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Abstract (maximum of 250 words in total) 

● Background: This work analyses the impact of different vaccination strategies on the 

propagation of COVID-19 within the Madrid metropolitan area starting the 27th of December 

2020 and ending in the Summer of 2021. The predictions are based on simulation using 

EpiGraph, an agent-based COVID-19 simulator. 

● Methods: We briefly summarize the different interconnected models of EpiGraph and then we 

provide a comprehensive description of the vaccination model. We evaluate different 

vaccination strategies, and we validate the simulator by comparing the simulation results with 

real data from the metropolitan area of Madrid during the third wave.  

● Results: We consider the different COVID-19 propagation scenarios on a social environment 

consisting of the ten largest cities in the Madrid metropolitan area, with 5 million individuals. The 

results show that the strategy that fares best is to vaccinate the elderly first with the two doses 

spaced 56 days apart; this approach reduces the final infection rate and the number of deaths 

by an additional 6% and 3% with respect to vaccinating the elderly first at the interval between 

doses recommended by the vaccine producer.  

● Conclusion: Results show that prioritizing the vaccination of young individuals would 

significantly increase the number of deaths. On the other hand, spacing out the first and second 

dose by 56 days would result in a slight reduction in the number of infections and deaths. The 

reason is the increase in the number of vaccinated individuals at any time during the simulation.  
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1.- Introduction 

Immunization saves between 4 and 5 million lives annually. Its benefits extend beyond the vaccinated 

to include those who cannot themselves be vaccinated - small children, people with weak immune 

systems or those with contraindications. Resources that are saved due to fewer illnesses and 

hospitalizations can be invested into researching other diseases and caring for the otherwise ill [9]. At 

the end of 2020 the first COVID-19 vaccine batches were available in Spain and the authorities were 

faced with the problem of how to best schedule the different population segments for immunization 

considering a limited number of existing doses at this time [1]. The mitigation objectives were multiple: 

the immunization policies seek to reduce the number of deaths but also the number of infections (to 

curb transmission), of hospitalizations (to reduce the pressure on ICUs), or the incidence over specific 

collectives. The complexity of this problem increases with the large number of factors that have to be 

considered regarding the different types of vaccines - each one with different efficacies, batch sizes, 

and availability - as well as the surge of new virus mutations with different levels of resistance to 

vaccines. In this context, starting October 2020 we have been designing plausible vaccination scenarios 

as part of the Spanish Health Ministry task force, and we used EpiGraph [4] to simulate them and 

compare the outcomes in terms of COVID-19 infections, hospitalizations, and deaths. In this work we 

make the simulator source code and results available.  

 

2.- Methods 

2.1- Simulator overview 

EpiGraph consists of several different models that together reproduce the most important aspects of the 

simulation environment. Figure 1 shows an overview of the dataflow and simulator structure; a detailed 

description can be found in [2]. The social model reproduces the characteristics of the population that is 

being simulated, including the demographic data, daily activities, and interaction patterns. The 

experiments we report on in this paper are for the Madrid province which has about 5 million individuals, 

based on demographic data from the Spanish census [3]. Daily activities are structured around 

work/study time, leisure time, and family time. In order to realistically reproduce the social mixing, 

EpiGraph considers four different collectives (workers, students, the unemployed, and elderly people) 

as well as ten different professions. Some professions have specific contact patterns.  

 

Figure 1: EpiGraph data flow: data acquisition and preprocessing to read and configure the input data, 

followed by agent-based simulation and output data post-processing and analysis 

 

The transportation model considers that some individuals commute between cities. The NPI model 

reproduces the non-pharmaceutical interventions followed during the simulation period and include the 

use of facemasks [3], social distancing restrictions imposed by the authorities and testing of the 

population [4]. The epidemic model determines how the infection evolves in a host and specifies the 

probability of transmitting the virus from the infected individual to her contacts, depending on the host´s 

current infection stage. This probability depends on the characteristics of the individual potentially being 
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infected, such as their age, profession or whether the individual is using a mask or is vaccinated. The 

epidemic model is based on a compartmental stochastic SEIR model, shown in Figure 2(left), extended 

to include latent, asymptomatic, dead, hospitalized, and vaccinated states. This model is independently 

applied to each individual. A more detailed description parameters used in the models can be found in 

the Supplementary Material and in [1, 4]. 

 

2.2- Vaccination model 

This model determines the effectiveness of a vaccine for an individual according to the COVID-19 

variant, vaccine type, whether it is the first or second dose (if applicable), and personal characteristics 

such as age or whether he/she has been previously infected with COVID-19. In the compartmental 

model shown in Figure 2(left) we distinguish whether the individual is vaccinated or not. A vaccinated 

individual is categorized as treated. Supplementary Material includes a description of these states as 

well as the transition probabilities and R0 values for each state.  

We model four different vaccines in this work: Comirnaty (Pfizer-BioNTech), Spikevax (Moderna), Astra-

Zeneca and Janssen (Johnson & Johnson). Figure 2(right) shows the distribution used to model the 

vaccine efficacy over the time. This efficacy is defined as the probability of transitioning to the 

Asymptomatic Treated state (AT). For example, a vaccine efficacy of 95% means that 95% of the 

vaccinated individuals will transition to the AT state and remain asymptomatic if they are infected, without 

risk of severe symptoms. The remaining 5% will transition to the ES
T state if infected and a fraction of 

them will develop severe symptoms. Note that each compartmental state related to a vaccinated 

individual has an R0 value that is different from the case when no vaccination was applied and is 

dependent on the vaccine type and COVID-19 variant.  

In Figure 2(right) we assume that the first dose is administered at time zero. Then, at time T1 this dose 

starts providing protection to the individual, which reaches the maximum efficacy value at T2. As an 

example, the maximum efficacy for a first dose (E2) of Pfizer-BioNTech is 52% [5]. In the figure we can 

observe that the first vaccine dose becomes effective after day 12. During the first 12 days [5] the 

vaccine does not provide any protection, while during the next 8 days the efficacy of the vaccine 

increases linearly to 52%. If the second dose is not applied, then the efficacy will start decreasing after 

time T5, reaching the minimum value E1 (25% in the figure) a year after the first dose was administered.  

 

 

Figure 2: Left: Compartmental model used by EpiGraph that consists of the following states: susceptible 

(S), primary exposed (EP), secondary exposed (ES), asymptomatic (A), primary infected (IP), secondary 

infected (IS) hospitalized (H), recovered (R) and dead (D) individual. States with subindex T (ST, EP
T, 

etc.) are related to vaccinated (treated) subjects. Right: Vaccination model with values corresponding 

to Pfizer-BioNTech vaccine. The efficacy of a single dose is displayed in a solid orange line. The second 

dose efficacy is represented as a dashed blue line. E1, E2 and E3 represent the minimum, first and 

second dose efficacies, respectively. T1 is the time when the first dose starts increasing the efficacy, T2 
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is the time for achieving the maximum efficacy of the first dose. T3 is the time when the second dose 

was applied, T4 is the time for achieving the maximum efficacy of the second dose and T5 is the time 

when the first dose starts decreasing its efficacy.  

 

Note that in our model we consider that a person is naturally asymptomatic in 25% of the cases which 

corresponds to the probability of transitioning to the Asymptomatic state (A). The model also considers 

the effect of a second dose, applied at time T31. In this example, the effect of the second dose starts at 

52% and linearly increases to the maximum efficacy, around day 38. In this example, the maximum 

efficacy of E3 is 95% for Pfizer-BioNTech [5]. In this case, this maximum value is maintained for one 

year. 

 

2.3- Vaccination strategies  

The vaccination strategies reflect policies that can be adopted by health authorities worldwide and have 

as an objective to determine what is the most effective approach to vaccinate the population. As a 

general rule applied by health authorities in Spain, a candidate is subject to receiving the vaccine if 

he/she is in the susceptible, exposed primary, or asymptomatic states. In addition, an individual that has 

been infected with COVID-19 before being vaccinated will receive a single vaccine dose.  

In this work we have considered five different vaccination strategies, which we describe below: 

● No vaccination. No vaccines are administrated during the simulated time interval.  

● Elderly First (baseline). This strategy represents the baseline scenario which reproduces the 

vaccination strategy followed in Spain. For Pfizer-BioNTech and Moderna, the first group 

scheduled for vaccination were the elderly people living in nursing homes, their caregivers, and 

the front-line health professionals. The remaining health workers were vaccinated next, followed 

by the general population in age-decreasing order. For Astra-Zeneca the target was people 

between 18 and 56 years old before March 23th; 18 and 65 years old between March 23th and 

April 9th; and 60 and 69 years old after April 9th. Priority was given to elderly caregivers and 

health, security forces, and education professionals. In the simulations the Janssen vaccine was 

only delivered to people between 50 and 70 years old. 

● Young First. This policy prioritizes individuals following an age-increasing order for the Pfizer-

BioNTech and Moderna vaccines. With this policy, the first social group that receives the 

vaccine are teenagers, followed by people between 20 and 29 years old, and so on. The idea 

for this strategy is to limit the impact of transmission via groups that have the most social 

contacts within the entire population and tend to have the least noticeable symptoms. No 

specific professions are prioritized. This strategy stays unchanged compared to the “Elderly 

First” for Astra-Zeneca and Janssen, a decision taken by the Spanish authorities. 

● Elderly First, 56 days between doses (56D). This strategy represents a variation of the Elderly 

First strategy in which the first and second doses are separated by 56 days (instead of 21) for 

the Pfizer-BioNTech and Moderna vaccines. For Astra-Zeneca and Janssen the strategy is the 

same as the “Elderly First”. This is a scenario that the authorities tested to assess whether it 

could protect a larger fraction of the population from extreme symptoms that could lead to 

hospitalization and death. 

● Elderly First, 2 doses already infected (2DI). This strategy represents a variation of the 

Elderly First strategy in which individuals who have been previously infected with COVID-19 

also receive two doses of Pfizer-BioNTech or Moderna vaccines. The strategy for the rest of the 

population is the same as in the Elderly First.  

3.- Results  

 
1 Note that T3 may be bigger than T5. In this case, the vaccine efficacy is also increased by the second dose 

until reaching the maximum value of E3.  
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3.1.- Model validation 

EpiGraph was validated using the Madrid province (Spain) as a simulation scenario; this area mostly 

consists of the metropolitan area of Madrid which includes the city of Madrid and the following cities: 

Alcalá de Henares, Alcobendas, Alcorcón, Fuenlabrada, Getafe, Leganés, Móstoles and Parla, for a 

total of 5,018,241 inhabitants. EpiGraph was executed on Tirant supercomputer at the University of 

Valencia. The simulations for all scenarios start on December 27th, 2020, which corresponds to the 

initiation of the COVID-19 vaccination campaign in Spain. The simulation time span is 190 days. Fig. 

3(left) shows the aggregated number of infected individuals, with real data in red [20] and simulated 

data in blue. Each city includes demographic information which corresponds to the Madrid province and 

reflects the real population pyramid, job sector distribution, number of family members per household, 

etc. EpiGraph uses stochastic processes to perform the simulations, which may result in differences 

between the results in every run. In order to quantify the deviation in the results, we have repeated the 

same simulation 10 times obtaining a median number of notified daily cases of 3,111 for the simulation 

timeline (from December 27th 2020 and July 5th 2021). This value is similar to the average number of 

reported of 3,255 cases during the same period. 

 

Figure 3: On the left, results for model validation. These results include the aggregated number of 

infected individuals for the area under study. Real and simulated data are shown in red and blue, 

respectively. The simulated curve corresponds to the baseline scenario.  On the right, simulation results 

that include the percentage of infected population in blue bars and the number of deaths in orange, for 

each one of the vaccination strategies.  

 

 

 

Figure 4: Percentage of infected population at the end of the simulation, by groups. The acronyms stand 

for: ElderCG - caregiver for elderly people; Health - non-front-line health professionals; FL-Health - front-

line health professionals; Elder-NA - elderly that live by themselves; Elder-DC - elderly attended in daily 

centers; and Elder-NH - elderly that live in nursing homes. 
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Figure 5: Number of deaths at the end of the simulation, broken down by groups. The acronyms are 

identical to those in Figure 4. 

 

3.2.- Vaccination scenarios  

Figure 3(right) shows, for each vaccination strategy, the percentage of infected individuals from the 

overall population and the number of deaths at the end of the simulation. Each result corresponds to the 

median value of ten different simulation runs and includes an error bar that represents the standard 

deviation. In addition to face masks, all scenarios implement several social distancing restrictions that 

reduce the capacity in restaurants and social gatherings. Figures 4 and 5 show the number of infections 

and deaths broken down by groups. From Figure 3(right) we can observe that the no-vaccination 

scenario results in nearly 150% more infections and 200% more deaths than any of the vaccination 

scenarios. According to our model, Young Firsts results in a similar number of total infections and about 

48% more deaths than the baseline approach (Elderly First). The reason is that one of the most 

vulnerable groups - the elderly, are not vaccinated until the end of the simulation. In Figure 5 we can 

observe that most of the deaths are among elderly people. Spacing out the first and second doses by 

56 days increases the number of people vaccinated at any time, although they may only have received 

one dose. According to our model, this approach reduces the final infection rate and the number of 

deaths by 6% and 3% with respect to the baseline. Lastly, the Elderly First 2DI strategy decreases 

vaccination coverage, which results in a net increase of 5% and 1% in the number of infections and 

deaths, respectively - compared to the baseline. 

4.- Discussion 

The nature of EpiGraph as an agent-based model gives it the power to directly represent characteristics 

of the population under study, as well as the possibility to model the effect of other factors, e.g. NPIs or 

vaccination strategies, on the individuals in a population. This allows us to (relatively) easily add 

individual attributes that are relevant, model different interventions, customize and refine them, and 

observe their effects for the different segments of population. According to the results obtained in this 

work, spacing out the first and second dose by 56 days would result in a slight reduction in the number 

of infections and deaths. The reason is the increase in the number of vaccinated individuals at any time 

during the simulation, although some may only have the first dose. Prioritizing the vaccination of young 

individuals would significantly increase the number of deaths.  

In [6], the authors use a deterministic SEIR framework to model the propagation of the virus and the 

effect of non-pharmaceutical interventions (social distancing mandates and mask use) until Spring of 

2021. Some of the limitations of this approach are the absence of age structure and the assumption of 

a well-mixed population. Covasim [7] includes demographic information about age structure and 

population size. Different from our work, the contacts are not based on existing patterns; scalability 
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issues are partly sidestepped by dynamic scaling. Vaccines are modelled by adjusting individuals’ 

susceptibility to infection and probability of developing symptoms after being infected; both of these 

modifications affect the overall probability of progressing to severe disease and death. However, some 

features we consider in EpiGraph (like vaccine effectiveness across variants) are not currently 

implemented in Covasim. Modelling social mixing a crucial factor for obtaining realistic simulations. In 

[8, 10, 11] different ways for refining the social interactions are considered. In EpiGraph the social mixing 

modelling is carried out using Facebook and Enron contact networks and individual contact matrices. 

[12] compares five age-stratified prioritization strategies in terms of cumulative incidence, mortality, and 

years of life lost. Some limitations have to do with using pre-pandemic contact matrices, not 

incorporating nonpharmaceutical interventions, and only considering variation in disease severity and 

risk by age - although contact rates, and thus infection potential, vary greatly not only by occupation and 

age. Results show, like in our work, that people aged 60 years and older should be prioritized to minimize 

deaths. In [13] the authors use a mathematical model paired with optimization algorithms to determine 

the optimal use of vaccine for different combinations of vaccine effectiveness and number of doses 

available under a wide variety of scenarios; the optimal allocation strategies were computed using age 

as the sole risk factor. This work obtains similar conclusions than in our work, that is, for low vaccine 

effectiveness, the best option for reducing deaths is to allocate vaccines to older age-groups first.  

The work [14] uses a mathematical model to assess the optimal allocation of a limited vaccine supply in 

the United States across groups differentiated by age and essential worker status, which constrains 

opportunities for social distancing. The authors show how optimal prioritization is sensitive to several 

factors including vaccine effectiveness and supply, and rate of transmission. [15] uses the agent-based 

infectious disease modelling tool CovidSIMVL to explore outcomes of 2-dose vaccination regimens and 

a third “Hybrid” policy that reflects ranges of expected levels of protection according to Pfizer and 

Moderna, but with a 35-day separation between first and second dose instead of the shorter 

recommended period. Unlike in our work, agents here were considered homogeneous and vaccination 

strategies were not stratified (e.g., by age ranges) nor sequenced in order to best manage risk on the 

basis of considerations of population-level transmission risk and on the basis of considerations of equity.  

[16] proposes a multi-scale agent-based model to investigate the infectious disease propagation 

between cities and within a city using the knowledge from person-to-person transmission. This is a way 

to reduce the degree of freedom of the model as follows: at micro scale, an agent represents a person 

while at the meso scale an agent refers to hundreds of individuals. Actual data on traffic patterns and 

demographic parameters are adopted however, unlike in our work, no age stratification is considered in 

the vaccination. In [17] a study of how Genetic Algorithms (GA) can be applied to an ABM in order to 

provide parameter estimates for administering the vaccine to groups of people.  One of the important 

variables defines the working condition of agents, including categories of interest in the contrast of 

Covid-19 pandemic, i.e. hospital healthcare operators, nursing home healthcare operators, teachers, 

students, workers, and fragile workers. [18] proposes a second dose delay strategy for people below 65 

years old. Like in our work, this strategy shows benefits reducing the number of infections. 

The main limitations of EpIGraph are that we do not consider attributes such as previous pathologies 

that we now know that may come into play when we evaluate the risk of developing COVID-19 severe 

symptoms. In the transportation model the movement of individuals between cities depends only on the 

distance between the cities and the population size. In our experiments we only model the largest urban 

regions in the Madrid metropolitan area; we could incorporate smaller cities and towns to the simulation, 

including rural regions. 

In conclusion, results show that prioritizing the vaccination of young individuals would significantly 

increase the number of deaths. On the other hand, spacing out the first and second dose by 56 days 

would result in a slight reduction in the number of infections and deaths. Similar results have been 

obtained in other published works. This study goes further to obtain refined results by age and profession 

and adds a detailed and realistic vaccination model. Our immediate plans include modelling and 

evaluating the effect of a third vaccination dose and simulating vaccination scenarios for the entire area 

of Spain and the many variants that have appeared since the beginning of the vaccination campaign 

(including potential vaccine resistant variants). Finally, these results helped health authorities to adjust 

the COVID vaccination strategy in Spain to reach better results. These tools, which allow us to adapt to 
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changes and predict future situations, are essential to achieve the best health decisions with the most 

efficient use of resources. 
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