be less susceptible to infection 70 

than adults [27-31], and more likely to experience asymptomatic or subclinical courses of 71 

infection [28, 31-36]. Since the secondary attack rate (the proportion of close contacts that lead 72 

to new infections) from asymptomatic or subclinical hosts is lower than from hosts with clinical 73 

symptoms [37-42], children are likely to be less infectious on average than older individuals who 74 

are at increased risk of developing symptoms [43-45].  75 

 76 

Previous studies have used age-stratified deterministic transmission models to investigate the 77 

effects of NPIs on COVID-19 epidemic peak incidence and timing. Prem et al. [46] projected the 78 

outbreak in Wuhan, China, over a one year period under different control scenarios, and 79 

demonstrated that a period of intense control measures including school closures, a 90% 80 

reduction in the workforce and a significant reduction in other social mixing could delay the 81 

epidemic peak by several months. Zhang et al. [27] predicted that eliminating all school contacts 82 

during the outbreak period would lead to a noticeable decrease in the peak incidence and a later 83 

peak; however, they did not take differences between symptomatic and asymptomatic cases into 84 

account explicitly. In contrast, Davies et al. [31] used estimates of age-dependent susceptibility 85 

and clinical fraction fitted to the observed age distribution of cases in six countries to 86 

demonstrate that school closures alone were unlikely to reduce SARS-CoV-2 transmission 87 

substantially. Davies et al. [47] subsequently concluded that a combination of several strongly 88 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 2, 2021. ; https://doi.org/10.1101/2021.04.27.21256163doi: medRxiv preprint 

https://doi.org/10.1101/2021.04.27.21256163
http://creativecommons.org/licenses/by-nd/4.0/


 5 

enforced NPIs would be necessary to avoid COVID-19 cases exceeding available healthcare 89 

capacity in the UK.  90 

 91 

Rather than considering the entire epidemic curve, here we focus on estimating the probability 92 

that cases introduced to a new location trigger a local outbreak as opposed to fading out with few 93 

cases. Localised clusters of transmission have been a feature of the COVID-19 pandemic [48-94 

50], and assessing the risk that such local outbreaks occur requires a stochastic model in which 95 

the pathogen can either invade or fade out. Stochastic branching process models have been 96 

applied previously to assess outbreak risks for many pathogens without considering different age 97 

groups explicitly [51-55], and extended to consider adults and children as two distinct groups 98 

[56]. However, the significant heterogeneities in contact patterns and pathophysiology between 99 

individuals across the full range of ages have never previously been considered in estimates of 100 

local outbreak risks. Here, we develop an age-structured branching process model that can be 101 

used to estimate the probability of a local outbreak occurring for index cases of different ages, 102 

and demonstrate how the age-dependent risk profile changes when susceptibility to infection and 103 

clinical fraction vary with age.  104 

 105 

We use the model to investigate the effects on the local outbreak probability of NPIs that reduce 106 

the numbers of contacts between individuals. Specifically, we use location-specific contact data 107 

for the UK detailing the average numbers of daily contacts occurring in school, in the workplace 108 

and elsewhere [17] to model the impacts of school closures, workplace closures and broader 109 

social distancing policies. We demonstrate that, for SARS-CoV-2, contacts occurring outside 110 

schools and the workplace are a key driver of sustained transmission. Thus, population-wide 111 
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social distancing policies that affect individuals of all ages lead to a substantial reduction in the 112 

risk of local outbreaks. In contrast, since school-aged individuals only make up around one 113 

quarter of the UK population and tend to have large numbers of contacts outside school, school 114 

closures are predicted to have only a limited effect when applied as the sole NPI. 115 

 116 

We then go on to consider the impacts of mixed strategies made up of multiple NPIs, as well as 117 

additional NPIs that do not only reduce numbers of contacts. Specifically, we show that rigorous 118 

surveillance and effective isolation of infected hosts can reduce the level of contact-reducing 119 

NPIs required to achieve substantial reductions in the risk of local outbreaks. Although we use 120 

SARS-CoV-2 as a case study, our approach can be applied more generally to explore the effects 121 

of NPIs on the risk of outbreaks of any pathogen for which age-related heterogeneities play a 122 

significant role in transmission dynamics. 123 

 124 

2. Methods 125 

2.1 Mathematical model  126 

We considered a branching process model in which the population was divided into 16 age 127 

groups, denoted 𝐺!, 𝐺", … , 𝐺!#. The first 15 groups represent individuals aged 0-74, divided into 128 

five-year intervals (0-4, 5-9, 10-14 etc.). The final group represents individuals aged 75 and over. 129 

The total number of individuals in age group 𝐺$ is denoted 𝑁$. Infected individuals in each age 130 

group 𝐺$ are classified into compartments representing asymptomatic (𝐴$), presymptomatic (𝑃$) 131 

or symptomatic (𝑆$) hosts, where an individual in the 𝐴$ compartment does not develop 132 

symptoms at any time during their course of infection. 133 

 134 
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An infected individual of any type in group 𝐺$ may generate new infections in any age group. In 135 

our model, the rate at which a single infected symptomatic individual in group 𝐺$ generates 136 

infections in group 𝐺% is given by 137 

𝛽$% = 𝐵𝜏$𝜔%𝐶$% . 138 

Here, 𝜏$ represents the infectivity of individuals in group 𝐺$, 𝜔% represents the susceptibility to 139 

infection of individuals in group 𝐺%, 𝐶$% represents the daily number of unique contacts a single 140 

individual in group 𝐺$ has with individuals in group 𝐺%, and 𝐵 is a scaling factor that can be used 141 

to set the reproduction number of the pathogen being considered (see Section 2.2). Since the 142 

initial phase of potential local outbreaks are the focus of this study, we did not account for 143 

depletion of susceptible hosts explicitly. The relative transmission rates from presymptomatic 144 

and asymptomatic individuals compared to symptomatic individuals are given by the scaled 145 

quantities 𝜂𝛽$% and 𝜃𝛽$%, respectively, where 𝜂 and 𝜃 were chosen so that the proportions of 146 

transmissions generated by presymptomatic and asymptomatic hosts were in line with literature 147 

estimates [57]. The parameter 𝜉$ represents the proportion of asymptomatic infections in group 148 

𝐺$, so that a new infection in group 𝐺$ either increases 𝐴$ by one (with probability 𝜉$) or 149 

increases 𝑃$ by one (with probability 1 − 𝜉$). 150 

 151 

A presymptomatic individual in group 𝐺$ may go on to develop symptoms (transition from 𝑃$ 152 

to 𝑆$) or be detected and isolated (so that 𝑃$ decreases by one). A symptomatic individual in 153 

group 𝐺$ may be detected and isolated as a result of successful surveillance, or may be removed 154 

due to self-isolation, recovery or death (so that 𝑆$ decreases by one in either case). Similarly, an 155 

asymptomatic individual in group 𝐺$ may be detected and isolated or recover (so that 𝐴$ 156 

decreases by one). A schematic of the different possible events in the model is shown in Fig 1. 157 
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 158 

The parameter 𝜆 represents the rate at which presymptomatic individuals develop symptoms, so 159 

that the expected duration of the presymptomatic infectious period is 1/𝜆 days in the absence of 160 

surveillance of nonsymptomatic infected individuals. Similarly, the expected duration of the 161 

asymptomatic infectious period in the absence of surveillance is 1/𝜈 days. The parameter 𝜇 162 

represents the rate at which symptomatic individuals are removed as a result of self-isolation, 163 

recovery or death, so that the duration of time for which they are able to infect others is 1/𝜇 164 

days. 165 

 166 

For each group 𝐺$, the rate at which symptomatic individuals are detected and isolated as a result 167 

of enhanced surveillance is determined by the parameter 𝜌$. Analogously, the parameter 𝜎$ 168 

governs the rate at which presymptomatic and asymptomatic individuals in 𝐺$ are detected and 169 

isolated. We assumed that surveillance measures targeting nonsymptomatic hosts are equally 170 

effective for those who are presymptomatic and those who are asymptomatic, and therefore used 171 

the same rate of isolation due to surveillance for both of these groups. 172 

 173 
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 174 

Fig 1. The branching process model used in our analyses. Schematic showing the different possible 175 

events in the branching process model and the rates at which they occur.  The parameters of the model 176 

are described in the text and in Tables 1, 2 and 3. 177 

  178 

2.2 Reproduction number 179 

The effective reproduction number, 𝑅, represents the expected number of secondary infections 180 

generated by a single infected individual during their entire course of infection, accounting for 181 

interventions that are in place. Here, we take a heuristic approach to derive the following 182 

expression for 𝑅: 183 

𝑅 = <
𝑁$
𝑁 	<>

𝜉$𝜃𝛽$&
𝜈 + 𝜎$

+ (1 − 𝜉$) B
𝜂𝛽$&
𝜆 + 𝜎$

+
𝜆

𝜆 + 𝜎$
𝛽$&

𝜇 + 𝜌$
CD

!#

&'!

!#

$'!

,			(1) 184 

where 𝑁 = 𝑁! +⋯+𝑁!# is the total population size. To obtain this expression, we first consider 185 

the expected number of secondary infections an infected individual in age group 𝐺$ will generate 186 

in age group 𝐺&. If an individual in age group 𝐺$ experiences a fully asymptomatic course of 187 

infection, which occurs with probability 𝜉$, they will generate new infections in age group 𝐺& at 188 
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rate 𝜃𝛽$& and recover or be isolated at rate 𝜈 + 𝜎$. Therefore, the total number of infections they 189 

are expected to cause in age group 𝐺& is 𝜃𝛽$&/(𝜈 + 𝜎$). If instead the individual in age group 𝐺$ 190 

experiences a symptomatic course of infection, which occurs with probability 1 − 𝜉$, whilst 191 

presymptomatic they will generate new infections in age group 𝐺& at rate 𝜂𝛽$& and be isolated or 192 

develop symptoms at rate 𝜆 + 𝜎$. Thus, the total number of infections they are expected to cause 193 

in age group 𝐺& whilst presymptomatic is 𝜂𝛽$&/(𝜆 + 𝜎$). If they go on to develop symptoms 194 

before being isolated, which occurs with probability 𝜆/(𝜆 + 𝜎$), applying similar reasoning they 195 

are expected to cause 𝛽$&/(𝜇 + 𝜌$) new infections in age group 𝐺& whilst symptomatic. 196 

Combining these possibilities leads to the term in square brackets in expression (1), which is then 197 

summed over all possible age groups 𝐺& of the infectee. Finally, to obtain the full expression (1) 198 

we take a weighted average across all possible age groups 𝐺$ of the infector, where the weights 199 

𝑁$/𝑁 represent the proportions of the population belonging to each age group. This corresponds 200 

to the assumption that the initial infected host is more likely to belong to an age group containing 201 

more individuals than an age group with fewer individuals.  202 

 203 

In the absence of interventions, i.e. when 𝜎$ = 𝜌$ = 0 (representing no enhanced isolation as a 204 

result of surveillance) and 𝛽$& is calculated using contact patterns that are characteristic of 205 

normal behaviour, the effective reproduction number, 𝑅, is equal to the basic reproduction 206 

number, 𝑅(. 207 

 208 

2.3 Model parameterisation 209 

The numbers of individuals in each age group (values of 𝑁$) were chosen according to United 210 

Nations age demographic data for the UK [58] (Fig 2A). The daily numbers of contacts between 211 
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individuals in each age group (values of 𝐶$%) were set according to the 16x16 ‘contact matrix’ 212 

for the UK, in which the (𝑘, 𝑗)th entry represents the expected daily number of unique contacts 213 

an individual in age group 𝐺$ has with individuals in age group 𝐺% [17]. In addition to matrices 214 

representing ‘all’ contacts (Figure 2B), we also considered matrices detailing a breakdown into 215 

‘school’, ‘work’, ‘home’ and ‘other’ contacts (Figures 2C-F), allowing us to investigate the 216 

effects of control interventions that reduce contacts in each of these settings. 217 

 218 

Since we considered SARS-CoV-2 as a case study, we used studies conducted during the 219 

COVID-19 pandemic to inform the epidemiological parameters of our model. Despite previous 220 

research assessing the relationships between age and factors such as susceptibility to SARS-221 

CoV-2 infection or the propensity to develop symptoms, there is some variation in estimated 222 

parameters between different studies. To test the robustness of our results to this uncertainty, we 223 

conducted our analyses under three different scenarios (A, B and C). In scenario A, we assumed 224 

that susceptibility to infection (values of 𝜔$) and the proportion of hosts who experience a fully 225 

asymptomatic course of infection (values of 𝜉$) are independent of age. In scenario B, 226 

susceptibility was assumed to vary with age but the proportion of asymptomatic infections is 227 

independent of age. In scenario C, we allowed both susceptibility and the asymptomatic 228 

proportion to vary with age. The values used for the parameters 𝜔$ and 𝜉$ in each of these three 229 

scenarios are shown in Table 1 (see also [31]). 230 

 231 

In all scenarios considered, the inherent infectivity was not assumed to be age-dependent (i.e. 232 

𝜏$ = 1 for all values of 𝑘). In other words, the expected infectiousness of infected hosts in 233 

different age groups was governed solely by the proportion of asymptomatic infections in that 234 
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age group. We chose the scaling factors 𝜂 and 𝜃 for the relative transmission rates from 235 

presymptomatic and asymptomatic individuals compared to symptomatic individuals so that the 236 

proportions of infections arising from each of these groups were in line with literature estimates 237 

(see Table 3 and [57]).  238 

 239 

In the absence of enhanced isolation, we set the expected duration of the presymptomatic 240 

infectious period and the time for which symptomatic individuals are able to infect others to be 241 

1/𝜆	 = 2	days and 1/𝜇	 = 8	days, respectively [59-62]. The asymptomatic infectious period was 242 

then chosen so that all infected individuals are expected to be infectious for the same period (i.e. 243 

1/𝜈 = 10	days). In our initial analysis, we set the isolation rates 𝜌$ 	and 𝜎$ equal to 0 for all 244 

𝑘;	later, we considered the effects of increasing these rates. 245 

 246 

Initially, we fixed 𝑅( = 3 (in line with initial estimates of SARS-CoV-2 transmissibility [63-66], 247 

before the emergence of more transmissible variants) and used expression (1) to determine the 248 

appropriate corresponding value of the scaling factor 𝐵. Later, when considering the impact of 249 

NPIs on the probability of a local outbreak, we retained this value of 𝐵 and used expression (1) 250 

to determine how the reproduction number changes as a result of the control implemented. 251 

 252 

Table 1. Baseline values of age-dependent parameters. Values used for the age-dependent relative 253 

susceptibility to infection (𝜔!) and the proportion of infections that are asymptomatic (𝜉!) for each of the  254 

scenarios A, B and C [31]. 255 

Age group (𝑮𝒌) 
Relative susceptibility (𝝎𝒌) Asymptomatic proportion (𝝃𝒌) 

Scenario A Scenarios B & C Scenarios A & B Scenario C 
𝐺", 𝐺# (0-9) 

1.0 
0.4 0.584  

(weighted average 
of age-dependent 

0.71 
𝐺$, 𝐺% (10-19) 0.38 0.79 
𝐺&, 𝐺' (20-29) 0.79 0.73 
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𝐺(, 𝐺) (30-39) 0.86 values of 𝜉* in 
scenario C) 

0.67 
𝐺+, 𝐺", (40-49) 0.8 0.6 
𝐺"", 𝐺"# (50-59) 0.82 0.51 
𝐺"$, 𝐺"% (60-69) 0.88 0.37 
𝐺"&, 𝐺"' (70+) 0.74 0.31 

 256 

Table 2. Baseline values of scenario-independent parameters. Values used for the parameters that were 257 

assumed not to vary between scenarios A, B and C. We also considered strategies involving enhanced 258 

surveillance (𝜌* , 𝜎* > 0) – see Fig 6.  259 

Parameter Meaning Baseline value Justification 

𝑅, 

Expected number of secondary 
infections generated by a single 
infectious host in the absence of 

interventions 

𝑅, = 3 
Within estimated range for original 

SARS-CoV-2 virus [63-66] 

𝜆 
Rate at which presymptomatic hosts 

develop symptoms 𝜆 = 1/2	days-" [59] 

𝜇 
Rate at which symptomatic hosts are 

removed due to self-isolation, 
recovery or death 

𝜇 = 1/8	days-" [60-62] 

𝜈 
Rate at which asymptomatic hosts are 

removed due to recovery or death 𝜈 = 1/10	days-" 

Chosen so that, in the absence of 
interventions, the expected 

duration of infection is identical 
for all infected hosts #"

#
= "

$
+ "

%
& 

𝜏* (Relative) infectivity parameter 𝜏* = 1 for 𝑘 = 1,… ,16 Assumed 

𝜌* 
Isolation rate due to surveillance of 

symptomatic individuals 𝜌* = 0 for 𝑘 = 1,… ,16 N/A 

𝜎* 
Isolation rate due to surveillance of 

nonsymptomatic individuals 𝜎* = 0 for 𝑘 = 1,… ,16 N/A 

 260 

Table 3. Baseline values of scenario-dependent scaling parameters. Values used for the scaling parameters 261 

𝐵, 𝜂 and 𝜃 for each of the scenarios A, B and C. 262 

Parameter Meaning 
Value Justification 

Scenario A Scenario B Scenario C  

𝐵 
Transmission rate 

scaling factor 0.0386 0.0559 0.0607 Chosen so that 𝑅, = 3  
[63-66] 

𝜂 

Relative transmission 
rate of presymptomatic 

hosts compared to 
symptomatic hosts 

4.83 4.83 4.83 

Chosen so that the 
proportion of all infections 

arising from presymptomatic 
hosts is 0.489 [57] 
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𝜃 

Relative transmission 
rate of asymptomatic 

hosts compared to 
symptomatic hosts 

0.149 0.149 0.130 

Chosen so that the 
proportion of all infections 

arising from entirely 
asymptomatic hosts is 0.106 

[57] 
 263 

2.4 Probability of a local outbreak 264 

The probability that an infected individual in a particular age group initiates a local outbreak 265 

when they are introduced into the population was calculated using the branching process model. 266 

One possible approach for approximating the age-dependent local outbreak probability using a 267 

branching process model is to run a large number of stochastic simulations of the model starting 268 

from a single infected individual in a particular age group, and record the proportion of 269 

simulations in which the pathogen does not fade out after only a small number of infections [67]. 270 

This would then need to be repeated for index cases of different ages. Here, we instead take an 271 

analytic approach, and derive a nonlinear system of simultaneous equations that determine the 272 

age-dependent outbreak probabilities, as described below. The local outbreak probabilities are 273 

then obtained by solving these equations numerically, and are analogous to the probabilities that 274 

would be derived from the simulation approach in the limit of infinitely many simulations. The 275 

benefit of our analytic approach is that it does not require a large number of stochastic 276 

simulations to be run.  277 

 278 

The probability of a local outbreak not occurring (i.e. pathogen fadeout occurs), starting from a 279 

single symptomatic (or presymptomatic, asymptomatic respectively) infectious individual in age 280 

group 𝐺$, was denoted by 𝑥$ (𝑦$, 𝑧$).  Beginning with a single symptomatic individual in 𝐺$, 281 

the possibilities for the next event are as follows: 282 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 2, 2021. ; https://doi.org/10.1101/2021.04.27.21256163doi: medRxiv preprint 

https://doi.org/10.1101/2021.04.27.21256163
http://creativecommons.org/licenses/by-nd/4.0/


 15 

1. The infected individual in 𝐺$ infects a susceptible individual in 𝐺%, so that either 𝐴% 283 

increases by one (with probability 𝜉%) or 𝑃% increases by one (with probability (1 − 𝜉%). 284 

This occurs with probability 285 

𝛼$% =
𝛽$%

𝜇 + 𝜌𝑘 + ∑ 𝛽$&16
&'!

. 286 

2. The infected individual in 𝐺$ recovers, dies or is isolated before infecting anyone else, so 287 

that 𝑆$ decreases to zero (and there are no infected individuals left in the population). 288 

This occurs with probability 289 

𝛾$ =
𝜇 + 𝜌𝑘

𝜇 + 𝜌𝑘 + ∑ 𝛽$&16
&'!

. 290 

If there are no infectious hosts present in the population, then a local outbreak will not occur.  291 

Therefore, assuming that chains of transmission arising from infectious individuals are 292 

independent, the probability that no local outbreak occurs beginning from a single symptomatic 293 

individual in 𝐺$ is 294 

𝑥$ = 𝑥$ W<𝛼$%X𝜉%𝑧% + X1 − 𝜉%Y𝑦%Y
!#

%'!

Z + 𝛾$ .			(2) 295 

Similarly, beginning instead with a single presymptomatic individual in 𝐺$, the possibilities for 296 

the next event are: 297 

1. The presymptomatic infected individual in 𝐺$ infects a susceptible individual in 𝐺%, so 298 

that (as before) either 𝐴% increases by one (with probability 𝜉%) or 𝑃% increases by one 299 

(with probability (1 − 𝜉%)). This occurs with probability	300 

𝛼%$% =
𝜂𝛽$%

𝜆 + 𝜎$ + 𝜂∑ 𝛽$&'(
&)'

. 301 
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2. The infected individual in 𝐺$ develops symptoms (transitions from 𝑃$ to 𝑆$). This occurs 302 

with probability  303 

𝛿$ =
𝜆

𝜆 + 𝜎𝑘 + 𝜂∑ 𝛽𝑘𝑙
16
𝑙=1

. 304 

3. The infected individual in 𝐺$ is isolated before infecting anyone else, so that 𝑆$ decreases 305 

by one. This occurs with probability  306 

𝜙$ =
𝜎$

𝜆 + 𝜎𝑘 + 𝜂∑ 𝛽𝑘𝑙
16
𝑙=1

. 307 

Therefore, the probability that no local outbreak occurs beginning from a single presymptomatic 308 

individual in 𝐺$ is 309 

𝑦$ = 𝑦$ W<𝛼]$%X𝜉%𝑧% + X1 − 𝜉%Y𝑦%Y
!#

%'!

Z + 𝛿$𝑥$ + 𝜙$ .			(3) 310 

Similarly, the probability 𝑧$ that a local outbreak does not occur starting from a single 311 

asymptomatic individual in 𝐺$ satisfies the equation 312 

𝑧$ = 𝑧$ W<𝑎_$%X𝜉%𝑧% + X1 − 𝜉%Y𝑦%Y
!#

%'!

Z + 𝜖$ ,			(4) 313 

where  314 

𝛼_$% =
𝜃𝛽$%

𝜈 + 𝜎$ + 𝜃∑ 𝛽$&!#
&'!

			and			𝜖$ =
𝜈 + 𝜎$

𝜈 + 𝜎$ + 𝜃∑ 𝛽$&!#
&'!

. 315 

  316 

The system of simultaneous equations (2) − (4) can be solved numerically to obtain 𝑥$ , 𝑦$ and 317 

𝑧$ (here, we did this using the MATLAB nonlinear system solver ‘fsolve’). Specifically, we take 318 

the minimal non-negative solution, as is standard when calculating extinction probabilities using 319 

branching process models [55, 68]. Then, for each 𝑘, the probability of a local outbreak 320 
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occurring beginning from a single symptomatic (or presymptomatic, asymptomatic respectively) 321 

individual in group 𝐺$ is given by 1 − 𝑥$ (1 − 𝑦$ , 1 − 𝑧$).  322 

 323 

Throughout, we consider the probability 𝑝$ of a local outbreak occurring beginning from a single 324 

nonsymptomatic individual in group 𝐺$ arriving in the population at the beginning of their 325 

infection: 326 

𝑝$ = 𝜉$(1 − 𝑧$) + (1 − 𝜉$)(1 − 𝑦$). 327 

 328 

The average local outbreak probability, 𝑃, which is defined as the probability of a local outbreak 329 

when the index case is chosen randomly from the population, is also considered. The value of 𝑃 330 

is therefore a weighted average of the 𝑝$ values, where the weights correspond to the proportion 331 

of the population represented by each group: 332 

𝑃 =
1
𝑁<𝑁$𝑝$ .

!#

$'!

 333 

This reflects an assumption that the index case is more likely to come from an age group with 334 

more individuals than an age group with fewer individuals. 335 

 336 

All computing code used to implement the above methods was written in MATLAB version 337 

R2019a, and is available at https://github.com/francescalovellread/age-dependent-outbreak-risks. 338 

 339 
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 340 

Fig 2. Age demographic and age-structured contact patterns for the United Kingdom. A. 341 

United Nations age demographic data for the UK in 2020, split into five-year age groups (where the 342 

final age group contains all ages 75+) [58]. B. Heat map of UK ‘all contacts’ matrix, representing the 343 

expected daily number of unique contacts that an individual in each age group 𝐺! has with 344 

individuals in each other age group 𝐺& [17].	C. The analogous figure to B, but showing only the 345 

subset of ‘all’ contacts that occur in schools (‘school’ contacts). D. The analogous figure to C, but 346 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 2, 2021. ; https://doi.org/10.1101/2021.04.27.21256163doi: medRxiv preprint 

https://doi.org/10.1101/2021.04.27.21256163
http://creativecommons.org/licenses/by-nd/4.0/


 19 

showing only ‘workplace’ contacts. E. The analogous figure to C, but showing only ‘home’ contacts. 347 

F. The analogous figure to C, but showing only ‘other’ contacts (i.e. all contacts outside schools, 348 

workplaces or homes).  349 

 350 

3. Results 351 

3.1 Effect of the age of the index case on the risk of a local outbreak 352 

We first considered the probability that a single infected individual in a particular age group 𝐺$ 353 

initiates a local outbreak when introduced into a new host population. This quantity was 354 

calculated for each of the three scenarios A, B and C (Fig 3). 355 

 356 

 In scenario A, the variation in the local outbreak risk for introduced cases of different ages is 357 

driven solely by the numbers of contacts between individuals. As a result, due to their higher 358 

numbers of daily contacts, school- and working-age individuals are more likely to trigger a local 359 

outbreak than children under five or adults over 60, with index cases aged 15-19 posing the 360 

highest risk (Fig 3A). These findings do not change significantly when susceptibility is allowed 361 

to vary with age in scenario B (Fig 3B). However, in scenario C, assuming that the clinical 362 

fraction also varies between age groups alters the age-dependent risk profile substantially. This is 363 

because asymptomatic individuals are assumed to be less infectious than symptomatic 364 

individuals, and therefore an index case in an age group with a high proportion of asymptomatic 365 

infections is less likely to initiate a local outbreak. In this scenario, index cases aged 40 or over 366 

had a disproportionately high probability of generating a local outbreak, with individuals aged 367 

70-74 presenting the highest risk (Fig 3C). These individuals are more likely to develop 368 

symptoms than younger individuals (Table 1), leading to a higher expected infectiousness. In 369 

contrast, individuals under the age of 40 had a below average probability of generating a local 370 
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outbreak, with individuals aged 10-14 presenting the lowest risk. Noticeably, individuals aged 5-371 

19 presented relatively low risks, despite the high numbers of contacts occurring among these 372 

age groups (Fig 2B). In this scenario, the large number of contacts was offset by the fact that 373 

individuals in these age groups are more likely to be asymptomatic and consequently less 374 

infectious than older individuals (Table 1). Therefore, an index case in one of these age groups is 375 

likely to lead to fewer secondary transmissions. Furthermore, the contact patterns between 376 

individuals in these age groups are highly assortative with respect to age (Fig 2B). Therefore, in 377 

addition to the index case being less infectious, a high proportion of the contacts they make are 378 

with individuals who are also likely to be less infectious, as well as being less susceptible to 379 

infection in the first place.   380 

 381 

We performed our subsequent analyses for each of the three scenarios A, B and C, with 382 

qualitatively similar results. The figures shown in the main text are for scenario C, since we 383 

deem this scenario to be the most realistic for SARS-CoV-2 transmission, but the analogous 384 

results for scenarios A and B are presented in Supplementary Figs S1-6. 385 

 386 
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 387 

Fig 3. The probability of a local outbreak depends on the age of the index case. A. The 388 

probability that a single infected individual in any given age group triggers a local outbreak (grey 389 

bars) for scenario A, in which susceptibility and clinical fraction are assumed constant across all age 390 

groups. The weighted average local outbreak probability 𝑃 is shown by the black horizontal line. B. 391 

The analogous figure to A but for scenario B, in which clinical fraction is assumed constant across 392 
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all age groups but susceptibility varies with age (Table 1). C. The analogous figure to A but for 393 

scenario C, in which both susceptibility and clinical fraction vary with age (Table 1). 394 

 395 

3.2 Effect of the target age group on NPI effectiveness 396 

We next considered the effects of NPIs that reduce the number of contacts between individuals 397 

on the probability that an introduced case will lead to a local outbreak. To approximate the 398 

relative effects of school closures, workplace closures and population-wide social distancing 399 

policies, we calculated the age-dependent risk profiles when each of these types of contact were 400 

excluded from the overall contact matrix. 401 

 402 

First, we removed all ‘school’ contacts from the total contact matrix (Fig 4A). For scenario C, 403 

removing ‘school’ contacts led to a 4.2%	reduction in the average probability of a local outbreak 404 

(from 0.449	 to 0.430). This small reduction is unsurprising for scenario C, since in that scenario 405 

school-aged infected individuals are assumed to be more likely to be asymptomatic than other 406 

infected individuals, and therefore their expected infectiousness is lower. However, even for 407 

scenarios A and B, in which school-aged individuals present the greatest risk of triggering a local 408 

outbreak, the effectiveness of removing ‘school’ contacts alone at reducing the local outbreak 409 

probability was limited (reductions of 7.2% and 4.75% respectively; see Supplementary Figs 410 

S1A, S4A). In each scenario, the reduction in risk was predominantly for school-aged index 411 

cases, with the risk from index cases of other ages only slightly reduced. Second, we considered 412 

the effects of removing ‘work’ contacts from the total contact matrix (Fig 4B). This led to a more 413 

substantial 25.4% reduction in the average probability of a local outbreak for scenario C (with 414 

corresponding reductions of 19.0% and 24.0% for scenarios A and B respectively; see 415 

Supplementary Figs S1B, S4B). As well as reducing the risk of a local outbreak from an index 416 
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case of working age, removing ‘work’ contacts also reduced the probability of a local outbreak 417 

occurring starting from a school-aged individual. This is because closing workplaces helps to 418 

block chains of transmission that begin with an infected child. For example, a transmission chain 419 

involving a child transmitting to an adult at home, followed by subsequent spread around the 420 

adult’s workplace, will be less likely to occur. Third, we investigated the effect of removing all 421 

‘other’ contacts, reflecting perfect social distancing being observed outside of the home, school 422 

or workplace (Fig 4C). This had the most significant effect of the three types of contact-reducing 423 

intervention considered, reducing the probability of a local outbreak by 41.7% for scenario C 424 

(and 30.7% or 33.2% for scenarios A and B, respectively).  425 

 426 

In the three cases described above, we considered complete reductions in ‘school’, ‘work’ and 427 

‘other’ contacts, respectively. In practice, such complete elimination of contacts is unlikely. We 428 

therefore also considered partial reductions in ‘school’, ‘work’ and ‘other’ contacts, and 429 

compared the resulting reductions in the local outbreak probability (Fig 4D). For any given 430 

percentage reduction in contacts, reducing ‘other’ contacts always led to the largest reduction in 431 

the local outbreak probability (see also Supplementary Figs S1D, S4D). This suggests that 432 

reducing social contacts outside schools and workplaces can be an important component of 433 

strategies to reduce the risk of local outbreaks of SARS-CoV-2. However, this alone is not 434 

enough to eliminate the risk of local outbreaks entirely. For greater risk reductions using contact-435 

reducing NPIs, a mixed approach involving combinations of reductions in ‘school’, ‘workplace’ 436 

and ‘other’ contacts is needed. 437 

 438 
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 439 

Fig 4. The effects of interventions that reduce contacts between individuals on the probability of a 440 

local outbreak. A. The effect of removing all ‘school’ contacts on the probability of a local outbreak. 441 

Pale grey bars and black dash-dotted line represent the local outbreak probabilities without any contacts 442 

removed (as in Fig 3C). Red bars and the solid red line represent the local outbreak probabilities and 443 

their weighted average when ‘school’ contacts are removed. B. The analogous figure to A, but with all 444 

‘work’ contacts removed. C. The analogous figure to A, but with all ‘other’ contacts removed. D. Partial 445 

reductions in ‘school’, ‘work’ and ‘other’ contacts, and the resulting reductions in the average local 446 

outbreak probability (solid red, dashed blue and dotted green lines respectively). 447 

 448 

3.3 Mixed strategies for reducing the local outbreak risk 449 

Next, we considered the effects of combining reductions in ‘school’, ‘work’ and ‘other’ contacts 450 

on the local outbreak probability (Fig 5; analogous results for scenarios A and B are shown in 451 

Supplementary Figs S2 and S5). We allowed reductions in ‘school’ and ‘work’ contacts to vary 452 
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between 0% and 100% whilst ‘other’ contacts were reduced by 25%, 50% or 75% (Fig 5A,B,C, 453 

respectively).  454 

 455 

Since NPIs have negative economic, social and non-disease health consequences, policy makers 456 

may choose to implement public health measures in which the risk of local outbreaks is not 457 

eliminated completely. These results provide contact reduction targets for mixed strategies in 458 

which the local outbreak probability is reduced to a pre-specified ‘acceptable’ level. For 459 

example, to reduce the local outbreak probability to 0.25, ‘other’ contacts could be reduced by 460 

25% from the baseline level, and ‘school’ and ‘home’ contacts reduced as indicated by the red 461 

dotted contour marked ‘0.25’ in Fig 5A. Alternatively, to achieve the same local outbreak risk, 462 

‘other’ contacts can instead be reduced by 50% or by 75% with the degree of ‘school’ and 463 

‘work’ reductions chosen according to the contours marked ‘0.25’ in Figs 5B,C respectively.  464 

 465 

If a policy maker wishes to eliminate the local outbreak risk entirely using contact-reducing 466 

NPIs, for the model parameterisation considered very significant reductions in multiple types of 467 

contacts are needed in combination. For example, even if all ‘school’ and ‘work’ contacts are 468 

removed, ‘other’ contacts must be reduced by 66% for the overall average local outbreak 469 

probability to fall below 0.01 (Fig 5D). Since such substantial reductions in multiple types of 470 

contacts are unlikely to be possible, this suggests that contact-reducing NPIs must be combined 471 

with other interventions, such as effective surveillance and isolation strategies, to eliminate local 472 

outbreaks. 473 

 474 
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 475 

Fig 5. The effects of intervention strategies that combine reductions in ‘school’, ‘work’ and ‘other’ 476 

contacts. A. The effect of reducing ‘school’ and ‘work’ contacts on the weighted average probability of 477 

a local outbreak (𝑃), when ‘other’ contacts are reduced by 25% across all age groups. Red dotted lines 478 

indicate contours along which the local outbreak probability is constant. B. The analogous figure to A, 479 

but with a 50% reduction in ‘other’ contacts. C. The analogous figure to A, but with a 75% reduction in 480 

‘other’ contacts. D. The effect of reducing ‘other’ contacts on the average local outbreak probability 481 

when ‘school’ and ‘work’ contacts are not reduced at all (dotted line) and when ‘school’ and ‘work’ 482 

contacts are reduced by 100% (solid line).  483 

 484 

3.4 Effect of surveillance on the contact-reducing NPIs required for local outbreak control 485 

We considered whether or not low local outbreak probabilities can be achieved using limited 486 

contact-reducing NPIs in combination with other interventions. Specifically, the effects of 487 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 2, 2021. ; https://doi.org/10.1101/2021.04.27.21256163doi: medRxiv preprint 

https://doi.org/10.1101/2021.04.27.21256163
http://creativecommons.org/licenses/by-nd/4.0/


 27 

surveillance and isolation of infected individuals (through e.g. contact tracing) as well as 488 

reducing contacts in schools, workplaces and other locations, were assessed. While results are 489 

shown for scenario C in Fig 6, analogous results for scenarios A and B are presented in 490 

Supplementary Figs S3 and S6. 491 

 492 

Initially, we considered the effect of increasing the rate at which symptomatic and/or 493 

nonsymptomatic infected individuals are detected and isolated as a result of surveillance, in the 494 

absence of contact-reducing NPIs (i.e. with no reduction in the number of contacts between 495 

individuals compared to the baseline case in Fig 2B) (Fig 6A,B). For symptomatic hosts, this 496 

represents an enhanced rate of isolation compared to the baseline rate of self-isolation already 497 

present in the model. Isolation of nonsymptomatic hosts was more effective at reducing the local 498 

outbreak probability than isolation of symptomatic hosts (Figs 6A,B), although of course this is 499 

more challenging to achieve [55]. However, if fast isolation of nonsymptomatic hosts could be 500 

achieved through efficient large-scale testing (potentially in combination with contact tracing 501 

[69]), the probability of local outbreaks could be reduced substantially through this measure 502 

alone. 503 

 504 

We then demonstrated the effects of combining contact-reducing NPIs with enhanced isolation 505 

of infected hosts due to infection surveillance.  First, we increased the enhanced isolation rate of 506 

symptomatic individuals to 𝜌$ = 1/2	days)!. In the absence of other interventions, this reduced 507 

the local outbreak probability by 22.0%	(Figure 6C). With this level of surveillance, the local 508 

outbreak risk could be reduced below 0.01 with a reduction in ‘work’ and ‘other’ contacts of 509 

around 73% each, for example. 510 
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 511 

Finally, keeping the enhanced isolation rate of symptomatic individuals equal to 𝜌$ =512 

1/2	days)!, we increased the isolation rate of nonsymptomatic individuals to 𝜎$ = 1/7	days)!. 513 

In this case, the local outbreak probability without contact-reducing NPIs fell by 59.4% 514 

compared to a situation without enhanced surveillance (Fig 6E), and the reductions in ‘work’ and 515 

‘other’ contacts needed to bring the local outbreak probability below 0.01 were significantly 516 

smaller (Figure 6F). For example, if ‘work’ contacts can be reduced by 50%, then ‘other’ 517 

contacts only need to be reduced by 43%. This indicates that effective surveillance of both 518 

symptomatic and nonsymptomatic individuals can substantially lower the extent of contact-519 

reducing NPIs that are required to achieve substantial reductions in local outbreak risks. 520 
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 521 

Fig 6. Surveillance as part of a mixed strategy to reduce the local outbreak probability. A. The 522 

effect of increasing the isolation rate of symptomatic (red line) or nonsymptomatic infected hosts (blue 523 

line) on the average probability of a local outbreak (𝑃), in the absence of contact-reducing NPIs. The 524 

isolation rates 𝜌! and 𝜎! are varied in turn between 0	days'" and 1	days'". B. The effect of 525 

simultaneously varying the isolation rate of symptomatic and nonsymptomatic hosts on the average 526 

probability of a local outbreak (𝑃), again without contact-reducing NPIs. C. The age-dependent 527 
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probability of a local outbreak when the isolation rate of symptomatic individuals is 𝜌! = 1/2	days'", 528 

without contact-reducing NPIs or surveillance of nonsymptomatic infected individuals (purple bars and 529 

solid line). Pale grey bars and black dash-dotted line represent the original local outbreak probabilities 530 

without any contact-reducing NPIs or enhanced surveillance (as in Fig 3C). D. The effect of reducing 531 

‘work’ and ‘other’ contacts when the isolation rate of symptomatic infected individuals is 𝜌! =532 

1/2	days'", as in C, without surveillance of nonsymptomatic infected individuals. E,F. The analogous 533 

figures to C,D, with enhanced surveillance of both symptomatic and nonsymptomatic infected hosts 534 

(𝜌! = 1/2	days'" and 𝜎! = 1/7	days'"). 535 

 536 

4. Discussion 537 

During the COVID-19 pandemic, public health measures that reduce the numbers of contacts 538 

between individuals have been implemented in countries globally. These measures include 539 

school closures, workplace closures and population-wide social distancing policies. Contact-540 

reducing NPIs have been shown to be effective at reducing SARS-CoV-2 transmission, and have 541 

also been used previously during influenza pandemics [5, 70-72]. However, long-term 542 

implementation of these measures has negative social, psychological and economic 543 

consequences [7, 12-16]. It is therefore important to assess the effectiveness of different contact-544 

reducing NPIs at lowering transmission and preventing local outbreaks, in order to design 545 

effective targeted control strategies that avoid unnecessarily strict measures. 546 

 547 

Here, we constructed a branching process model to estimate the risk of local outbreaks under 548 

different contact-reducing NPIs and different levels of surveillance for symptomatic and 549 

nonsymptomatic infected individuals. Unlike previous approaches for estimating outbreak risks 550 

using branching processes [51-56], we considered the effects of age-related heterogeneities 551 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 2, 2021. ; https://doi.org/10.1101/2021.04.27.21256163doi: medRxiv preprint 

https://doi.org/10.1101/2021.04.27.21256163
http://creativecommons.org/licenses/by-nd/4.0/


 31 

affecting transmission for infected individuals of a wide range of ages, including age-dependent 552 

variations in social mixing patterns, susceptibility to infection and clinical fraction. Using SARS-553 

CoV-2 as a case study, we demonstrated that the risk that an introduced case initiates a local 554 

outbreak depends on these age-related factors and on the age of the introduced case (Fig 3), as 555 

well as the age-structure of the local population. 556 

 557 

We used our model to assess the effects of reducing the numbers of contacts that occur in school, 558 

in the workplace and elsewhere. Of the three contact-reducing NPIs considered, removing 559 

‘school’ contacts had the smallest effect on the probability of observing a local outbreak, even 560 

when age-dependent variations in susceptibility and clinical fraction were ignored (Figs 4A,D, 561 

Supplementary Figs S1A,D, and S4,A,D). This can be attributed to the fact that school closures 562 

predominantly reduce contacts between individuals aged 5-19, who only account for 563 

approximately 23% of the total population [58]. Additionally, these individuals tend to have 564 

large numbers of contacts outside of the school environment (Figs 2E,F). Therefore, compared to 565 

other measures, interrupting within-school transmission may have only a limited effect on 566 

transmission in the wider population, particularly when school-aged individuals are less 567 

susceptible to infection and more likely to experience subclinical courses of infection. In 568 

contrast, reducing contacts that occur outside schools or workplaces was the most effective 569 

intervention, significantly lowering the local outbreak risk across all age groups, and for those 570 

aged over 60 in particular (Figs 4C,D, and Supplementary Figs S1C,D and S4C,D). This could 571 

explain the success of social distancing strategies worldwide for reducing observed COVID-19 572 

cases and deaths. 573 

 574 
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Mixed strategies combining reductions in ‘school’, ‘work’ and ‘other’ contacts led to greater 575 

reductions in the local outbreak probability than individual interventions (Figs 5A-C), but very 576 

large reductions in all three types of contact were required to eliminate the risk of local outbreaks 577 

entirely (Fig 5D). However, implementing effective surveillance to identify infected hosts 578 

(followed by isolation) led to substantial reductions in the risk of local outbreaks even in the 579 

absence of other control measures (Figs 6A,B). In the scenarios considered here, with an 580 

efficient surveillance strategy in place, significantly smaller reductions in ‘work’ and ‘other’ 581 

contacts were needed to render the local outbreak probability negligible, even when ‘school’ 582 

contacts were not reduced at all (Figs 6C-F). This supports the use of surveillance that targets 583 

both symptomatic and nonsymptomatic individuals, such as contact tracing and isolation 584 

strategies or population-wide diagnostic testing, to help prevent local outbreaks [55]. 585 

 586 

Although here we used SARS-CoV-2 as a case study, our model provides a framework for 587 

estimating the risk of local outbreaks in age-structured populations that can be adapted for other 588 

pathogens, provided sufficient data are available to parametrise the model appropriately. The 589 

effects of age-structure on local outbreak risks may vary for pathogens with different 590 

epidemiological characteristics. For influenza-A viruses, for example, susceptibility to infection 591 

tends to decrease with age, whilst the risk of an infection leading to severe symptoms is greater 592 

both for the elderly and for the very young [31, 73, 74]. This is in contrast to SARS-CoV-2, for 593 

which children are more likely to experience subclinical courses of infection. In this study, we 594 

used age demographic and contact data for the UK, but equivalent data for other countries are 595 

available and can easily be substituted into our model to estimate outbreak risks elsewhere [17, 596 

58].  597 
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 598 

One caveat of the results for SARS-CoV-2 presented here is that, although the epidemiological 599 

parameters of our model were chosen to be consistent with reported literature estimates, there is 600 

considerable variation between studies. In particular, the precise age-dependent variation in 601 

susceptibility and clinical fraction remains unclear, and the relative infectiousness of 602 

asymptomatic, presymptomatic and symptomatic hosts has not been determined exactly. 603 

Furthermore, the inherent transmissibility of SARS-CoV-2 is now higher than in the initial stage 604 

of the pandemic, due to the appearance of novel variants. To explore ongoing local outbreak 605 

risks due to SARS-CoV-2, it would be necessary to update the model to reflect the increased 606 

transmissibility of the Delta variant [75]. Due to the uncertainty in model parameter values, we 607 

conducted sensitivity analyses to explore the effects of varying the parameters of the model on 608 

our results (Supplementary Figs S1-12). In each case that we considered, our main conclusions 609 

were unchanged: the probability that an introduced case initiates a local outbreak depends on 610 

age-dependent factors affecting pathogen transmission and control, with widespread 611 

interventions and combinations of NPIs reducing the risk of local outbreaks most significantly.  612 

 613 

An important limitation of our approach to modelling contact-reducing NPIs is that we made a 614 

standard assumption in our main analyses that ‘school’, ‘work’ and ‘other’ contacts are 615 

independent [27, 31, 47]. In other words, reducing the numbers of contacts in one location did 616 

not affect the numbers of contacts occurring in another. In reality, this is unlikely to be the case. 617 

For example, closing schools also affects workplace contacts, as adults may then work from 618 

home in order to fulfil childcare requirements. Additionally, the contact data that we used 619 

represent the number of unique contacts per day and do not reflect the numbers of repeated 620 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 2, 2021. ; https://doi.org/10.1101/2021.04.27.21256163doi: medRxiv preprint 

https://doi.org/10.1101/2021.04.27.21256163
http://creativecommons.org/licenses/by-nd/4.0/


 34 

contacts with the same person, which affect the risk of transmission between individuals. These 621 

assumptions could in principle be removed, if relevant data become available – for example, data 622 

describing the effects of school closures on numbers of contacts in other locations. To 623 

demonstrate how changes in multiple types of contact due to NPIs could be implemented in the 624 

model, we conducted a supplementary analysis in which we investigated the effects of removing 625 

all ‘school’ contacts and allowing for concurrent changes in ‘work’, ‘home’ and ‘other’ contacts 626 

(Supplementary Figs S13-14). These results support our conclusion that school closures are 627 

unlikely to have a substantial impact on SARS-CoV-2 transmission when applied as the sole 628 

NPI. The benefit of school closures could even potentially be outweighed by the possible 629 

secondary effects on other types of contacts. An improved understanding of how NPIs affect 630 

different types of contact is important for more accurate assessments of interventions in future.  631 

 632 

Despite the simplifications made, our model provides a useful framework for estimating the risk 633 

of local outbreaks and the effects of NPIs. Different measures can be considered in combination 634 

in the model to develop strategies for lowering local outbreak risks. Our results emphasise the 635 

importance of quantifying age-dependent factors that affect transmission dynamics, such as 636 

susceptibility to infection and the proportion of hosts who develop clinical symptoms, for 637 

individuals of different ages. As we have shown, it is crucial to take age-dependent factors into 638 

account when assessing local outbreak risks and designing public health measures. 639 
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