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Key Points

Question: How does climate change impact neurological disease?

Findings: 136 articles were identified relating neurologic disease to climate change. Articles
were grouped into three key themes, highlighting evidence linking neurologic disease
exacerbation to temperature fluctuation, tick-borne infections with climate change, and airborne
pollutants to cerebrovascular disease.

Meaning: A substantial body of literature suggests that neurologic disease incidence, morbidity,
and mortality is directly impacted by climate change and its sequelae, but much remains to be
uncovered.
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Abstract

Importance: Although the international community collectively seeks to reduce global
temperature rise to less than 1.5°C, there are already irreversible environmental changes that
have occurred, and currently available evidence suggests these changes will continue to occur.
As we begin to witness the effects of a warming planet on human health, it is imperative that as
neurologists we anticipate the ways in which the epidemiology and incidence of neurologic
disease may be affected.

Objective: In this review, we organize our analysis around three key themes related to climate
change and neurologic health: extreme weather events and temperature fluctuations, emerging
neuro-infectious diseases, and pollutant impacts. Across each of these key themes, we appraise
and review recent literature relevant to neurological disease and the practice of neurology.

Evidence Review: Studies were identified using a set of relevant search terms relating to climate
change and neurologic diseases in the PubMed repository for publications between 1990 and
2021. Studies were included if they pertained to human incidence or prevalence of disease, were
in the English language, and were relevant to neurologic disease.

Findings: We identified a total of 136 articles, grouped into the three key themes of our study;
extreme weather events and temperature fluctuations (23 studies), emerging neuro-infectious
diseases (42 studies), and pollutant impacts (71 studies). Broadly, the studies included
highlighted the relationships between neurologic symptom exacerbation and temperature
variability, tick-borne infections and warming climates, and airborne pollutants and
cerebrovascular disease incidence and severity.

Conclusions and Relevance: Our work highlights three key priorities for further work; namely,
neuro-infectious disease risk mitigation, an understanding of the pathophysiology of airborne
pollutants on the nervous system, and research into how to improve delivery of neurologic care
in the face of climate-related disruptions.
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Introduction

The effects of climate change on health are only beginning to be understood. In 2012, the Global
Climate and Health Alliance drafted the Doha Declaration, a call to prioritize global policies to
protect health as it is affected by climate change®. International calls for political advocacy and
environmental justice surrounding the threat of climate change to human health have since
followed.? In September 2021, in the face of increasing extreme weather events attributed to
climate change, over 220 medical journals published a joint editorial calling for the “urgent
action to keep average global temperature increases below 1.5°C, halt the destruction of nature,
and protect health”.3

Climate impacts on human health are well-documented*’, but the impacts on patients with
neurologic disease are less well characterized. The effects of a changing climate are unequally
distributed and will disproportionately affect those in developing nations that have polluted less
than wealthy nations.2° Climate change is also inextricably linked with airborne pollutant
emissions produced by the combustion of fossil fuels, and studies on the topic have brought
attention to the effects not only on the respiratory and cardiovascular systems'®-*2, but also
neurological disorderst®15,

As the warming of our planet becomes increasingly apparent, there is an urgency to understand
the impact of increasing temperatures on neurologic health in order to mitigate the effects on
morbidity, mortality, and the burden on healthcare workers and health systems. Neurologists and
neuroscientists have a duty not only to critically examine these potential changes but also to
quantify their impact to better prepare patients and health care systems. Here, we present a
scoping review of the literature pertaining to neurologic disease associated with climate change
and airborne pollutants and identify avenues for further research in this increasingly important
field.
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Methods / Literature Search strategy

Studies were identified by literature search of the PubMed repository for publications from
January 1511990 to May 30™ 2021 using the following search terms (alone or in combination

29 ¢ 2% ¢

with): “climate”, “climate change”, “global warming”, “air pollution/adverse effects”, “drought”,

29 ¢ 99 G 9 <6

“flood”, “health systems”, “health policy”, “neurological disorders”, “neurology”, “multiple
sclerosis”, “dementia”, “stroke”, “seizures”, “epilepsy”, headache”, or “migraine.” Search terms
relating to specific disease entities were chosen due to their high global prevalence and burden of

disease worldwidel6.

Search results were input into the Covidence systematic review software where studies were
screened, and duplicates were removed!’. Authors SL and AD independently screened the
remaining titles and study abstracts. Studies were excluded if the publications were without
English translation, had primarily animal subjects (apart from neuroinfectious diseases in which
case mosquito or tick-based studies were included), or if the study topic was not relevant to
neurological conditions. The remaining studies were included for full-text review, categorization
into the themes of the manuscript, and data extraction.

The Map depicting neuroinfectious diseases was created using the rnaturalearth v0.1%8,
rnaturalearthdata v0.1'°, and ggplot2?° packages in R v4.1.1.2! Sankey diagram was created using
the networkD3 v0.4?? package in R v4.1.1.%
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Results

Our search revealed a robust body of literature describing the effects of climate change in
relation to neurologic disease (Figure 1). The included publications consisted of 136 studies with
42 studies from Asia, 41 studies from North America, 39 studies from Europe, 5 studies from
Africa, 2 studies from Australia and Oceania, and 7 studies which spanned two or more
continents. No relevant society guidelines, position statements, or governmental reports were
identified.

Two independent reviewers (SL and AD) grouped manuscripts into one of three categories: the
effects of extreme weather and temperature changes on neurological conditions, emerging neuro-
infectious diseases, and pollutant impacts. Relevant data including study population,
intervention, comparators, and outcomes, were extracted from all studies and synthesized for this
scoping review.

1255 studies eligible
through PubMed database

Identification

v

236 duplicates removed

v

10189 studies screened

Screening

724 studies irrelevant

v

Y

295 full-text studies
assessed for eligibility

159 studies excluded:

- 12 studies without objective data

- 134 studies irrelevant

- 13 studies not available in English/could
v not access full text

Eligibility

136 studies included in
systematic review

Figure 1: PRISMA diagram depicting studies included in this scoping review.
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The effects of temperature fluctuations on neurological conditions
Stroke

Our search identified 12 studies relating weather to ischemic stroke incidence, with the burden of
evidence favoring an association of increased stroke in hotter weather as well as in extreme cold.
We could not identify any consensus on mechanism relating changes in climate to ischemic
stroke events. Six studies showed an increase in incidence of ischemic stroke events with
increasing temperature and increased or decreased relative humidity.?328 These results were in
contrast to those from two large studies that identified increased stroke admissions with cold
temperatures and hypothesized that colder temperatures contributed to stroke by inducing
vasoconstriction and increasing blood viscosity.?®° Bai and colleagues estimated the attributable
fraction of stroke admissions in Ontario to cold temperature as 1.71%, with the burden of strokes
attributable to moderate changes in temperatures as opposed to extreme changes.?® Temperature
variability may also contribute to acute stroke incidence, as Lei and colleagues examined over
140,000 first-time stroke patients in Shenzhen, China, and attributed 2-4% of stroke cases to
increased diurnal temperature range (greater than 5.5-8°C in a 24h period, seasonally-
dependent).3! The burden of disability-adjusted life years related to heat waves in a study by
Yoon and colleagues in South Korea was found to be driven by cerebrovascular diseases,
estimated at 72.1% of the total burden of disease.®? Two studies used climate projections into the
mid-late 21% century to predict ischemic stroke mortality, and showed an increase in years of life
lost after accounting for population change, fertility, greenhouse gas emissions, and physical
inactivity levels.3334

Epilepsy

Our search strategy identified three studies relating the frequency of seizures in association with
meteorological changes. Unstable weather, defined as alterations in barometric pressure by 10
hectopascals (hPa) and a change of 5°C in 48h in a series of 30 patients with epilepsy, was
associated with a season-dependent change in seizure frequency. Fluctuations were associated
with changes in seizure frequency among 40% of participants in spring, autumn, and winter, but
only 7% of participants in the summer.®®> A study of 604 adult patients with epilepsy linked low
atmospheric pressure and high relative air humidity to increased seizure risk but found that high
ambient temperatures were associated with reduced seizure risk.%® Chiang and colleagues
examined the number of outpatient and inpatient visits in patients with epilepsy as a function of
air pollutants and ambient temperature and showed that there was a statistically significant
association with ambient temperature and various air pollutants, with more visits during the
winter months.3’

Dementia

One study examined dementia-related hospital admissions and meteorological variables. Studies
were retrospective observational cohorts, examined based on historical climate data. The largest
such study analyzed data from 3,069,816 Medicare patients in New England over 10 years and
used time-varying Cox proportional hazards models to estimate the association between hospital
admissions for dementia and temperature variability. In the summer months, mean temperature
increases of 1.5°C associated with a 12% increased hazard of admission. Two studies showed
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that patients with dementia are often at higher risk of injury or death due to extreme heat events
such as bushfires.3940

Multiple Sclerosis

Three studies of patients with multiple sclerosis (MS) met the inclusion criteria for this study.
While it is well-known that high temperatures exacerbate symptom burden in patients with MS,
in one study, emergency department presentations for MS disease exacerbation (1,265 patients)
were found to be associated with increased temperature variability on the preceding day. This
study found an 8.81% increase in emergency department presentations per 1°C increase in
temperature range (95% ClI 3.46-14.44%).4! An analysis of climatic variables and 260 MS
admissions from Serbia showed that there was a statistically significant reduction of relapses in
the period of high vitamin D exposure (a known geographical co-variate with disease incidence),
and an increased number of relapses in the spring compared to other seasons.*? A randomized
crossover study of MS patients undergoing physical therapy demonstrated differential responses
in a warm climate (Spain) as opposed to a cold climate (Norway), with changes favoring warmer
climates and persisting up to 6 months after treatment.*3

Headache

Two studies examined headache in association with meteorological variables. A large study of
over 22,000 headache visits to the emergency department showed that an increase in temperature
by 5°C was associated with a relative risk of headache presentation of 1.042 (95% CI 1.009 -
1.076).* Mukamal and colleagues examined the associations between weather and headache
incidence at a single center using a case-crossover design, examining temperature, barometric
pressure, relative humidity, and pollutant levels in the 24-72h preceding presentation.* In this
study, higher temperatures were also associated with higher risk of presentation for headache, as
did lower barometric pressure, particularly for non-migraine headache.*
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Emerging neuro-infectious diseases

We identified a robust body of literature related to climate patterns and neuro-infectious diseases,
across 41 total studies, of which 10 were reviews and 31 were primary studies. Diseases studied
included West Nile virus (WNV, 14 studies), Dengue virus (DENV, 2 studies), Japanese
encephalitis (JEV, 8 studies), tick-borne encephalitis (TBE, 16 studies), and other emerging
pathogens (Supplementary Table 1). Despite the growing literature on the subject, no studies
were identified with our search strategy that related to COVID-19. Figure 2 highlights the
geographic skew of evidence towards Europe and the significant paucity of studies in Africa and
South America. The web of ecological interactions that leads to the emergence of these diseases
and their transmission to humans is complex. Multiple factors, including climate, are implicated
in disease transmission and prevalence. Several existing reviews highlighted the impact of
extreme weather such as floods on the transmission of mosquito-borne and rodent-borne
diseases. However, it is noted that a wide range of interactions including human population
density and behavior, host-human interactions, land use patterns, pollutant effects, and disease
adaptability all affect disease incidence.*6-4°

TBE (10) JEV (6)

e~ | Unspecified Mosquito- g L TBE (1)
borne illness (3) Unspecified Mosquito-
¥ borne illness (3)

Meningitis (2) L )

S ’ Unspecified Mosquito-

. : i Borne illness (1) =
= -

Figure 2: Neuro-infectious diseases studied by location. Map depicts number and type of
reports for reports examining neuro-infectious diseases as stratified by location. 10 reports were
published from North America, 13 reports from Europe, 5 reports from Africa, 10 reports from
Asia, and 1 report from Australia. TBE refers to tick-borne encephalitis. JEV refers to Japanese
encephalitis virus.

Most individual studies on the topic of climate associations with neuro-infectious diseases were
observational, retrospective, and used vector incidence or disease prevalence with historical
geospatial climactic data and time series modeling to establish associations between climate and
infection risk. Infection risks are multifactorial and could often be explained by many factors; for
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instance, in examining why JEV incidence increased in the upslope regions of the Himalayas,
Baylis and colleagues noted the incidence may be explained by either improved detection and
inhomogeneous distribution of vaccines, an increased incidence of JEV due to climate change, or
a combination.> Our search also identified studies highlighting how regional factors beyond an
increase in temperature could facilitate disease transmission. In the African ‘meningitis belt,’
aerosolized matter blown by the Harmattan winds is associated with increased meningitis
transmission, whereas in the Czech Republic, flooding is associated with incidence of TBE.5'-%3
Similarly, reasons for the increase of TBE in Europe remain controversial, with some arguing
that socioeconomic factors such as the fall of the Soviet Union caused changes in human
behavior leading to increased exposure, and others arguing that climactic change better accounts
for the increased incidence.>*%

We identified one mechanistic study where mathematical modeling of viral vector dynamics and
climate variables predicted optimal disease transmission of WNV at temperatures of 23-26
degrees Celsius.*® Predictive modeling of WNV incidence in North America with climate
simulations from 2021-2080 suggested an expansion of suitable conditions for the disease,
particularly in the southern regions of the United States, due to higher temperatures, lower
rainfall, a lengthening of mosquito season, and increase in droughts.>”-°° Transmission periods
for TBE in Europe are predicted to lengthen and new foci in Scandinavia may emerge, as
suggested by analyses of epidemiological data between 1969-2018 from Sweden, East Germany,
Czech Republic, Austria, Slovenia, and Northeast Italy.6%.6!
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Pollutant impacts

Studies relating pollutant impacts to neurologic disease were sub-grouped by disease: multiple
sclerosis (MS), headaches, ischemic stroke and TIA, intracerebral hemorrhage (ICH),
amyotrophic lateral sclerosis (ALS), Parkinson’s disease (PD), and dementia. Pollutants have
also been shown to increase neurologic disease mortality in a general sense, with one study
finding that periods of high air pollution due to heat waves and fires tripled the relative risk of
death due to neurologic disease.®? Figure 3 summarizes the numerous interrelationships between
pollutant exposures and neurologic disease.

Dementia

The strongest environmental risk of air pollution was identified in the dementia literature, where
nearly 6.1% of cases of incident dementia have been estimated to be attributable to PM2.5
(particulate matter with diameter less than 2.5 microns) and NO2 exposure.® Clinical diagnosis
of dementia®*%4, and objective measures of cognitive decline, such as the MMSE®>86, semantic
fluency, and word recall®” have been associated with prior years’ exposure to PM2.5. Indeed, it
has been shown that amyloid PET scanning is more likely to be positive if living in an area with
greater PM2.5 in the preceding 13-15 years.®® In patients who have pre-existing Alzheimer's
disease, Yitshak-shade and colleagues found association between PM2.5 exposure and risk of
hospital admission.®® Imaging evidence of an association between PM2.5 exposure and
neurodegenerative changes is provided by longitudinal studies of healthy patients with interval
MRI scans, which have shown white matter loss in those exposed to greater concentrations of
PM2.5.79-74 PM(coarse) has been less well-studied and only a single report linking exposure in
women to decreased mini-mental status examination (MMSE) score has been published.”
Exposure to PM10, particularly in patients harboring the APOE4 allele, has been shown to
associate both with dementia incidence and rate of cognitive decline, as well as front-temporal
thinning on MRI.%6.74.76-78 The effects of exposure to ground-level ozone (O3) remain less clear,
as there have not been as strong associations with dementia incidence’®, increased odds of
amyloid PET positivity®, or MMSE score decline.®® Nitrogenous gases have shown an
association with vascular dementia’®, global brain atrophy’*, and a slightly faster rate of decline
in those with the APOEA4 allele, with differing results for MMSE-scored cognitive decline and
all-cause dementia.8364%5.75 Sylfur dioxide (SO2) exposure has also been associated with MMSE
score decline.®® Ten-year average exposure to black carbon has not shown an association with
all-cause dementia.®*

Ischemic stroke/Transient Ischemic Attack

Long-term exposures to airborne pollutants had substantial support for association with ischemic
stroke. An analysis of the Global Burden of Disease study concluded that 9% of stroke disability-
adjusted life years (DALYSs) and 8.5% of stroke deaths could be attributed to PM2.5 exposure.&
After adjusting for sociodemographic factors, a study of 3,287 participants with incident stroke
living within 100m of a roadway (associated with increased airborne pollutant exposure), was
associated with a hazard ratio of 1.42 (95% CI 1.01-2.02) for ischemic stroke, though imaging-
based biomarkers of small-vessel disease in a subset of these patients did not show significant
association.8182 A Chinese study of 12,291 ischemic strokes revealed a statistically significant
association with PM1 and PM2.5 exposure three years prior to stroke event, but not with NO2 or
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PM10 exposure.®® Long-term exposures in a German study showed elevated risk of ischemic
stroke regardless of particle size; examining PM2.5abs, PM2.5, and PM10.84 Long-term PM2.5
exposure examined in a study of 39,054 participants in China associated significantly with stroke
mortality (HR 1.3, 95% CI 1.04-1.65).8°

Studies examining short-term pollutant exposure and stroke risk generally used a case-crossover
design. Results from these studies were conflicting and may depend on the population being
studied, as well as the degree of geographic precision with which pollutant levels were
examined. For example, of the four studies showing supportive evidence for short-term pollutant
exposure to PM10 and stroke®-8°, the largest studies Liu et al.®¢ and Yitshak-Sade®” had 279,890
events and 4,837 events respectively. On the other hand, two additional studies Royé et al.*° and
Zheng et al.* did not find significant associations between short-term PM10 exposure and
stroke. Stroke mortality may also be worse on days with greater PM1, PM2.5, PM(coarse), and
greater PM10.%1-% Short-term PM2.5 exposure was more controversial in its association with
incident stroke and small vessel disease. We identified three clinical studies and one imaging-
based study that did not reveal association®-°7, and three clinical studies and one imaging-based
study that did show association.86:87.98.9 Similar studies for first-time strokes and ozone exposure
have shown mixed associations with a single study showing positive association'® and four
studies showing no association.3:96:100-102 NO2 levels may also be associated with greater
incidence of stroke-related admissions and stroke mortality in the short term,2%1%3 though two
other studies did not show association.3%% Shen and colleagues examined short-term SO2
exposure in relation to the rates of ischemic and hemorrhagic stroke and found a positive
association,® but two other studies did not find any association®>% It may therefore be the case
that individual factors, such as ethnic or genetic factors or degree of exposure, contribute
significantly to the variability in this association.%>98101

Only one study examining TIA risk and pollutants was identified. PM2.5, PM10, CO, NO2, and
SO2 were significantly greater on days with TIA events than days without, and O3 did not show
this association.%

Intracerebral hemorrhage

We identified three primary studies that examined risk of intracerebral hemorrhage attributable
to environmental pollutants. In one study of 368 cases of small-vessel attributed ICH, short term
exposure to increased PM2.5 was greater on the three days preceding the hemorrhage compared
to a control period 15-17 days prior to the index event.1% A second study of 517 patients did not
identify any association between PM2.5, black carbon, or nitrogen dioxide, and ICH, and used a
similar design comparing exposures 1-7 days prior to the hemorrhage to a referent set of days in
the same month.1%” PM2.5 and PM10 were not shown to associate with hemorrhagic stroke in a
large Chinese study involving 69,399 subjects.8

Multiple Sclerosis

MS incidence as it relates to long-term air pollution exposure was assessed in one study of 6,203
patients, which did not show an association.'%® Two studies, together comprising over 10,000 MS
relapses, examined short-term PM10 exposure and the risk of MS-related hospitalization. There

was a strong association between MS relapse and PM10 exposure within the first 1-3 days or one
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week prior to the index event.19%110 One case-crossover study examined short-term PM2.5
exposure and MS relapse, with an increased risk of relapse related to exposure 3 weeks prior.1*!
Two studies examined the short-duration effects of air pollutants (diesel exhaust or particulate
matter versus filtered medical air) on serum markers of neuroinflammation within 24h of
exposure (IL-6, TNF-alpha, BDNF, S100b, NSE, urinary VMA), and showed either inconsistent
or no statistically significant differences between exposed and control groups.®112 The pro-
inflammatory association with PM10 exposure may relate to the chemokine receptor CCR6 in
CD4+ T cells, found to be preferentially upregulated in MS patients after exposure.'

Headaches

Three studies examined recurrent headaches and pollutant exposures. The largest used a case-
control design and leveraged electronic health records to examine 89,575 cases of migraine in
California, with a higher frequency of migraine-specific urgent care visits for increasing average
annual PM2.5 and NO2 levels.'* Two smaller studies, each with at least 18,000 patients,
examined short-term pollutant exposures and visits for migraine, with statistically significant
effects for PM2.5, PM10, NO2, 03, and CO exposures in adults, and PM2.5, CH4, SO2, NO2,
and total hydrocarbon exposures in children, 115116

Parkinson’s Disease

Parkinson’s disease incidence as it relates to particulate matter exposure in the long-term has
been examined by multiple studies. Three studies showed inconsistent or no significant
association*'11% two showed association with PM10%20121 and one showed association with
PM2.5.122 Among the most robust studies was a case-control study involving 38,475 PD patients
from Ontario, where 2-year exposures for PM2.5, NO2, and O3, at a resolution of 1km x 1km
were shown to associate with PD incidence (HRs ranged from 1.03-1.04).122 NO2 exposure was
examined in five additional studies and its impact remains controversial, with increased
concentrations noted in PD hotspots*?!, and two additional studies (combined 11,525 PD
patients) suggesting association'?*24 in opposition to two smaller studies (combined 1,496 PD
patients) that did not show any statistically significant association.17:120

ALS

ALS incidence related to air pollutant exposure was studied with varying results. One study
involving 917 ALS patients from a Dutch national registry showed an increased risk of ALS in
patients with long-term exposure to PM2.5 and NO2, but another series of 52 patients examining
PM10 exposure did not replicate these findings.1?>1% Among patients with ALS and Parkinson’s
disease, less controversial is the risk of disease aggravation in association with shorter-term
exposure to PM2.5, which may lead to first-time admission and diagnosis of the underlying
neurological condition.?’

Neurodevelopment

Two studies were identified within our search strategy that examined neurodevelopment and
pollutant exposure. Both studies examined over 500 children combined in urban settings in the
United States and Mexico. Pollutant exposures in these studies were remarkably detailed, at
resolutions of 1km x 1km to 10km x 10km, and outcomes examined included go-no go tasks or
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measures of neurocognitive performance. Both studies showed that prenatal PM2.5 exposure,
particularly during the third trimester, after adjustment for various confounders, predicted poorer
neurocognitive outcomes.1?8:129

= Dementia Risk
= White matter disease
= Amyloid PET positivity

= TIA Risk
= Poor neurocog. outcomes
H PM2.5 - 0 Reduced cog. performance
S @ MS relapse risk
s PM(Coarse) [ Stroke mortality
m'SO2 [ Stroke risk
- O Migraine headaches
i PM10 [ Increased PD risk
003 O TIA risk

B = Cognitive decline
gz = Cortical thinning

= Dementia risk

= Vascular dementia risk

= Brain atrophy

Figure 3: Relationships between pollutants and identified neurologic links. Sankey diagram
depicting interrelationships between pollutant exposure (left) and neurologic outcome (right).
PET refers to positron emissions tomography. TIA refers to transient ischemic attack. MS refers
to multiple sclerosis. PD refers to Parkinson’s disease.
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Discussion

Our scoping review has identified a wide body of literature pertaining to the impacts of climate
change on neurologic disease. The results highlight many connections between the incidence and
severity of neurologic disease and the effects of climate change and pollution. Perhaps the most
striking finding of this review was how little is known regarding the effects of meteorological
changes on neurologic illness, or on how the delivery of neurologic care should be adapted in the
face of climatic events and changes.

This review has brought forward three key areas for expedited study owing to their potential for
rapid change, large scale impact on neurologic health, and the potential for risk mitigation.
Foremost, there is a priority to develop an understanding of emergent neurotropic infectious
diseases. Diseases such as Zika virus, West Nile virus, tick-borne encephalitis, and COVID-19
have both the potential and precedence for very rapid spread across susceptible populations, with
only a rudimentary understanding of their long-term effects on the nervous system. In the bulk of
studies examined, we found evidence for vector incidence linked to climate, land use patterns,
and human activity. An understanding of these factors and how they relate to disease vectors has
given rise to novel strategies for risk mitigation, such vaccination programs, surveillance
systems, and ecological defenses such as the Wolbachia bacteria in the case of Zika virus.130.13
In addition, as the effects of climate change intensify, migration and increased numbers of
‘climate refugees’ could result in larger populations to non-vector borne infections, such as
COVID-19, and strategies to both study and mitigate these risks are needed.

Second, we identified an opportunity to enhance understanding of the risk of neurologic disease
as it relates to airborne pollutant exposure. Specifically, multiple studies examined the degree of
air pollution associated with cerebrovascular disease and dementia. Urban centers with high
population density in developing nations are regions with the highest concentrations of airborne
pollutants, and therefore represent a large population at risk for potentially preventable, chronic,
neurologic diseases. An understanding of the pathophysiology of pollutants on the nervous
system, as well as reduction and mitigation strategies, will be crucial to prevent increases in the
incidence of these diseases.

Third, our work suggests that there is a potential unmet need in planning for the robust delivery
of neurologic care in the face of ecological instability. We propose that tele-neurology may serve
as a key solution to the disruptions that may occur due to climate changes in order to maintain
continuity of neurologic care. The COVID-19 pandemic has highlighted how telemedicine can
help patients obtain health-care access but could not otherwise access it.**? Further infrastructure,
investment, and development of clinical skills and best practices in tele-neurology will be
increasingly important to deliver care in a world with increasingly extreme weather events.
Research into how to effectively manage patients with complex chronic neurologic conditions
through tele-medicine is needed, as well as strategies for developing tele-neurology
infrastructure in previously inaccessible regions.*3

The present study has several limitations; first, we were limited to studies that were published in
English or with suitable English translation. A risk of bias assessment for this scoping review
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was not performed, given the retrospective, observational nature of nearly all studies. Studies
often relied on multi-variate modeling and were therefore biased by choice and measurement of
the variables included in each of the models; differing modeling approaches often did not allow
for direct comparison or meta-analysis of results. In addition, there are challenges unique to
meteorological literature, including limitations on the spatial resolution of climate data, missing
historical data, instrument-dependent effects, and limited understanding of true individual
exposures due to behavioral variation. Modeling climactic variables’ effects on health outcomes
often involves a process of selecting a lag time between exposure and outcome of interest, which
can be arbitrary. There was significant variability in the results of the reviewed studies as
differing lag times were often considered; a factor that limited inter-study comparison. Studies
identified showed a geographic bias towards higher-income countries, whereas climate change is
predicted to disproportionately affect those in developing nations. For example, our search
strategy did not identify any studies from South America, and only five studies from Africa.

Practicing neurologists must consider the impact of climate change on each patient and their
presentation. Akin to the social determinants of health, a changing climate cannot be overlooked
as a key mediator of disease burden. The elderly patient with dysautonomia or MS and no access
to air conditioning, the patient with symptoms of a small-vessel stroke in a city with increasing
air pollution, or the patient with tick-borne encephalitis due to a vector never seen in their region
previously, are all vignettes that will undoubtedly become more common. Their neurologic
conditions are directly caused or exacerbated by the impacts of human-induced climate change,
and we must acknowledge the burden of illness on those who bear little responsibility for
greenhouse gas emissions. In doing so, our goal is to inspire action, research, and elicit true
change to mitigate the risks of an already changing climate.
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Figures

Figure 1: PRISMA diagram depicting studies included in this scoping review.

Figure 2: Neuro-infectious diseases studied by location. Map depicts number and type of
reports for reports examining neuro-infectious diseases as stratified by location. 10 reports were
published from North America, 13 reports from Europe, 5 reports from Africa, 10 reports from
Asia, and 1 report from Australia. TBE refers to tick-borne encephalitis. JEV refers to Japanese
encephalitis virus.

Figure 3: Relationships between pollutants and identified neurologic links. Sankey diagram
depicting interrelationships between pollutant exposure (left) and neurologic outcome (right).
PET refers to positron emissions tomography. TIA refers to transient ischemic attack. MS refers
to multiple sclerosis. PD refers to Parkinson’s disease.
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Supplementary Information

Supplementary Table 1. Studies of neuro-infectious diseases and their locations. Studies of
neuro-infectious diseases associated with climate change, article type (primary or review), and
the primary location of study, that were included in scoping review. TBE refers to tick-borne
encephalitis. WNV refers to West Nile virus. JEV refers to Japanese encephalitis virus. DENV
refers to Dengue virus.

Study Ref. Organism Location Type
Agier 2013 1 TBE Africa Primary
Andersen 2017 2 WNV, TBE Global Review
Andreassen 2012 3 TBE Europe Primary
Bai 2013 4 mo_squito borne illness systematic Asia Review
review
Baylis 2016 5 JEV Asia Primary
Bi 2007 6 JEV Asia Primary
Daep 2014 7 flaviviruses (DENV, JEV, WNV) Global Review
Daniel 2018 8 TBE Europe Primary
Daniel 2008 9 TBE ixodes Europe Primary
Davis 2018 10 WNV North America Primary
Dhimal 2015 11 Dengue, lymphatic filariasis, JEV, Asia Review
visceral leishmaniasis, malaria
Dobrotyorski 1999 12 TBE Asia Primary
Gould 2009 13 WNV, Chikungunya, rift valley fever, North America Review
bluetongue virus
Harrigan 2014 14 WNV North America Primary
Hsu 2008 15 JEV Asia Primary
Jaenson 2018 16 TBE Europe Review
Lindgren 2000 17 TBE ixodes Europe Primary
Lindgren 2001 18 TBE Europe Primary
Marini 2016 19 Culex pipiens (mosquito) Europe Primary
Mazamay 2020 20 Meningitis unspecified Africa Primary
Mihailovic 2020 21 WNV, Anopheles hyrcapus Europe Primary
Molesworth 2003 22 meningitis Africa Primary
Morin 2013 23 WNV North America Primary
Murty 2010 24 JEV Asia Primary
Paull 2017 25 WNV North America Primary
Rainham 2005 26 WNV North America Review
Randolph 2000 27 TBE Europe Review
Russell 1998 28 arbovirus Australia Review
Samy 2016 29 TBE ixodes Global Primary
Shocket 2020 30 WNV North America Primary
Singh 2020 31 JEV Asia Primary
Skaff 2020 32 Culex quinquefasciatus (mosquito) North America Primary
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Soverow 2009 33 WNV North America Primary
Sumilo 2007 34 TBE Europe Primary
Sumilo 2008 35 TBE Europe Primary
Tokarevich 2017 36 Culex quinquefasciatus (mosquito) Asia Primary
Uejio 2012 37 WNV Africa Primary
Vonesch 2016 38 WNV, TBE Europe Review
Wang 2010 39 WNV North America Primary
Zeman 2004 40 TBE Europe Primary
Zhang 2016 41 JEV Asia Primary
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