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Abstract 57 

The identification of multiple genetic risk factors for Alzheimer Disease (AD) provides evidence to 58 
support that many pathways contribute to AD onset and progression. However, the metabolomic 59 
and lipidomic profiles in carriers of distinct genetic risk factors are not fully understood. The 60 
metabolome can provide a direct image of dysregulated pathways in the brain, including 61 
information on treatment targets. In this study, we interrogate the metabolomic and lipidomic 62 
signatures in the AD brain, including carriers of pathogenic variants in APP, PSEN1, and PSEN2 63 
(autosomal dominant AD; ADAD), APOE ɛ4 and TREM2 risk variant carriers, and non-carrier 64 
sporadic AD (sAD). We generated metabolomic and lipidomic data from parietal cortical tissue 65 
from 366 participants with AD pathology and 26 cognitively unimpaired controls using the 66 
Metabolon global metabolomics platform. We identified 133 metabolites associated with disease 67 
status (FDR q-value<0.05). In sAD brains these include tryptophan betaine (b=-0.57) and N-68 
acetylputrescine (b=-0.14). Metabolites associated with sAD and ADAD include ergothioneine 69 
(b=-0.21 and -0.26 respectively) and serotonin (b=-0.34 and -0.58, respectively). TREM2 and 70 
ADAD showed association with α-tocopherol (b=-0.12 and -0.12) and CDP-ethanolamine (b=-71 
0.13 and -0.10). β-citrylglutamate levels are associated with sAD, ADAD, and TREM2 compared 72 
to controls (b=-0.15; -0.22; and -0.29, respectively). Additionally, we identified a signature of 16 73 
metabolites that is significantly altered between genetic groups (sAD vs. control p = 1.05x10-7, 74 
ADAD vs. sAD p = 3.21x10-5) and is associated with Braak tau stage and disease duration. These 75 
data are available to the scientific community through a public web browser 76 
(http://ngi.pub/Metabolomics). Our findings were replicated in an independent cohort of 327 77 
individuals.  78 

Keywords 79 

Autosomal dominant Alzheimer disease, APP, PSEN1, PSEN2, APOE, TREM2, metabolomics, 80 

lipidomics, β-citrylglutamate 81 
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INTRODUCTION 83 

Alzheimer disease (AD), the most common form of dementia, is a heterogeneous and complex 84 

disease neuropathologically characterized by the accumulation of amyloid (Aβ) plaques and 85 

neurofibrillary tangles in the brain. AD may develop as familial or sporadic. Recent advancements 86 

in AD diagnosis and treatment could benefit from a comprehensive multi-omic approach to 87 

studying diverse biological processes, including metabolism1,2. Pathological changes in AD begin 88 

decades before the diagnosis of AD3. Therefore, metabolomic changes linked to AD pathology 89 

could precede disease onset and be highly informative for predictive models and preventative 90 

medicine. Metabolic decline is one of the first physiological changes detected in patients with mild 91 

cognitive impairment (MCI) due to AD4. Changes in lipid and energy metabolism are proven 92 

hallmarks of AD, but there are also reports of impairments in neurotransmitter, urea cycle, purine, 93 

polyamine, and bile acid metabolisms5. Current symptomatic treatments (cholinesterase inhibitors 94 

and memantine) target deficits in neurotransmitters to minimize cognitive decline6. The 95 

dysregulation of sphingolipids and glycerophospholipids in blood samples from the Alzheimer 96 

Disease Neuroimaging Initiative (ADNI) and both blood and brain samples from the Baltimore 97 

Longitudinal Study of Aging (BLSA) cohorts have been previously reported7–9. These metabolites 98 

allowed discrimination between AD and controls with high accuracy, sensitivity, and specificity10. 99 

Blood and brain endophenotype scores were then generated that summarized the relative 100 

importance of each metabolite to the severity of AD pathology and disease progression. 101 

Furthermore, Stamate et al. (2019) used machine learning classifiers to demonstrate that a panel 102 

of plasma metabolites has the potential to match the area under the curve (AUC) of well-103 

established cerebrospinal fluid (CSF) biomarkers when used to classify AD vs. healthy 104 

individuals11. Pathway analysis with the top 20 predictive metabolites indicated that the nitrogen 105 

pathway was overrepresented. Though much progress has been made in determining the specific 106 

metabolic changes in biospecimens from AD patients, the metabolomic landscape has yet to be 107 

fully understood. 108 

AD is highly heritable and can be caused by autosomal dominant genetic variants in the amyloid 109 

precursor protein (APP), presenilin-1 and -2 (PSEN1 and PSEN2) genes, or associated with risk 110 

factors in multiple other loci including apolipoprotein E (Apo E) and triggering receptor on myeloid 111 

cells 2 (TREM2)12–14. The singularities of downstream effects of the complex AD genetic etiology 112 

are currently poorly understood. Pathogenic genetic variants in APP, which is cleaved into Aβ by 113 

β- and γ-secretase, cause altered production of Aβ. PSEN1 and PSEN2, each crucial members 114 

of the γ-secretase complex, can carry pathogenic variants resulting in increased cleavage of APP 115 
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into an Aβ isoform more prone to aggregation15. TREM2 interacts with APOE, Aβ, and other lipids, 116 

mediating the recruitment of microglia to Aβ plaques16,17. Rare variants in the TREM2 gene may 117 

lead to impaired microglial function, contributing to AD pathology18. Apo E is a critical player in 118 

lipid metabolism, transport, and homeostasis in the brain, and the ɛ4 allele of the APOE gene is 119 

the main genetic risk factor for late-onset AD. Arnold et al. (2020) performed association analyses 120 

of 139 serum metabolites in the ADNI cohort and observed that females carrying the APOE ɛ4 121 

allele experience more significant impairment of mitochondrial energy production than males19. 122 

These findings suggest that genetic risk factors contribute to AD pathology through distinct 123 

mechanisms. However, the metabolomic changes associated with AD pathology and with most 124 

genetic factors are currently unknown. 125 

We sought to systematically investigate the metabolic signature of AD for carriers of the major 126 

AD genetic risk factors. In this study, we have interrogated the metabolomic and lipidomic 127 

signatures of carriers of pathogenic variants in APP, PSEN1 or PSEN2, APOE, and TREM2 risk 128 

variant carriers and compared their profiles to symptomatic AD (non-genetic), presymptomatic 129 

individuals with AD neuropathological change but no or minimal decline of cognition, and 130 

cognitively unimpaired controls without AD neuropathology. Our analysis uncovered common 131 

profiles altered across genetically categorized brains, and metabolites and lipids specific to the 132 

distinct genetic factors.   133 
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MATERIALS & METHODS 134 

Cohorts 135 

WUSM 136 

Archived fresh-frozen post-mortem parietal cortical tissue samples were obtained from the 137 

Charles F. and Joanne Knight Alzheimer Disease Research Center Brain Bank (Knight ADRC) 138 

and the Dominantly Inherited Alzheimer Network (DIAN) at Washington University School of 139 

Medicine (WUSM). Samples were obtained with informed consent, and the study was approved 140 

by the WUSM Institutional Review Board. Data available for these samples included age at AD 141 

onset, age at death (AAD), gender, Clinical Dementia Rating® (CDR®)20, APOE and TREM2 142 

genotypes, ADAD variant status, and Braak stages for tau and Aβ. Samples were categorized 143 

based on neuropathological and genetic information: neuropathological diagnosis of AD and 144 

carrier of a pathogenic variant in any of the autosomal dominant genes (APP, PSEN1, PSEN2) 145 

(autosomal dominant AD [ADAD], n=25), carriers of TREM2 risk-variants (TREM2, n=21), no 146 

known pathogenic variants (sAD, n=305), no clinical symptoms (Presymptomatic, n=15), and 147 

brains with no or minimal neuropathological AD lesions identified through post-mortem 148 

neurological examination (controls [CO], n=26) (Table 1). These cohorts have been described 149 

previously21–29. One participant in the control group showed elevated tau pathology (Braak tau 150 

stage IV) but was classified as a control due to the absence of dementia (CDR 0) and lack of 151 

amyloid pathology (Braak Aβ stage A). This individual’s pathology is attributed to primary age-152 

related tauopathy (PART)30,31. 153 

ROSMAP 154 

Data was generated by the Duke Metabolomics and Proteomics Shared Resource, a member of 155 

the ADMC, using protocols published previously for blood samples19,32,33;  a custom protocol 156 

developed for the brain samples can be found on Synapse at syn10235609. Serum (syn10235596) 157 

and DLPFC (syn10235595) data from ROSMAP quantified on the Biocrates AbsoluteIDQ p180 158 

platform were downloaded from Synapse in December 2020. The dorsolateral prefrontal cortex 159 

(DLPFC) metabolomic data from the ROSMAP studies quantified on the Metabolon Precision 160 

Metabolomics platform and preprocessed by the ADMC as described in34 were downloaded from 161 

Synapse in July 2021 (syn25878459). Details of the ROSMAP study design and methods have 162 

been described previously35,36. Disease status was determined based on a combination of 163 

neuropathological and cognitive metrics. Sporadic AD was defined as individuals with a CERAD 164 

assessment of “definite AD” with any Braak tau stage, or “probable AD” with Braak of at least IV. 165 
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Controls were defined by a CERAD of “possible AD” or “not AD” with Braak less than four. All AD 166 

individuals have a clinical consensus diagnosis of cognitive impairment as defined by Schneider 167 

et al. (2007), and controls have a consensus diagnosis of no cognitive impairment37. From the 168 

ROSMAP cohort, the following samples were analyzed: 36 sAD and 55 CO serum samples, 233 169 

sAD and 94 CO DLPFC samples quantified with Metabolon, and 43 sAD and 23 CO DLPFC 170 

samples quantified with Biocrates p180 (Table 1). For further analysis of the ROSMAP Metabolon 171 

cohort, an additional group of 223 AD and 154 CO participants was considered, based on 172 

consensus clinical diagnosis only (Supplementary Table 1). 173 

ADNI 174 

Data was generated by the Duke Metabolomics and Proteomics Shared Resource, a member of 175 

the ADMC, using protocols published previously for blood samples19,32,33. The ADNI1 and 176 

ADNIGO/2 serum metabolomic data were obtained from the ADNI database (adni.loni.usc.edu)33 177 

via the ADNIMERGE package v0.0.1 (packaged March 2018, accessed December 2020)38. The 178 

ADNI was launched in 2003 as a public-private partnership led by Principal Investigator Michael 179 

W. Weiner, MD. ADNI aims to test whether neuroimaging can be combined with clinical 180 

assessment and other biological markers to measure the progression of mild cognitive impairment 181 

(MCI) and early Alzheimer disease (AD). Additional information for the ADNI studies is available 182 

at www.adni-info.org39. The samples analyzed from ADNI cohorts were as follows: 184 sAD and 183 

224 CO serum samples from the ADNI1 cohort, and 137 sAD and 181 CO serum samples from 184 

the ADNIGO/2 cohort (Table 1). 185 

Metabolite Quantification 186 

Metabolon Precision MetabolomicsTM Platform 187 

Data from the Knight ADRC, DIAN, and one ROSMAP cohort were generated on the Metabolon 188 

Precision Metabolomics platform. For the Knight ADRC and DIAN cohorts, 50mg frozen parietal 189 

cortical tissue samples were used for metabolite quantification. Thirteen duplicate samples served 190 

as technical replicates. The Metabolon Precision Metabolomics platform uses an ultrahigh 191 

performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) system 192 

(Metabolon, Inc., Morrisville, USA). The platform measured 880 metabolites for the WUSM 193 

dataset and 1055 metabolites for the ROSMAP dataset. These metabolites are assigned to 111 194 

pathways as classified by Metabolon, known as Sub Pathways. These Sub Pathways are 195 

themselves classified into nine Super Pathways: amino acids, carbohydrates, cofactors and 196 
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vitamins, energy, lipids, nucleotides, peptides, xenobiotics, and partially characterized molecules 197 

(Supplementary Table 2). 198 

Biocrates AbsoluteIDQ® p180 Platform 199 

The remaining ADNI and ROSMAP datasets were quantified by the Biocrates AbsoluteIDQ p180 200 

platform, which measures approximately 180 metabolites using a combination of ultra-high 201 

pressure liquid chromatography and flow-injection analysis coupled with mass spectrometry 202 

(Biocrates Life Science AG, Innsbruck, Austria). Of these 180 metabolites, 85 could be matched 203 

with those quantified by Metabolon based on Human Metabolome Database Identifier (HMDB ID) 204 

(Supplementary Table 2). 205 

Quality Control 206 

Knight ADRC and DIAN Cohorts 207 

The first step in the quality control process was to verify the quantification platform's consistency 208 

by evaluating the technical replicates' reproducibility. We chose the 154 metabolites with no 209 

missing values and a coefficient of variation greater than 0.3 to compare between replicate pairs 210 

via Pearson’s correlation. Each of the 13 replicate pairs showed a correlation above 0.9, 211 

demonstrating a high level of consistency. The replicate pairs were then averaged for downstream 212 

analysis. For each metabolite, if only one reading was missing from a replicate pair and the non-213 

missing value was in the bottom 10% of the metabolite’s distribution, the non-missing value was 214 

kept. This method assumes that the missing readings in such pairs were due to the metabolite 215 

level being close to the detection limit rather than due to a technical error. Single non-missing 216 

values in the top 90% of a metabolite’s distribution were dropped. 217 

Metabolon provided annotations for 815 of the 880 metabolites quantified analytes. The 65 218 

remaining analytes were not assigned to known structural identities and were excluded from 219 

further analyses. We identified 198 metabolites with missing readings in at least 20% of samples. 220 

Before excluding these metabolites, Fisher’s exact tests were performed to determine if any 221 

showed differential missingness between sAD and CO, ADAD and CO, or ADAD and sAD. Those 222 

that had significantly different missingness were tested using linear regression, corrected by AAD 223 

and sex, to determine whether their non-missing readings were also significantly different in those 224 

comparisons. Those metabolites that had more missing values and lower metabolite readings in 225 

one status compared to another were rescued, assuming that their missingness was driven by a 226 

biological effect rather than a technical artifact. In all, 10 metabolites were recovered using this 227 

approach: 3-methyl-2-oxobutyrate, 4-hydroxyphenylpyruvate, acetylcholine, androsterone 228 
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sulfate, cysteinylglycine disulfide, gamma-glutamyl-epsilon-lysine, gamma-229 

glutamylphenylalanine, pregnenediol sulfate, serotonin, and tryptophan betaine. The missing 230 

readings for these 10 metabolites were imputed with each metabolite’s respective minimum 231 

reading. The 188 remaining metabolites missing at least 20% of readings were excluded from the 232 

dataset (Supplementary Figure 1). 233 

Raw readings were log10-transformed to better approximate a normal distribution. Outlier 234 

readings (outside 1.5 x interquartile range) for each metabolite were excluded, and the mean of 235 

each metabolite’s distribution was adjusted to zero. 236 

After the metabolite QC, 95% of samples were missing less than 5% of metabolite readings; the 237 

maximum missingness for a sample was 11%. No samples were excluded due to the missingness 238 

rate, and the remaining missing values were not imputed. Principal component analysis was then 239 

performed on the scaled and imputed data provided by Metabolon to identify outlier samples using 240 

the R function PCA from the FactoMineR package40. Four outlier samples were excluded 241 

(Supplementary Figure 2). The final dataset consisted of 627 metabolites measured in 392 242 

samples (Supplementary Table 3). 243 

Replication Datasets 244 

We employed the above-described procedure to perform the data cleaning and QC of the ADNI 245 

and ROSMAP datasets. Briefly, replicates were averaged, removing single readings above the 246 

tenth percentile of the metabolite’s distribution. Metabolites without assigned structural identities 247 

and metabolites missing at least 20% of readings were removed, readings were log10-248 

transformed, outlier readings were removed, and the mean of each metabolite’s distribution was 249 

adjusted to zero. For each dataset, samples missing greater than 20% of readings were excluded: 250 

one from ROSMAP p180 brain, two from ROSMAP Metabolon brain, two from ADNI1, and one 251 

from ADNIGO/2. Five metabolites with missingness higher than 20% were recovered from the 252 

ROSMAP Metabolon cohort according to the procedure described above, considering 253 

associations with AD for both the neuropathological and clinical diagnoses: saccharopine, 254 

tryptophan betaine, memantine, retinol (Vitamin A) and 6-oxopiperidine-2-carboxylate. Missing 255 

values for these metabolites were imputed with the metabolites’ minimum readings.  After QC, 256 

the ADNI1 dataset included 149 metabolites in 408 samples, the ADNIGO/2 dataset included 157 257 

metabolites in 318 samples, the ROSMAP serum dataset included 162 metabolites in 91 samples, 258 

and the ROSMAP Metabolon brain dataset included 595 metabolites in 327 samples. The 259 

ROSMAP p180 brain dataset consisted of 157 metabolites in 66 samples (Table 1). 260 
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Statistical analyses 261 

Association analyses of metabolite abundance with disease status were conducted using linear 262 

regression in R software version 3.641. Metabolite levels were modeled by disease status (sAD, 263 

ADAD, and TREM2) compared to CO, corrected by sex, AAD, and post-mortem interval (PMI). 264 

Associations with APOE ɛ4 carrier status were also tested within the sAD status, corrected by the 265 

same variables. AAD and PMI were chosen as covariates in the model due to their correlation 266 

with the first principal component of the metabolites that passed QC (p<0.01). When comparing 267 

ADAD with CO, AAD was not included as it is collinear with ADAD status. Linear regression was 268 

also used to test each metabolite’s association with AAD in the sAD status group, correcting for 269 

sex and PMI. The false discovery rate (FDR) was controlled using Benjamini-Hochberg correction 270 

(R function p.adjust). The q-value threshold for significance was established as q < 0.05. To test 271 

differences in effect size between groups, we employed an analysis of covariance (ANCOVA) 272 

comparing the effects for metabolites in sAD and TREM2 relative to their effect in ADAD. We 273 

performed additional ANCOVA tests with individuals matched by CDR (CDR = 3), tau (Braak tau 274 

> 3), and Aβ (Braak Aβ = 3) to test whether the differences in effect sizes were influenced by 275 

neuropathology. 276 

We calculated the first principal component of readings for metabolites which were differentially 277 

abundant in multiple groups, similar to the “eigengene” concept in the WGCNA package42. We 278 

tested the differences in the eigenmetabolite profile between groups. We also tested for 279 

association with CDR, Braak tau stage, and disease duration, defined as the difference of age at 280 

disease onset (AAO) and AAD. The linear regression models were corrected for sex, PMI, and 281 

AAD. 282 

We conducted additional analyses in the ADNI and ROSMAP public metabolomics datasets to 283 

follow up on our results. For the analyses in serum, PMI was not used as a covariate as it was 284 

not applicable, and age at blood draw was used in the model rather than AAD. A meta-analysis 285 

was also performed combining the serum data from the ADNI1, ADNIGO/2, and ROSMAP 286 

datasets. The meta-analysis was carried out with the same linear model, pooling all 817 serum 287 

samples: 357 sAD and 460 CO. Meta-analysis models were additionally corrected by study. 288 

A heatmap was constructed using Metabolon's scaled and minimum-imputed metabolite readings 289 

with the ComplexHeatmap43 and circlize44 R packages. Individuals were separated into status 290 

groups (ADAD, sAD, TREM2, Presymptomatic, and CO), and the heatmap was additionally 291 

annotated with CDR and Braak tau scores for each individual. Hierarchical clustering of 292 
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individuals was performed using the ward.D2 method in the Heatmap function from the 293 

ComplexHeatmap package. 294 

Pathway and network analyses were performed using MetaboAnalyst45,46 and IMPaLA pathway 295 

over-representation analysis47. HMDB IDs for 105 of the 133 significant metabolites could be 296 

determined and input into MetaboAnalyst and IMPaLA. MetaboAnalyst matched 103 of those IDs 297 

to its database, while IMPaLA matched 74 (Supplementary Table 4). Pathways were also 298 

explored in the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database48–50. The 299 

source code of the scripts employed to QC, clean and analyze the data is available at http:// 300 

github.com/HarariLab/Metabolomics. 301 

Pharmacological Analysis 302 

We obtained pharmacological data for the research participants to determine any potential 303 

confounding effects of medications in our analyses. Longitudinal pharmacological data were 304 

available for 297 research participants from the Knight ADRC cohort. The number of time points 305 

(clinical assessment dates) for each participant ranged from one to 20 visits, with a mean of 3.9. 306 

The mean number of years between the most recent clinical assessment and year of death was 307 

2.8 ± 2.5, with a range of 0-14 years. Drug group information and alternate medication names 308 

were obtained from the KEGG Drug database48–50. To test for confounding medication effects, we 309 

performed linear regression to test for association between medications and potentially affected 310 

metabolites. We also repeated the association analyses, including only individuals who had not 311 

been administered the medications within the five years preceding their death, to confirm that the 312 

differential abundance was not influenced by medications. 313 

Web Browser 314 

Our results are available through a public browser at http://ngi.pub/Metabolomics. The browser 315 

was created using R Shiny version 1.4.051 and the shinydashboard52, shinydashboardPlus53, 316 

plotly54, DT55, shinyjs56, htmlwidgets57, RColorBrewer58, kableExtra59, and dplyr60 R packages. 317 

Source code is publicly available in the GitHub repository 318 

http://github.com/HarariLab/Metabolomics. 319 

320 
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RESULTS  321 

Study Design 322 

In this study, we performed a metabolomics analysis of parietal cortical tissue from participants 323 

of the DIAN and Knight ADRC cohorts (Figure 1). We determined the metabolomic profile of 324 

392 participants, including three AD genetic subgroups: autosomal dominant AD (ADAD), 325 

carriers of risk variants in TREM2 (TREM2), and sporadic AD (sAD). Detailed phenotypic 326 

information included genetic risk factors, CDR, and Braak staging for tau and Aβ. Out of the 880 327 

metabolites quantified, 627 passed quality control (Supplementary Table 3). We tested 328 

differential abundance using linear models adjusted for AAD, sex, and PMI and compiled the 329 

differentially abundant metabolites into a profile to distinguish between AD genetic groups. We 330 

also conducted a pathway analysis with the significantly associated metabolites. To validate our 331 

results further, we performed association analysis on a total of 393 brain samples and 817 332 

serum samples from both the ROSMAP and ADNI cohorts. 333 

Metabolite association analysis identifies differential β-citrylglutamate levels in sporadic 334 

AD and ADAD 335 

Association analysis indicated that the ADAD group had the most distinct brain metabolomics 336 

profile (with 131 significant metabolites; Supplementary Table 5), whereas the profiles for 337 

TREM2 and sAD cases showed a lower number of differentially abundant metabolites, with only 338 

three (α-tocopherol, β-citrylglutamate, and CDP-ethanolamine) and five (β-citrylglutamate, 339 

ergothioneine, serotonin, tryptophan betaine, and N-acetylputrescine) significant metabolites 340 

respectively (Figure 2a-d). The Super Pathways represented in the ADAD-associated 341 

metabolites were Amino Acids (48 metabolites), Carbohydrates (12), Cofactors and Vitamins (9), 342 

Energy (2), Lipid (30), Nucleotide (12), Peptide (12), and Xenobiotics (6). We found that 99 of the 343 

131 significant metabolites were independent of AAD (Supplementary Table 6). 344 

Pathway analysis performed with these 131 metabolites indicated overrepresented pathways in 345 

the categories of amino acid metabolism, which accounted for the most pathways, as well as 346 

sphingolipid and vitamin metabolism (Supplementary Tables 7 and 8). We observed 347 

perturbations in several amino acid metabolism pathways, including glutamate, glutathione, 348 

tryptophan, lysine and histidine metabolisms. Perturbations in sphingolipid metabolism have been 349 

identified previously as potential biomarkers for AD10. Altered amino acid metabolism has also 350 

been reported in multiple metabolomic studies of the AD brain19,32,61. The most notable amino acid 351 

pathways in our analysis were glutamate, glutathione, and tryptophan metabolism. Abnormal 352 

glutamate metabolism is known to cause excitotoxicity62, and alterations in glutathione 353 
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metabolism may contribute to oxidative damage and neuronal loss63. Alterations in tryptophan 354 

metabolism, especially serotonin imbalances, have also been previously noted in the AD 355 

metabolome64. We also observed perturbations in lysine and histidine metabolism pathways and 356 

novel associations in vitamin pathways. 357 

β-citrylglutamate (BCG) was the only metabolite significantly differentially abundant in all three 358 

genetic groups. Zhao et al. (2019) showed that serum BCG levels were significantly affected by 359 

the administration of fluoxetine, a commonly prescribed SSRI antidepressant65. In our study, five 360 

participants were documented as having taken fluoxetine at the time of their most recent clinical 361 

assessment. Five sAD participants and one presymptomatic participant had taken fluoxetine 362 

within the five years preceding their death (Supplementary Table 9). A binomial logistic 363 

regression showed that BCG levels were not associated with fluoxetine use within the five years 364 

preceding their death in individuals with sAD (p = 0.98). Furthermore, we repeated the linear 365 

regression for sAD vs. CO, excluding the individuals who had taken fluoxetine in the past five 366 

years, and did not observe a change in the association of BCG levels between sAD and CO (effect 367 

= -0.15, q = 3.7x10-2). AAD was not associated with lifetime usage of fluoxetine (p = 0.83), nor 368 

were AAO (p = 0.63) or disease duration (p = 0.15). 369 

APOE ɛ4 carrier status shows nominal associations with metabolites 370 

In an association analysis of APOE ɛ4 carriers vs. non-carriers in the sAD group, none of the 627 371 

metabolites tested were significantly associated after FDR correction, though 25 metabolites were 372 

nominally significant (p < 0.05) (Supplementary Table 10). 373 

Follow-up in independent datasets 374 

We tested the differential abundance of metabolites in serum and DLPFC samples from the 375 

ADNI1, ADNIGO/2, and ROSMAP cohorts to independently validate our results. For each of these 376 

cohorts, metabolites were quantified using the Biocrates AbsoluteIDQ p180 platform, which we 377 

found to have 85 metabolites in common with the Metabolon Precision Metabolomics platform. 378 

Additionally, 379 DLPFC samples were analyzed from the ROSMAP cohort, quantified on the 379 

Metabolon platform; in this dataset, 506 metabolites were in common with the Knight ADRC 380 

cohort after QC. We identified 44 metabolites that were significantly differentially abundant with 381 

consistent effect direction in our ADAD vs. CO analysis and at least one independent dataset. 382 

Among the replicated metabolites were α-tocopherol, BCG, and serotonin (Supplementary Table 383 

11). 384 
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Of the seven analytes that were significant in both serum and brain cohorts, distinct direction of 385 

effect between tissue types was identified among five analytes. Specifically, 2-aminoadipate, 386 

isoleucine, valine, glutamate, and tyrosine showed a positive effect in the ADAD samples and 387 

ROSMAP sAD brains but showed a negative effect in the serum analyses. Similarly, Huo, et al. 388 

(2020) observed opposite directions of effect for glycerophospholipids between brain and serum 389 

in the ROSMAP cohort66. Serotonin and 1-linoleoyl-2-arachidonoyl-GPC showed concordant 390 

effects between the tissues, with lower abundance in ADAD and sAD than controls. 391 

The replicated metabolites supported our previous pathway analysis findings. Components of 392 

nicotinamide metabolism (trigonelline), vitamin A metabolism (retinol/Vitamin A), and tocopherol 393 

metabolism (α-tocopherol/vitamin E), were replicated, supporting the role of vitamin pathways. 394 

Asparagine, methionine, threonine, and tyrosine, all part of the gamma-glutamyl cycle, were found 395 

in the replicated metabolites, along with serotonin of the tryptophan metabolism pathway. Finally, 396 

BCG, glutamate, and N-acetyl-aspartyl-glutamate were each replicated, implicating the 397 

dysregulation of glutamate metabolism. 398 

Like the WUSM cohort, no metabolites were significant after correction when testing metabolite 399 

associations for APOE ɛ4 carriers vs. non-carriers. However, 23 were nominally significant (p < 400 

0.05), of which none were replicated from the WUSM cohort (Supplementary Table 10). 401 

A metabolic profile associated with AD duration and Braak stage 402 

We sought to investigate whether ADAD, TREM2, and sAD showed a similar or more distinct 403 

difference in their altered metabolomic profile. Thus, we selected the 17 metabolites that were 404 

significantly associated in the ADAD brains (q-value <0.05) that also were nominally associated 405 

in both the sAD and TREM2 when compared to controls (Table 2). Of these, ergothioneine, 406 

serotonin, BCG, CDP-ethanolamine, and α-tocopherol were statistically significant after FDR 407 

correction in sAD (ergothioneine, serotonin, and BCG) or TREM2 (BCG, CDP-ethanolamine, and 408 

α-tocopherol) (Table 2). These five metabolites showed lower abundance in the AD groups as 409 

compared to controls. This group of 17 metabolites was considered for the identification of a 410 

metabolic profile differentiating between status groups. Serotonin was excluded from the profile 411 

because the ADAD group was missing 17 of 25 readings for serotonin (68%). In the ROSMAP 412 

Metabolon cohort, the differential abundance of nine out of the 16 remaining metabolites was 413 

replicated after FDR correction: γ-glutamylthreonine, β-citrylglutamate, glutamate, N-414 

acetylglutamate, 1,5-anhydroglucitol, glutarate, CDP-choline, retinol, and α-tocopherol. 415 

Additionally, aspartate, ergothioneine, 2-methylcitrate/homocitrate, and glycerophosphoinositol 416 

were nominally significant, and 3-hydroxy-2-ethylpropionate did not pass QC. 417 
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We next compared the magnitude of the effects of the remaining 16 common metabolites across 418 

the three genetic groups. The effect in ADAD tended to be greater than that of TREM2, which 419 

was in turn greater than the effect in sAD (Figure 3B). An ANCOVA test showed that the relative 420 

effects of sAD and TREM2 to ADAD were significantly different (p = 4.37x10-04). This difference 421 

in effect was reproduced when individuals were matched by CDR (p = 2.54x10-02) as well as Braak 422 

stage for Tau (p = 1.18x10-03) and Aβ (p = 2.20x10-03). 423 

Among the 16 common metabolites across the three genetic groups, four were also associated 424 

with AAD in a linear regression corrected for sex and PMI: 1,5-anhydroglucitol (1,5-AG), 425 

glycerophosphoinositol, N-acetylglutamate, and retinol (vitamin A). 426 

We then calculated the first principal component for these 16 metabolites to generate an 427 

“eigenmetabolite” representing the metabolic profile for each individual42. The eigenmetabolite 428 

was found to be associated with disease duration in sAD (p = 1.86x10-02), as well as Braak Tau 429 

stage (p = 4.17x10-11) and CDR (p = 4.23x10-13) in the entire cohort, with a lower eigenmetabolite 430 

value being associated with longer duration, higher Braak stage, and higher CDR. 431 

Eigenmetabolite values were significantly different between status groups, with ADAD, TREM2, 432 

and sAD having significantly lower eigenmetabolite values than CO and ADAD having significantly 433 

lower values than sAD (Figure 3C). To validate these observations, 15 metabolites with available 434 

data for the ROSMAP Metabolon dataset (all except 3-hydroxy-2-ethylpropionate) were used to 435 

generate an eigenmetabolite profile for the ROSMAP participants. The eigenmetabolite was again 436 

associated with disease duration (p = 2.68x10-02), but was not associated with Braak tau stage (p 437 

= 0.38). Eigenmetabolite values were not significantly associated with sAD in the 438 

neuropathological categorization (p = 0.91), but were associated with consensus clinical 439 

diagnosis, with lower values observed in AD participants (p = 2.73x10-3) (Figure 4). 440 

To visualize levels of the 16 metabolites between status groups in the WUSM cohort, a heatmap 441 

was generated with the scaled and imputed metabolite readings from Metabolon (Figure 3A). A 442 

group of 30 sAD individuals, identified by hierarchical clustering, with metabolite abundance 443 

profiles not significantly different from the control group was selected for further analysis. For 444 

these individuals, the eigenmetabolite was not significantly different from the control group in a 445 

logistic regression correcting for AAD, sex, and PMI (p = 0.66). These individuals were classified 446 

as Early-Stage AD (ESAD) after further logistic regression analysis of CDR, Braak tau, and 447 

disease duration, correcting for the same variables. The ESAD group showed lower CDR (ESAD 448 

= 1.67±1.09, sAD = 2.56±0.84, effect = -0.83, p = 8.02x10-6) and Braak Tau (ESAD = 4.05±1.36, 449 

sAD = 5.30±1.06, effect = -0.66, p = 1.22x10-4) compared to sAD. The ESAD individuals also 450 
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showed a shorter disease duration (ESAD = 7.97±5.33, sAD = 10.03±4.61, effect = -0.09, p = 451 

4.42x10-2) than the rest of the sAD individuals. 452 

To explore the relationship between this metabolic profile and disease progression, 453 

presymptomatic individuals were also considered. The eigenmetabolite values for the 454 

presymptomatic group were not significantly different from the CO and ESAD groups (p = 0.18 455 

and p = 0.06, respectively) (Figure 3C). As expected, the presymptomatic status group showed 456 

significantly lower CDR (effect = -7.52, p = 2.47x10-03) than the ESAD group. However, the 457 

presymptomatic group did not differ from ESAD in the Braak Tau stage (p = 0.92). 458 

The super pathways associated with these 16 metabolites were mostly related to amino acid 459 

metabolism (glutamate, arginine, lysine, glutathione, histidine, tryptophan), but phospholipid and 460 

vitamin pathways were also identified. CDP-ethanolamine, CDP-choline, and 461 

glycerophosphoinositol were associated with phospholipid metabolism, while α-tocopherol 462 

(vitamin E), retinol (vitamin A), and nicotinamide (vitamin B3) were components of vitamin 463 

metabolism. 464 

Considering that three of the metabolites in the eigenmetabolite profile were vitamins: retinol 465 

(vitamin A), α-tocopherol (vitamin E), and nicotinamide (vitamin B3), we also investigated 466 

participants who had taken vitamin supplements to rule out any confounding association. Within 467 

the five years preceding their deaths, 132 individuals took vitamin E supplements, 87 individuals 468 

took vitamin A, and 101 individuals took vitamin B3 (Supplementary Table 9). When regressions 469 

were repeated excluding individuals who took vitamin E supplements, we observed that all of the 470 

associations remained significant in TREM2 (p = 3.9x10-04), ADAD (p = 2.9x10-05), and sAD (p = 471 

2.9x10-04). Similarly, excluding participants taking vitamin A supplements did not affect the 472 

association of retinol with any genetic group (ADAD p = 6.11x10-04, AD p = 1.40x10-02, TREM2 p 473 

= 4.75x10-02). When participants who took vitamin B3 were excluded, ADAD and TREM2 were 474 

still nominally associated with nicotinamide (ADAD p = 9.4x10-03, TREM2 p = 3.7x10-02), however, 475 

sAD was no longer associated (p = 0.11). Removing nicotinamide from the eigenmetabolite did 476 

not affect the eigenmetabolite association with disease duration (effect = -0.052, p = 1.75x10-02), 477 

CDR (effect = -0.65, p = 4.49x10-14), or Braak tau (effect = -0.57, p = 6.75x10-12). 478 

Web Browser 479 

The browser facilitates exploration of our analyses and further investigation into individual 480 

metabolites by integrating metadata with visualizations of our results. The browser has two main 481 

pages, or tabs. The first displays a table including metadata on each metabolite that passed our 482 
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QC process, along with its effect, p-value, and q-value for each comparison discussed here. The 483 

table allows the user to select a metabolite, which displays the distribution of the selected 484 

metabolite’s readings across disease statuses. Links are also provided to the PubChem 485 

(https://pubchem.ncbi.nlm.nih.gov/)67 and Human Metabolome Database (www.hmdb.ca)46,68 486 

webpages if the IDs are available. The second tab displays volcano plots for each regression, 487 

with q-values less than 0.05 highlighted. Again, the user may select a metabolite on the volcano 488 

plot to view its reading distributions among statuses and display further information and links.  489 
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DISCUSSION 490 

In this study, we have performed a metabolomics analysis of parietal cortical tissue from 491 

participants of the DIAN and Knight ADRC cohorts. We have characterized the metabolomic 492 

profile of three genetically defined AD subgroups including ADAD, carriers of risk variants in 493 

TREM2, and sAD. We have analyzed the detailed phenotypic information available for these 494 

brains, including genetic risk factors and clinical, pharmacological, and neuropathological 495 

variables. 496 

We found a significantly different metabolic profile in ADAD patients from that of healthy 497 

individuals, with 131 significant metabolites linked to ADAD, altering multiple pathways including 498 

the γ-glutamyl cycle, tRNA charging, and aminoacyl-tRNA biosynthesis (Supplementary Tables 499 

7 and 8). The parietal cortex of ADAD individuals has been reported to have a higher burden of 500 

neurofibrillary tangles (NFT) than that of sAD individuals69. Accordingly, the metabolic profiles of 501 

TREM2 and sAD showed fewer differences than ADAD from that of healthy individuals, and of 502 

the two only sAD showed metabolite differences unique to its category (tryptophan betaine and 503 

N-acetylputrescine). Tryptophan betaine is an N-methylated form of tryptophan, which is the 504 

serotonin precursor and has been found de-regulated in MCI-AD70. N-acetylputrescine is an 505 

acetyl-CoA-ated putrescine and a GABA precursor that was found to build up in stable MCI but 506 

not in AD, where putrescine is preferentially metabolized to other polyamines71. We also observe 507 

depleted N-acetylputrescine levels in sAD in our data (Supplementary Figure 3) which supports 508 

previously reported findings of lower GABA levels in AD72. 509 

Among the metabolites identified as differentially abundant in at least one group were BCG, α-510 

tocopherol, and ergothioneine. Each of these metabolites showed lower concentrations in an AD 511 

subgroup compared to control. BCG acts as an iron carrier to activate aconitase activity73. We 512 

observed that BCG had the lowest abundance in ADAD, again followed by TREM2 and sAD. This 513 

observation could be associated with a lower activation of aconitase and lower energetic 514 

metabolism. BCG is also a component of glutamate metabolism, and BCG levels can be 515 

increased by the selective serotonin reuptake inhibitor (SSRI) fluoxetine65. BCG levels in our 516 

cohort were not significantly associated with fluoxetine administration, indicating that the 517 

association of BCG and AD in the three genetic groups is not driven by fluoxetine usage. Within 518 

the vitamin pathway, α-tocopherol (vitamin E) was differentially abundant in both TREM2 and 519 

ADAD vs CO, and vitamin E supplementation in participants did not affect this association. 520 

Vitamin E is a powerful antioxidant that aids the immune system and keeps blood clots from 521 

forming74–76.  This finding complements our observation of lower BCG in sAD cases. Reduction 522 
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of aconitase activity due to oxidative stress in aging could be exacerbated in AD by lower levels 523 

of antioxidants such as vitamin E. This could lead to less energetic metabolism activation overall. 524 

Ergothioneine was also observed at lower levels in sAD and ADAD cases compared to controls. 525 

Ergothioneine is a naturally occurring amino acid and thiourea derivative of histidine produced by 526 

fungi, which has antioxidant and anti-inflammatory properties77,78. The main source of 527 

ergothioneine in humans is diet; it accumulates in erythrocytes and crosses the blood–brain 528 

barrier79. However, its physiological role in humans is not known. Ergothioneine blood levels in 529 

humans decline with age and decline faster in individuals with cognitive impairment compared to 530 

age-matched individuals with no cognitive impairment80. In mice treated with 531 

intracerebroventricular injection of Aβ1-40, ergothioneine protected against loss of memory and 532 

learning abilities81. 533 

In addition to BCG, α-tocopherol, and ergothioneine, we identified eight metabolites in the 534 

Vitamins pathway that were significant after FDR correction in ADAD vs healthy individuals and 535 

significant before correction in the AD vs CO, TREM2 vs CO, and ROSMAP brain analyses. Four 536 

of these (2-aminoadipate, serotonin, tryptophan and tyrosine) were also significant in the serum 537 

meta-analysis and are important neurotransmitters. 538 

Neurotransmitters, especially serotonin, have been shown to play a role in processing APP and 539 

reducing generation of Aβ42 through activation of the ERK signaling cascade82. In our study, 540 

serotonin levels were significantly decreased in sAD and ADAD compared to control, and 541 

nominally decreased in TREM2. This effect was replicated in independent datasets of both serum 542 

and DLPFC tissue. SSRIs, which increase serotonin levels in the brain, show promise for 543 

reduction of Aβ accumulation in both the brain and CSF. Studies in APP/PS1 transgenic mice 544 

showed that the SSRI citalopram caused a 50% reduction in brain amyloid plaque load, and 545 

escitalopram, citalopram’s S-isomer, reduced interstitial fluid Aβ by 25%82,83. A controlled clinical 546 

trial of cognitively normal adults showed that escitalopram could decrease CSF Aβ42 levels in 547 

humans, with a difference of 11.1% between the control and treatment groups84. Our results 548 

corroborate the association of low serotonin with AD, and suggest that this effect, and potentially 549 

the benefit of serotonin modulation via SSRIs, spans all three genetic groups. 550 

Our discovery dataset identified a set of 16 metabolites whose first principal component, or 551 

eigenmetabolite, was distinct between the AD groups and healthy individuals, and between sAD 552 

and ADAD. The effects for these metabolites were greatest in ADAD, followed by TREM2 and 553 

sAD. The eigenmetabolite was additionally associated with CDR, Braak tau stage, and disease 554 

duration. The association with disease duration was validated in an independent dataset using 15 555 
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of the 16 metabolites. We also evaluated the performance of these 16 metabolites in a group of 556 

presymptomatic individuals and observed that this group showed a similar profile to that of healthy 557 

individuals. In addition, we identified a set of sAD cases (Early-Stage AD/ESAD) with a metabolic 558 

profile close to that of the healthy individuals. Further examination of these individuals revealed 559 

significantly lower CDR and Braak Tau scores than the rest of sAD individuals. The 560 

presymptomatic and ESAD groups showed no significant difference in the metabolic 561 

eigenmetabolite or Braak tau but significantly different CDR. Furthermore, ADAD individuals, 562 

known to have an earlier age at onset and higher NFT burden, showed a greater effect for these 563 

metabolites. Together, these observations suggest that the metabolic profile could be driven by 564 

tau pathology and implicated in disease duration. 565 

Spermidine was negatively associated with age in sAD and showed increased levels in sAD in 566 

the ADNIGO/2 dataset compared to control (Supplementary Tables 5 and 6). However, we did 567 

not find it associated with any genetic group in the Knight ADRC dataset. Putrescine was 568 

significantly decreased in sAD before correction (Supplementary Table 5). N-acetylputrescine, 569 

a putrescine derivative, was significantly decreased in the sAD group compared to control and 570 

significantly decreased before FDR correction in TREM2. Schroeder, et al. (2021) found that 571 

polyamines, particularly spermidine, improved cognition in mice by enhancing mitochondrial 572 

function through hypusination of eukaryotic translation initiation factor 5A (eIF5A)85. Liang, et al. 573 

(2021) also showed that eIF5a activity decreased with age in fly models, and that spermidine 574 

supplementation could improve mitochondrial function86. 575 

This study identified differences in metabolite abundance both specific to and common between 576 

genetically defined AD subgroups. We replicated our main findings in three independent datasets. 577 

Differences in the levels of common metabolites allow us to generate a metabolic profile 578 

associated with disease duration, CDR, and Braak tau stage and that further identified a subset 579 

of AD cases with a profile similar to CO (ESAD). Metabolomics of the brain can identify metabolic 580 

signatures specific to AD genetic subgroups. These metabolites may support the creation of 581 

“metabolomics scores” to assess disease status. Limitations of our study include the sample size 582 

of some of the genetic groups, e.g. TREM2. As such, in future studies we would like to increase 583 

the sample size of our brain-sourced dataset. We were unable to find associations with Braak Aβ 584 

stage possibly because scores are unavailable for many participants. Direct replication of our 585 

results in ADAD individuals was unachievable due to a lack of independent ADAD datasets. 586 

Unlike previous studies, we did not find significant associations between APOE ɛ4 carriers and 587 

non-carriers in cases of sporadic AD. In addition, our ability to replicate findings in other tissues, 588 
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such as blood serum, was possibly limited due to different platforms used by other studies. In 589 

future studies we will extend our analysis to serum metabolomics data and seek replication of our 590 

findings to facilitate further identification of novel biomarkers for AD. 591 

 592 

Data availability 593 

Metabolomics data from the Knight ADRC donors generated for this study are available at the 594 

NIAGADS and can be accessed at https://www.niagads.org/knight-adrc-collection. Data 595 

generated from the DIAN cohort can be requested at https://dian.wustl.edu/our-research/for-596 

investigators/diantu-investigator-resources/dian-tu-biospecimen-request-form/. We have 597 

accessed data from the ADNI (https://adni.loni.usc.edu, accessed 18 December, 2020), and 598 

ROSMAP (https://synapse.org/#!Synapse:syn26007829, accessed 18 December, 2020 and 599 

https://synapse.org/#!Synapse:syn26007830, accessed 30 July, 2021). Additional phenotypic 600 

data for the ROSMAP studies is available through the Rush AD Center Resource Sharing Hub 601 

(https://www.radc.rush.edu). 602 

  603 
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 Table 1. Summary statistics for the six datasets included in this study  
   

 
        Braak (Tau)  CDR  

 
 

Condition N Age* %Fe %APOE4+ 0-III IV-VI Not avail.  <=0.5 1-2 3 PMI 

Discovery 
WUSM  

(parietal brain) 

ADAD 25 54 ± 13.9 32% 36% 0 20 5  0 0 25 13.3 

sAD 305 84 ± 8.8 62% 56% 23 195 87  0 23 282 12.5 

TREM2 21 84 ± 7.5 52% 57% 3 12 6  0 1 20 14.1 

Presymptomatic 15 87 ± 9.7 60% 53% 3 8 4  15 0 0 13.6 

Control 26 88 ± 9.1 69% 12% 20 1 5  26 0 0 10.0 

Replication 

ROSMAP (DLPFC 
brain Metabolon) 

sAD 233 89 ± 2.9 73% 38% 15 218 0        8.1 

Control 94 86 ± 4.7 59% 10% 94 0 0        7.7 

ROSMAP (DLPFC 
brain p180) 

sAD 43 88 ± 2.8 19% 29% 3 40 0  
   9.6 

Control 23 87 ± 3.8 35% 7% 23 0 0        8.7 

ROSMAP (serum) 
sAD 36 87 ± 3.8 81% 8%             

Control 55 87 ± 4.4 69% 0%             

ADNI1 (serum) 
sAD 184 75 ± 7.5 48% 66%               

Control 224 76 ± 5.0 48% 27%               

ADNI2GO (serum) 
sAD 137 74 ± 8.2 42% 66%    

 
     

Control 181 73 ± 6.4 51% 28%                

 sAD = Sporadic Alzheimer Disease; CDR = Clinical Dementia Rating; PMI= post mortem interval 
 *Age is age at death for brain samples, and age at baseline for serum samples. 
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Table 2. Effects, p-values, and q-values for 16 metabolites which were significant after FDR correction in the ADAD vs CO comparisons and at least 
nominally significant in the AD vs CO and TREM2 vs CO comparisons in the WUSM cohort. Highlighted in bold are metabolites with significant Q values in 
the AD vs CO or TREM2 vs CO comparisons.             
    

 ADAD vs CO  sAD vs CO  TREM2 vs CO  ROSMAP (DLPFC 
Metabolon) 

Metabolite Effect p-value q-value  Effect p-value q-value  Effect p-value q-value  Effect p-value q-value 

aspartate 0.160 1.1x10-3 1.1x10-2  0.085 2.2x10-3 9.8x10-2  0.123 6.0x10-3 0.27  0.042 1.1x10-2 5.4x10-2 

γ-glutamylthreonine 0.263 3.2x10-3 2.3x10-2  0.171 5.4x10-4 5.5x10-2  0.278 7.1x10-4 0.11  0.095 5.1x10-4 5.4x10-3 

β-citrylglutamate -0.217 4.9x10-5 2.2x10-3  -0.148 2.1x10-4 3.6x10-2  -0.293 7.8x10-7 4.9x10-4  -0.062 3.7x10-4 4.2x10-3 

glutamate 0.086 7.1x10-3 3.9x10-2  0.048 1.7x10-2 0.36  0.071 6.5x10-3 0.27  0.060 1.1x10-8 1.4x10-6 

N-acetylglutamate -0.207 1.7x10-5 1.0x10-3  -0.080 2.7x10-3 9.8x10-2  -0.122 3.2x10-3 0.19  -0.033 6.8x10-4 6.7x10-3 

ergothioneine -0.255 8.3x10-3 4.3x10-2  -0.213 8.0x10-5 2.5x10-2  -0.274 7.5x10-3 0.27  -0.092 2.5x10-2 0.10 

3-hydroxy-2-ethylpropionate 0.177 2.0x10-3 1.7x10-2  0.099 4.4x10-2 0.49  0.195 8.7x10-3 0.27     

1,5-anhydroglucitol (1,5-AG) 0.310 6.6x10-6 7.3x10-4  0.131 1.1x10-2 0.27  0.155 4.3x10-2 0.47  0.088 4.4x10-3 2.8x10-2 

2-methylcitrate/homocitrate -0.171 1.3x10-3 1.2x10-2  -0.087 1.3x10-2 0.30  -0.118 2.9x10-2 0.41  -0.048 1.1x10-2 5.4x10-2 

glutarate (C5-DC) 0.252 7.3x10-5 2.3x10-3  0.121 5.7x10-3 0.17  0.170 1.6x10-2 0.35  0.090 1.5x10-5 4.0x10-4 

CDP-choline -0.095 9.6x10-4 1.0x10-2  -0.040 4.6x10-2 0.49  -0.093 1.6x10-3 0.14  0.042 7.5x10-3 4.1x10-2 

CDP-ethanolamine -0.102 6.1x10-4 7.7x10-3  -0.054 2.8x10-3 9.9x10-2  -0.128 1.8x10-4 3.7x10-2  -0.024 8.2x10-2 0.23 

glycerophosphoinositol -0.164 3.4x10-4 5.3x10-3  -0.095 1.3x10-3 8.0x10-2  -0.098 2.7x10-2 0.41  -0.021 4.5x10-2 0.15 

nicotinamide (vitamin B3) -0.066 6.8x10-3 3.7x10-2  -0.032 1.9x10-2 0.36  -0.056 9.4x10-3 0.27  0.008 0.33 0.56 

α-tocopherol (vitamin E) -0.120 4.1x10-5 2.0x10-3  -0.065 1.5x10-3 8.0x10-2  -0.115 1.8x10-5 5.6x10-3  -0.123 3.0x10-5 5.7x10-4 

retinol (Vitamin A) -0.287 1.3x10-5 9.2x10-4  -0.156 8.0x10-4 5.6x10-2  -0.192 1.4x10-3 0.14  -0.196 2.9E-04 3.7x10-3 
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Figure 1. Study design. Parietal cortical tissue from donors to the Knight ADRC and DIAN were 

analyzed on the Metabolon Precision Metabolomics platform: autosomal dominant AD (ADAD, 

n=25), sporadic AD (sAD, n=305), TREM2 (n=21), Presymptomatic (n=15), and healthy control 

(CO, n=26). After quality control, 627 metabolites were tested for differential abundance via linear 

modeling. A metabolic profile was generated from 16 metabolites in common between groups. 

Pathway analysis was performed on the differentially abundant metabolites, and a web browser 

was created to share the data and results. Findings were validated in five independent datasets: 

dorsolateral prefrontal cortex (DLPFC) tissue from the ROSMAP cohort analyzed on the 

Metabolon platform (sAD n=233, CO n=94), as well as four datasets quantified using the Biocrates 

p180 platform: DLPFC from the ROSMAP cohort (sAD=43, CO=23), serum from the ROSMAP 

cohort (sAD n=36, CO n=55), serum from the ADNI1 cohort (sAD n=184, CO n=224), and serum 

from the ADNIGO/2 cohort (sAD n=137, CO n=181). The ROSMAP Metabolon dataset was found 

to have 506 metabolites in common with the Knight ADRC/DIAN cohort after quality control. The 

p180 platform was found to have 85 metabolites in common with the Metabolon platform. 
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Figure 2. Association analysis in WUSM dataset. Volcano plots for A) sAD vs CO, B) ADAD vs 

CO, C) TREM2 vs CO. D) Venn diagram. Box plots for abundance of top metabolites E)  β-

citrylglutamate. F) α-tocopherol, G) ergothioneine, H) N-acetylputrescine. 

  

A) B) 

C) D) 

E) 
F) 

G) H) 
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Figure 3. Metabolic profile consisting of 16 metabolites which passed FDR correction in ADAD 

vs CO and were at least nominally significant in sAD vs CO and TREM2 vs CO. A) Heatmap 

showing relative abundance for each metabolite in the profile. Participants are divided by 

disease status group: healthy controls (CO), neuropathology but no cognitive impairment 

(Presymptomatic), sporadic AD (sAD), carriers of TREM2 risk variants (TREM2) and carriers of 

Mendelian mutations (ADAD). The 30 Early-Stage AD (ESAD) individuals identified by 

hierarchical clustering are indicated within the red box. Annotations show Clinical Dementia 

Rating and Braak scores for Tau accumulation. B) Comparison of effects for the 16 metabolites 

in each model. The x-axis shows the effect of each metabolite in the ADAD vs CO model, while 

the y-axis shows the effects in the sAD vs CO (blue) and TREM2 vs CO (red) models. C) 

Boxplot showing distribution of the first principal component for the 16-metabolite profile among 

each of the status groups.  

A) 

B) C) 
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Figure 4. Distribution of metabolic eigenmetabolite profile between clinical diagnosis groups 

calculated with 15 metabolites on ROSMAP Metabolon data. 3-hydroxy-2-ethylpropionate was 

not included because it did not pass quality control in the ROSMAP dataset. 
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