
1 
 

Title: A genome-wide association study of COVID-19 related hospitalization in 

Spain reveals genetic disparities among sexes 

 

Ángel Carracedo, Spanish COalition to Unlock Research on host GEnetics on COVID-19 (SCOURGE) 

Email address for correspondence: angel.carracedo@usc.es  

 

Author list: 

https://ciberisciii-my.sharepoint.com/:w:/g/personal/scourge-covid_ciberisciii_es/EVb2-

W0I1D5OvkgSInxHGG0BbpYT_sPnOBFvCkfys6C_pw?e=BnWtNu 

 

Abstract 

We describe the results of the Spanish Coalition to Unlock Research on Host Genetics on COVID-19 

(SCOURGE). In sex-disaggregated genome-wide studies of COVID-19 hospitalization, we found two 

known loci associated among males (SLC6A20-LZTFL1 and IFNAR2), and a novel one among females 

(TLE1). Meta-analyses with independent studies revealed two novel associations (AQP3 and 

ARHGAP33) and replicated ELF5. A genetic risk score predicted COVID-19 severity, especially among 

younger males. We found less SNP-heritability and larger heritability differences by age (<60/≥60 

years) among males than females. Inbreeding depression was associated with COVID-19 hospitalization 

and severity, and the effect was stronger among older males. 

 

Introduction 

Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 

(SARS-CoV-2), develops with wide clinical variability, ranging from asymptomatic infection to a life-

threatening condition [1]. Advanced age and the presence of comorbidities are well-known major risk 

factors of COVID-19 severity [2,3]. In addition, male sex is another risk factor associated with COVID-19 

severity, regardless of comorbidities [4].  

International genetic studies based on genome-wide association studies (GWAS) and/or comparative 

genome sequencing analyses have been conducted to identify genetic variants associated with COVID-

19 severity [5,6]. These studies have revealed the role of genes of the Type-I interferon (IFN) signalling 
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pathway as key players underlying disease severity [7-9]. Besides, they have also identified other 

potential loci previously linked to lung function and diseases and autoimmunity [9]. Regarding COVID-

19 severity in males, sex-disaggregated genetic analyses have received limited attention despite the 

importance of sex disparities in clinical severity [10]. Early studies suggested immune deficits 

presumably due to pre-existing neutralizing autoantibodies against Type-I IFN in older male patients 

[11]. 

The effects of autozygosity, measured as the change of the mean value of a complex trait due to 

inbreeding, have been useful to identify alternative genetic risk explanations and effects that 

traditionally are not captured by GWAS [12]. By analysing the contribution of the inbreeding 

depression (ID) through the lens of the runs of homozygosity (ROH: genomic tracts where homozygous 

markers occur in an uninterrupted sequence), it is possible to assess the importance of directional 

dominance or overdominance in the genetic architecture of complex traits [13]. Even though this is a 

relatively modern approach, different studies have shown the importance of homozygosity in a large 

range of complex phenotypes, including anthropometric, cardiometabolic, and mental traits [14-16].  

Through diverse nested sub-studies, the Spanish Coalition to Unlock Research on Host Genetics on 

COVID-19 (SCOURGE) consortium was launched in May 2020 aiming to find biomarkers of evolution 

and prognosis that can have an immediate impact on clinical management and therapeutic decisions in 

SARS-CoV-2 infections. This consortium has recruited patients from hospitals across Spain and Latin 

America in close collaboration with the STOP-Coronavirus initiative (https://www.scourge-covid.org). 

Here we describe the results of the first SCOURGE genome-wide studies of COVID-19 conducted in 

patients recruited in Spain. To the best of our knowledge, this is the first time that the impact of 

homozygosity is considered in COVID-19 studies, serving as a complement to the traditional GWAS to 

assess both the additive and dominant components of the genetic architecture of COVID-19 severity. 

Likewise, the ID analysis could also help to explain the strong effect of age in COVID-19 severity.  

 

Results 

Discovery phase 

In the SCOURGE study, 11,939 COVID-19 positive cases were recruited from 34 centres 

(Supplementary Table 1). All diagnosed cases were classified in a five-level severity scale (Extended 

Data Table 1). Two untested Spanish sample collections were used as general population controls in 

some analyses: 3,437 samples from the Spanish DNA biobank (https://www.bancoadn.org) and 2,506 

samples from the GR@CE consortium [17]. The discovery phase samples were genotyped with the 
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Axiom Spain Biobank Array (Thermo Fisher Scientific). Details of quality control, ancestry inference and 

imputation are shown in the Methods section. Individuals with inferred European ancestry were used 

for association testing. After post-imputation filtering, 15,045 individuals (9,371 COVID-19 positive 

cases and 5,674 population controls) and 8,933,154 genetic markers remained in the SCOURGE 

European study (discovery). Clinical and demographic characteristics of European patients from 

SCOURGE included in the analysis are shown in Extended Data Table 2. 

The discovery phase of the GWAS was carried out with infection susceptibility and three severity 

outcomes (hospitalization, severe illness, and critical illness) which were tested using three different 

control definitions (see Supplementary Table 2).  

- A1 analysis: COVID-19 positive not satisfying the case condition and control samples from the 

general population (COVID-19 untested). 

- A2 analysis: control samples from the general population.  

- C analysis: COVID-19 positive not satisfying the case condition. 

The GWAS was carried on by fitting logistic mixed regression models adjusting for age, sex, and the first 

10 Principal Components (PCs) (Methods).  Supplementary Table 3 shows the independent significant 

associated loci for hospitalization, severity, critical illness, and infection susceptibility risk, for global 

and sex-stratified analysis in the SCOURGE dataset. However, considering the overlap between the 

findings for these analyses, only the main results for the A1 analysis are presented. The SCOURGE 

Board of Directors has agreed to aggregate the GWAS summaries with those from the COVID-19 Host 

Genetics Initiative (HGI). 

All analyses support the association of two known loci, 3p21.31 and 21q22.11. However, other 

suggestive associations were also found (Figure 1 and Extended Data Figure 1). Strikingly, the leading 

signals found in the global (sex-aggregated) analysis were genome-wide significant in the analyses 

among males but not among females. However, the leading variant of 9q21.32 (near TLE1 gene) 

reached genome-wide significance among females only. Several variants (rs17763742 near LZTFL1, 

rs2834164 in IFNAR2, and rs1826292621 near TLE1) showed a significant difference in effect sizes 

(SNP*sex interaction p<0.0031, adjusted probability for 16 comparisons) linked not only to 

hospitalization, but also to critical illness and infection risk. The A2 and C analyses did not reveal any 

additional significant loci (Supplementary Figure 1). While fine-mapping studies in 3p21.31 and 

21q22.11 have led to gene and variant prioritization within these loci (Extended Data Figure 2), a 

Bayesian fine-mapping on the 9q21.32 did not allow to prioritize variants by their role as expression 

quantitative trait loci (eQTLs) or anticipate the function (Figure 2). To assess if a higher prevalence of 

comorbidities in males may underlie these differential findings, the presence of comorbidities was 
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tested for association within hospitalized patients. No significant association was found in either males 

or females (Supplementary Figure 2). Further explorations of the genetic associations with 

comorbidities are presented in the Supplementary Note. 

This GWAS phase was also performed disaggregated by age (<60/≥60 years old), and by age and sex 

simultaneously. Differences in effect sizes between both age groups were tested for the SNPs shown in 

the Supplementary Table 3, in global and sex-specific analysis (Supplementary Table 4). Significant 

findings were only found in the subgroup of males with <60 years old. Differences in effect size 

(significant age-interaction) were significant at 3p21.31 for severity and critical illness, and suggestive 

in hospitalization. 

 

Lookup of previously found COVID-19 host risk factors in the SCOURGE study 

Known significant loci for COVID-19 severity in 3p21.31 (near SLC6A20 and LZTFL1) and 21q22.11 (in 

IFNAR2) were clearly replicated at genome-wide significance in this study, specifically for risk of 

infection, hospitalization, and severity risk. Three other loci, in 9q34.2 (in ABO), 12q24.13 (in OAS1), 

and 19p13.2 (near RAVER1 and TYK2), did not reach the genome-wide significance threshold but they 

were significant after correcting for the 390 tests performed in a lookup (13 SNPs and 30 analyses, 

significance threshold p<1.3x10-4). In agreement with previous results, ABO was mainly associated with 

the risk of infection. However, other loci as those in 3q12.3 (near RPL24) and 19p13.3 (near DPP9), 

previously found associated with COVID-19 severity, were not replicated in the SCOURGE Europeans. 

The complete list of results for the list of COVID-19 HGI significant loci [9] is shown in Figure 3a and in 

the Supplementary Table 5. Figure 3a also reinforces the clear sex differences found in this study. 

 

Genotype risk score and the COVID-19 severity scale  

We developed a GRS combining the 13 leading variants found by the COVID-19 HGI GWAS to appraise 

its prediction power of the severity scale in SCOURGE. The average values of the GRS for each of the 

severity scale levels of SCOURGE were statistically different between the six levels in global 

(F5,14547=50.7, p<2x10-16) and the sex-stratified analyses (females: F4,4753=10.30, p=2.62x10-8; males: 

F4,4114=10.47, p=1.94x10-8) (Figure 3b, 3c). Duncan's post hoc test did not support differentiation 

between some of the severity levels, roughly defining three classes: one comprising controls and the 

asymptomatic and mild cases; another with moderate and severe cases; and one with the critical 

cases. Within each category, we did not find any statistically significant differences between sexes, yet 

interestingly the GRS mean remained higher for males than for females while this trend was reversed 
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in the control group (Figure 3b). Moreover, the GRS mean was not equal for both sexes (t8994.5=-5.21, 

p=1.98x10-7). When the GRS was performed disaggregating by age (<60/≥60 years old) and sex 

simultaneously, we found the same three severity classes in the subgroup of males with <60 years old, 

supporting the importance of this group in the overall findings (Figure 3c). In fact, significant 

differences were found between both age groups within males with severe (t359.2 = 4.18 , p= 3.6x10-5) 

and critical illness (t815 = 5.12, p= 3.9x10-7). 

 

Replication phase 

Results for hospitalization risk were meta-analysed with a second Spanish cohort, the CNIO study 

(Methods). This study was filtered following the same quality control and imputation procedures. The 

final dataset of the CNIO study included 2,446 European individuals (1,378 COVID-19 positive cases and 

1,068 population controls) and 8,895,721 markers. 

Table 1 shows the results that were genome-wide significant either in global or sex-stratified meta-

analysis with SCOURGE. Besides the widely replicated loci at 3p21.31 and 21q22.11, three additional 

signals were found: chr9:33426577:A:G (intergenic to AQP7 and AQP3), chr17:45422978:G:C (intronic 

to ARHGAP27), and chr19:35687796:G:A (intergenic to UPK1A and ZBTB32). Bayesian fine-mapping 

around chr17:45422978:G:C failed to prioritize a credible set of variants, hindering functional links of 

the locus. Functional assessments of the prioritized variants by the Bayesian fine-mapping analysis in 

the other two regions supported that they were eQTLs of the AQP3 and ARGAP33 genes, including in 

whole blood and lung tissues (Figure 4).  

These variants were also associated with the three severity groups previously outlined in SCOURGE by 

the GRS under a multinomial model (Supplementary Table 6).  

 

Validation of results in independent European studies 

Hospitalization risk was meta-analysed with other European studies combining both Spanish cohorts 

(SCOURGE and CNIO) with four other sex-disaggregated studies from the COVID-19 HGI consortium, 

namely: BelCOVID, GenCOVID, Hostage-Spain, and Hostage-Italy (Table 2). Once again, the most 

outstanding significant loci were found at 3p21.31 and 21q22.11 (in global and male-specific analyses), 

and three additional loci reached genome-wide significance in the meta-analysis of males: 

chr12:11292383:A:G (in OAS1), chr19:35687796:G:A (intergenic to UPK1A and ZBTB32), and 
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chr11:34482745:G:A (in ELF5). The 3p21.31 variants reached genome-wide significance in females, 

although at significantly lower level than in males despite the similar sample sizes (Z=3.33, p=5x10-4).  

Significance of two interesting loci revealed in the Spanish studies was reduced in the meta-analysis 

with other European studies, although still showing suggestive associations: that of 9q21.32 near TLE1 

previously found only in females (female meta-analysis beta=0.29 p=5.4x10-7), and that of 9p13.3 near 

AQP3 (global meta-analysis beta=0.15, p=1.23x10-7). 

 

Heritability of COVID-19 hospitalization 

In the hospitalization risk analysis, we found that common variants (MAF >1%) explain 27.1% (95%CI: 

19.0-35.3%) of heritability on the observed scale (corresponding to 13.1% [95%CI: 9.2-17.0%] on the 

liability scale, assuming a prevalence of 0.5%) (Figure 5). We observed less heritability among males 

than females (2.9% [95%CI: 0.00-10.6%] in males and 17.0% [95%CI: 9.2-24.9%] in females on the 

liability scale), which is in agreement with their higher risk of severe COVID-19 and with the 

observations that non-genetic factors (e.g. IFN autoantibodies) causing critical COVID-19 are more 

prevalent among males than females [11, 18]. In agreement with this idea, we observed larger 

heritability differences by age groups among males (40.2% [95%CI: 22.8-57.5%] in <60 years vs. 17.6% 

[95%CI: 0.00-38.0%] in ≥60 years on the liability scale) than among females (9.1% [0.00-31.3%] in <60 

years vs. 13.7% [0.00-29.6%] in ≥60 years on the liability scale). This observation might be explained by 

the presence of X-linked deleterious variants such as those described in the TLR7 gene that are life-

threatening for COVID-19 among males [19-21]. 

 

Inbreeding depression and COVID-19 outcomes 

ROH calling was performed in the European QC-ed genotyped dataset. Inbreeding depression (ID) 

analyses are described in Methods section and Supplementary Note. 

The median genomic inbreeding coefficient, FROH, for the entire SCOURGE study was 0.0048 (IQR = 

0.004). No differences were detected between males (FROH = 0.004, IQR = 0.0035) and females (FROH = 

0.0056, IQR = 0.0038), or between younger and older individuals (FROH individuals < 60 years old = 0.004, IQR = 

0.0035; FROH individuals ≥ 60 years old = 0.0052, IQR = 0.0047, respectively) (Supplementary Figure 3). Regarding 

the ID in COVID-19 outcomes, we detected a positive association of the FROH in COVID-19 

hospitalization risk (Figure 6), severity risk, and risk for critical illness (Supplementary Table 7). Our 
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results showed that the hospitalization odds for COVID-19 patients with an FROH = 0.0039 were 380% 

higher than individuals with FROH = 0. No effect of the genomic relationship matrix (FGRM) was found. 

To assess whether ID in COVID-19 hospitalization in SCOURGE was different between sexes, we tested 

first the interaction between FROH and biological sex. FROH, sex and the interaction of both (FROH:Sex) 

were significant (FROH = 4.7x10-3, sex = 1.0x10-112, FROH:Sex = 1.2x10-3). This interaction was significant 

when comparing the hospitalized COVID-19 patients with different controls (A2 and C analyses, see 

Supplementary Table 8). This interaction was also found with severity risk, but not with risk for critical 

illness (Supplementary Table 8). In sex-disaggregated analyses, we observed a sex-specific effect of 

inbreeding. FROH was significant in hospitalized males but not in females (Figure 6 and Supplementary 

Table 8). This sex-specific effect was also observed with severity risk and in risk for critical illness 

(Supplementary Table 8). We then assessed whether ID in COVID-19 hospitalization was different by 

age. We detected a significant interaction between age and FROH for the three outcomes considered 

(hospitalization risk, severity risk, and critical illness risk) (Supplementary Table 9). Disaggregating 

SCOURGE by sex and age (<60, ≥60) we found that the ID for hospitalization and severity risk were 

detected mainly in older males (Figure 6 and Supplementary Table 9). We detected ID for 

hospitalization and severity in males, older than 60 years old, but it was marginally significant in 

females (Figure 6 and Supplementary Table 9). Age and sex-specific effects in hospitalization risk and 

severity risk were robust across different experimental designs using different control groups 

(Supplementary Figure 4).   

Finally, we then aimed to replicate the ID results with hospitalization risk, assessing sex and age-

specific effects, in a 4,418 case-enriched European cohort made of 16 studies from nine countries. 

Median FROH in this other European cohort was slightly higher than that of SCOURGE: 0.05 (0.009 – 

0.0577). A positive and significant ID in COVID-19 hospitalization was detected in this other European 

cohort when the entire cohort was considered (FROH Beta = 18.22, p = 3.33x10-3). FGRM was not 

significant (FGRM Beta =  -7.34, p = 0.240). ID was also detected in hospitalized COVID-19 males but not 

in females (Male FROH Beta = 16.22, p = 3.31x10-3; Female FROH Beta = 15.65, p =0.269). FGRM was not 

significant in males or in female analyses. When disaggregating by age, it was possible to detect ID in 

hospitalization only in males ≥60 years old (FROH Beta = 36.16, p = 3.34x10-3) (Supplementary Table 10). 

No evidence was found of major loci that may be exerting large effects. Rather, polygenicity seems to 

underlie the ID association. Different ROHi and regions of heterozygosity (RHZ) were found to be 

unique for hospitalized COVID-19 individuals (males and females) and non-hospitalized males 

respectively (Supplementary Note, Supplementary Table 11). An enrichment analysis of pathways 

based on the protein coding genes present in ROH islands were also different between sexes 
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(Supplementary Note, Supplementary Table 12), revealing links with coagulation and complement 

pathways in males. 

 

Discussion 

Here we report the replication of six COVID-19 loci across analyses and provide evidence supporting 

four additional loci, two of them specifically detected in one sex (one of them among females and the 

other among males). Besides, our analyses provide new insights into disease severity disparities by sex 

and age and support the necessity of similarly stratified studies to increase the possibility of detecting 

additional risk variants. Our GWAS constitutes the largest study on COVID-19 genetic risk factors 

conducted in Spain, with an intrinsic design benefit that SCOURGE includes detailed clinical and genetic 

information gathered homogeneously across the country. Besides, the study included patients from 

the whole spectrum of COVID-19 severity covering from asymptomatic to life-threatening disease. To 

date, most research on COVID-19 disease has focused on respiratory failure. However, the inclusion of 

a severity scale provided a unique opportunity to assess whether previously reported loci combined 

into a GRS model were associated with differential risk by strata. Association was tested for four main 

variables: infection, hospitalization, severe illness, and critical illness, and using different definitions of 

controls to align with the COVID-19 HGI. Irrespective of the tested outcomes or the definition of 

controls, the results were very similar, supporting the use of population controls to increase power in 

these studies and the utility of using hospitalization as a proxy of severity. However, our results from 

the GRS analysis reported a need to maintain separated categories for severe-medium and critical 

illness. 

We clearly replicated previously reported associations at 3p21.31 (near SLC6A20 and LZTFL1-FYCO1) [7, 

9, 22, 23] and 21q22.11 (in IFNAR2) [7, 9], and other findings in ABO, OAS1, TYK2, and ARHGAP27 were 

validated. We also found a differential effect between males and females for SNPs in 3p21.31 and 

21q22.11. Such differential genetic effects are also reflected in the heritability estimates. In this 

respect, the results strongly support that the genetic risk varies with sex and with a trend towards 

increasing differences with decreasing age, in agreement with the evidence suggesting a reduced 

impact of genetics with age [24]. While in the meta-analysis with other European studies the leading 

variants of 3p21.31 reached genome-wide significance in females, there was still a difference in effect 

size that, considering its magnitude, should not be disregarded.  It is important to remark that these 

association signals found in males were not associated with the presence of comorbidities (see 

Supplementary Figure 4). In fact, genetic effects were only found for younger males (<60 years old), 
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consistent with other studies [25] and strongly supporting those comorbidities outweigh genetic 

effects in disease outcomes in the older patients.   

Some novel signals were found in our study, one in chromosome 19q13.12 (intergenic to UPK1A and 

ZBTB32, and also linked to the transcriptional regulation of ARHGAP33), and another in chromosome 

9p13.3 (intergenic to AQP7 and AQP3). Interestingly, we also found two sex-specific signals: ELF5 in 

males and TLE1 in females. ELF5 has been recently reported as a new locus associated with critical 

illness in Europeans [26]. This locus reached genome-wide significance in our male meta-analysis of 

European cohorts (p=4.1x10-8). As regards of TLE1, even though this locus did not reach the standard 

genome-wide significance threshold (p=5.4x10-7), the signal is robust in the SCOURGE female GWAS. 

Given that the meta-analysis involved a low number of studies (and the top marker was not imputed in 

one of them), we believe this result should be taken with caution as further sex-specific studies will be 

needed to validate this finding.  

TLE1 encodes for the transducin-like enhancer of split 1, a co-repressor of other transcription factors 

and signalling pathways. Besides repressing the transcriptional activity of FOXA2 and of the Wnt 

signalling, TLE1 has been shown to negatively regulate NF-kB, which is fundamental in controlling 

inflammation and the immune response. The deficiency of TLE1 activity in mice results in enhancement 

of the NF-κB-mediated inflammatory response in diverse tissues including the lung [27].  Interestingly, 

TLE1 is one of the 332 high-confidence SARS-CoV-2 protein–human protein interactions identified so 

far [28]. Taken together, SARS-CoV-2 would be directly targeting the innate immunity and 

inflammation signalling pathways by interfering with the NF-κB activity. Thus, it is not surprising that 

TLE1 is a top-ranking regulator of inflammation that allows to transcriptionally distinguish mild from 

severe COVID-19 [29]. 

In the 19q13.12 locus, the most biologically plausible genes are ARHGAP33 (also showing the best 

functional support based on the fine mapping variants) and ZBTB32. ARHGAP33 is transcriptionally 

regulated by IRF1, a prominent antiviral effector and IFN-stimulated gene [30]. It also harbours NF-κB 

binding sites that modifies its expression in human lymphoblastoid cell lines by the presence of genetic 

variants in the binding site linked to many inflammatory and immune-related diseases including sepsis, 

and bacterial and viral infection [31]. Its expression is also altered in human induced pluripotent stem 

cells-derived pancreatic cultures in response to SARS-CoV-2 infection [32]. ARHGAP33 was identified in 

an unbiased genome-wide CRISPR-based knockout screen in human Huh7.5.1 hepatoma cells infected 

by coronaviruses including SARS-CoV-2 and further interactome studies [33]. With respect to the 

transcription factor ZBTB32, it has been shown to impair antiviral immune responses by affecting 

cytokine production and the proliferation of natural killer and T cells, and the generation of memory 
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cells [34]. In single cell studies, transcripts of ZBTB32 were enriched in T follicular helper cells and were 

also expressed at significantly higher levels in hospitalized COVID-19 patients [35]. 

AQP3 is expressed most strongly in the kidney collecting duct, the gastrointestinal tract, large airways 

(in basal epithelial cells and the nasopharynx), skin, and the urinary bladder; while AQP7 is expressed 

primarily in the testis, fat cells and, to a lesser extent in a subsegment of the kidney proximal tubule 

[36]. In addition, AQP3 is upregulated in the lung tissues during viral or bacterial-induced diffuse 

alveolar damage [37]. Based on this, the evidence that SARS-CoV-2 viral proteins interacts with host 

proteins with the highest expression in lung tissues [38], and the functional evidence of the fine 

mapped variants in the GWAS being eQTLs in lung tissues, our data supports AQP3 as the most likely 

gene of the 9p13.3 locus driving the association with COVID-19 hospitalization. Many patients develop 

acute respiratory distress syndrome (ARDS) during severe COVID-19 [39], and one of the hallmarks of 

ARDS is the increase of fluid volume (oedema) in the airspaces of the lung because of an increase in the 

alveolo-capillary membrane permeability. Some of the aquaporins, including AQP3, essentially function 

as water transport pores between the airways and the pulmonary capillaries [40], are key in lung fluid 

clearance and the formation of this lung oedema as a consequence of the lung injury [36]. In fact, the 

use of aquaporin modulators in lung inflammation and oedema has been proposed for potential use 

for the treatment of COVID-19 respiratory comorbidity [41].   

We have also shown for the first time that COVID-19 severity risk suffers from ID, where individuals 

with higher levels of homozygosity associate with higher risk of being hospitalized and of developing 

severe COVID-19. Our results also suggested that autozygous rare recessive variants found in ROH 

across the genome, rather than homozygous common variants in strong LD, are underlying the ID. 

Furthermore, the ID is stronger in males than in females suffering from COVID-19 hospitalizations, 

especially in males ≥60 years old. Although these results may be found counterintuitive with the rest of 

findings, they are supported by the mutation accumulation senescence theory. Under this theory, 

alleles with detrimental effects that act in late life are expected to accumulate and cause senescence, 

thus increasing the ID [42].  We detected further sex-specific effects of homozygosity through ROHi. In 

hospitalized males, coagulation and complement pathways, which have been previously associated 

with severe COVID-19 [43], were enriched among the protein coding genes located in ROHi, 

highlighting the role of homozygosity whereas the Lectin pathway of complement activation is 

reported to be involved in the response to SARS-CoV-2 infection [44-46]. In hospitalized females, PI3K-

Akt signalling genes were found to be enriched in ROH islands, whose networks are affected by a great 

variety of viruses [47]. 
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Given that the effect of the genetic variants in SARS-CoV-2 severity is clearer among males and 

previous evidence on this regard, we elucubrate on the role of androgens in COVID-19 severity. 

Androgenic hormones have been suggested to be responsible of the excess male mortality observed in 

COVID-19 patients [48], and several lines of evidence suggest that the androgen receptor (AR) pathway 

is involved in the severity of SARS-CoV-2 infection: (1) A higher mortality rate among men has been 

established [49]; (2) A substantial proportion of individuals, both males and females, hospitalized for 

severe COVID-19 have androgenetic alopecia (AGA) [49]; (3) Most of the genes on COVID-19 severity in 

this study have been identified in male-only analyses, and these genes have been shown to interact 

with the AR. The following lines of evidence suggest the AR pathway is a mechanism responsible for 

some identified genes-COVID-19 severity relationship: (1) FYCO1 is regulated by the AR [50], and 

binding sites between the sex hormone receptor AR and FYCO1 have been demonstrated [50,51]; (2) 

There is a cross-talk between the IFN pathways and the androgen signalling pathways [52], and 

androgens are regulated by IFNs in human prostate cells [53]; (3) TMPRSS2, another gene associated 

with COVID-19 severity in other studies, is induced by androgens through a distal AR binding enhancer 

[54]; (4) AR induces the expression of chemokine receptors such as CCR1; (5) Variants of LZTFL1 gene 

are likely pathogenic for male reproductive system diseases [55]; (6) genetic polymorphisms in the AR 

(long polyQ alleles ≥23) and higher testosterone levels in subjects with AR long-polyQ appear to 

predispose some men to develop more severe disease [56]. Thus, it is not unexpected to find that 

antiandrogen treatments are under the focus as treatment options and prophylaxis of severe COVID-19 

[49] and that randomized controlled clinical trials with bicalutamide (NCT04374279), degarelix 

(NCT04397718), and spironolactone (NCT04345887) are currently underway.  

 

References 

 

1. Tang, D., Komish,P., & Kang, R. The hallmarks of COVID-19 disease. PLOS Pathogens 16, e1008536. 

https://doi.org/10.1371/journal.ppat.1008536 (2020).  

2. Goyal, P., Choi, J., Pinheiro, L. et al. Clinical Characteristics of Covid-19 in New York City. N Engl J Med 

382, 2372-2374. https://doi.org/10.1056/NEJMc2010419 (2020). 

3. Richardson, S. et al. Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients 

Hospitalized With COVID-19 in the New York City Area. JAMA 323, 2052–2059. 

https://doi.org/10.1001/jama.2020.6775 (2020). 



12 
 

4. Vahidy, F., Pan, A., Ahnstedt, H. et al. Sex differences in susceptibility, severity, and outcomes of 

coronavirus disease 2019: Cross-sectional analysis from a diverse US metropolitan area. PloS ONE 16 

e0245556. https://doi.org/10.1371/journal.pone.0245556 (2021). 

5. The COVID-19 Host Genetics Initiative. The COVID-19 Host Genetics Initiative, a global initiative to 

elucidate the role of host genetic factors in susceptibility and severity of the SARS-CoV-2 virus pandemic. 

Eur J Hum Genet 28, 715–718. https://doi.org/10.1038/s41431-020-0636-6 (2020). 

6. Casanova, C., Su, H., & COVID Human Genetic Effort. A Global Effort to Define the Human Genetics of 

Protective Immunity to SARS-CoV-2 Infection. Cell 181, 1194-1199. 

https://doi.org/10.1016/j.cell.2020.05.016  (2020). 

7. Pairo-Castineira, E. et al. Genetic mechanisms of critical illness in COVID-19. Nature 591, 92-98. 

https://doi.org/10.1038/s41586-020-03065-y (2021). 

8. Zhang, Q. et al. Inborn errors in type I IFN immunity in patients with life-threatening COVID-19. Science 

370, eabd4570. https://doi.org/10.1126/science.abd4570 (2020). 

9. COVID-19 Host Genetics Initiative. Mapping the human genetic architecture of COVID-19. Nature. 

https://doi.org/10.1038/s41586-021-03767-x (2021). 

10. Brady, E., Nielsen, M., Andersen, J. & Oertelt-Prigione, S. Lack of consideration of sex and gender in 

COVID-19 clinical studies. Nat Commun 12, 4015. https://doi.org/10.1038/s41467-021-24265-8 (2021). 

11. Bastard, P., Rosen, L., Zhang, Q. et al. Autoantibodies against type I IFNs in patients with life-threatening 

COVID-19. Science 370, eabd4570.  https://doi.org/10.1126/science.abd4585 (2020). 

12. Charlesworth, D. & Willis, H. The genetics of inbreeding depression. Nat Rev Genet 10, 783–796. 

https://doi.org/10.1038/nrg2664 (2009). 

13. Ceballos, F., Joshi, P., Clark, D., Ramsay, M. & Wilson, F. Runs of homozygosity: windows into population 

history and trait architecture. Nat Rev Genet 19, 220–234. https://doi.org/10.1038/nrg.2017.109  

(2018). 

14. Ceballos, F. et al. Autozygosity influences cardiometabolic disease-associated traits in the AWI-Gen sub-

Saharan African study. Nat Commun 11, 5754. https://doi.org/10.1038/s41467-020-19595-y  (2020). 

15. Clark, D. et al. Associations of autozygosity with a broad range of human phenotypes. Nat Commun 10, 

4957. https://doi.org/10.1038/s41467-019-12283-6 (2019). 

16. Moreno-Grau, S. et al. Long runs of homozygosity are associated with Alzheimer’s disease. Transl 

Psychiatry 11, 142. https://doi.org/10.1038/s41398-020-01145-1 (2021). 

17. Moreno-Grau, S. et al. Genome-wide association analysis of dementia and its clinical endophenotypes 

reveal novel loci associated with Alzheimer's disease and three causality networks: The GR@ACE project. 

Alzheimer's & dementia: the journal of the Alzheimer's Association 15, 1333–1347. 

https://doi.org/10.1016/j.jalz.2019.06.4950 (2019). 

18. Bastard P. et al. Autoantibodies neutralizing type I IFNs are present in ~4% of uninfected individuals over 

70 years old and account for ~20% of COVID-19 deaths. Sci Immunol 62, EABL4340. 

https://doi.org/10.1126/sciimmunol.abl4340 (2021). 



13 
 

19. van der Made, C. et al. Presence of Genetic Variants Among Young Men With Severe COVID-19. JAMA 

324, 663-673. https://doi.org/10.1001/jama.2020.13719 (2020). 

20. Fallerini, C. et al. Association of Toll-like receptor 7 variants with life-threatening COVID-19 disease in 

males: findings from a nested case-control study. Elife 10. https://doi.org/10.7554/eLife.67569 (2021). 

21. Asano, T. et al. X-linked recessive TLR7 deficiency in ~1% of men under 60 years old with life-threatening 

COVID-19. Sci Immunol 62. https://doi.org/10.1126/sciimmunol.abl4348 (2021). 

22. Ellinghaus, D. et al. Genomewide association study of severe Covid-19 with respiratory failure. N. Engl. J. 

Med. 383, 1522–1534 (2020). 

23. Shelton, J. et al. Trans-ancestry analysis reveals genetic and nongenetic associations with COVID-19 

susceptibility and severity. Nat Genet 53, 801–808. https://doi.org/10.1038/s41588-021-00854-7 (2021). 

24. Jiang, X., Holmes, C., & McVean, G. The impact of age on genetic risk for common diseases. PLoS genetics 

17, e1009723. https://doi.org/10.1371/journal.pgen.1009723 (2021). 

25. Nakanishi, T. et al. Age-dependent impact of the major common genetic risk factor for COVID-19 on 

severity and mortality. J Clin Invest. https://doi.org/10.1172/JCI152386 (2021).  

26. Kousathanas, A. et al. Whole genome sequencing identifies multiple loci for critical illness caused by 

COVID-19. Preprint at https://www.medrxiv.org/content/10.1101/2021.09.02.21262965v2 (2021).  

27. Ramasamy, S. et al. Tle1 tumor suppressor negatively regulates inflammation in vivo and modulates NF-

κB inflammatory pathway. PNAS 113, 1871–1876. https://doi.org/10.1073/pnas.1511380113 (2016). 

28. Gordon, D. et al. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature 583 

459–468. https://doi.org/10.1038/s41586-020-2286-9 (2020). 

29. de Jong, T., Guryev, V., & Moshkin, Y. Estimates of gene ensemble noise highlight critical pathways and 

predict disease severity in H1N1, COVID-19 and mortality in sepsis patients. Sci Rep 11, 10793. 

https://doi.org/10.1038/s41598-021-90192-9 (2021). 

30. Schoggins, J., & Rice, C. Interferon-stimulated genes and their antiviral effector functions. Curr Op Virol 

1, 519–525. https://doi.org/10.1016/j.coviro.2011.10.008 (2011). 

31. Karczewski, K. et al. Systematic functional regulatory assessment of disease-associated variants. PNAS 

110, 9607–9612. https://doi.org/10.1073/pnas.1219099110 (2013). 

32. Shaharuddin, S. et al. Deleterious Effects of SARS-CoV-2 Infection on Human Pancreatic Cells. Front Cell 

Infect Microbiol 11, 678482. https://doi.org/10.3389/fcimb.2021.678482 (2021). 

33. Wang, R. et al. Genetic Screens Identify Host Factors for SARS-CoV-2 and Common Cold Coronaviruses. 

Cell 184, 106–119. https://doi.org/10.1016/j.cell.2020.12.004 (2021). 

34. Shin, H. et al. Transient expression of ZBTB32 in anti-viral CD8+ T cells limits the magnitude of the 

effector response and the generation of memory. PLoS Pathog 13. 

https://doi.org/10.1371/journal.ppat.1006544 (2017). 

35. Beaulieu, A., Zawislak, C., Nakayama, T., & Sun, J. The transcription factor Zbtb32 controls the 

proliferative burst of virus-specific natural killer cells responding to infection. Nat immun 15, 546–553. 

https://doi.org/10.1038/ni.2876 (2014). 



14 
 

36. Song, Y. et al. Role of aquaporins in alveolar fluid clearance in neonatal and adult lung, and in oedema 

formation following acute lung injury: studies in transgenic aquaporin null mice. J Physiol 525, 771–779. 

https://doi.org/10.1111/j.1469-7793.2000.00771.x (2000). 

37. Pires-Neto, R., Del Carlo Bernardi, F., Alves de Araujo, P., Mauad, T. & Dolhnikoff, M. The Expression of 

Water and Ion Channels in Diffuse Alveolar Damage Is Not Dependent on DAD Etiology. PloS one 11, 

e0166184. https://doi.org/10.1371/journal.pone.0166184 (2016). 

38. Gordon, D., et al. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature 

583, 459–468. https://doi.org/10.1038/s41586-020-2286-9 (2020). 

39. Ferrando, C. et al. Clinical features, ventilatory management, and outcome of ARDS caused by COVID-19 

are similar to other causes of ARDS. Intensive care med 46, 2200–2211. https://doi.org/10.1007/s00134-

020-06192-2 (2020). 

40. Verkman, A., Matthay, M., & Song, Y. Aquaporin water channels and lung physiology. Am J Physiol Lung 

Cell Mol 278, L867–L879. https://doi.org/10.1152/ajplung.2000.278.5.L867 (2000). 

41. Mariajoseph-Antony, L. et al. Could aquaporin modulators be employed as prospective drugs for COVID-

19 related pulmonary comorbidity? Med hypotheses 143, 110201. 

https://doi.org/10.1016/j.mehy.2020.110201 (2020). 

42. Charlesworth, B. Patterns of age-specific means and genetic variances of mortality rates predicted by the 

mutation-accumulation theory of ageing. J Theor Biol 210, 47-65. https://doi.org/10.1006/jtbi.2001.2296 

(2001). 

43. Perico, L. et al. Immunity, endothelial injury and complement-induced coagulopathy in COVID-19. 

Nature Rev Nephrol 17, 46–64. https://doi.org/10.1038/s41581-020-00357-4 (2021). 

44. Java, A. et al. The complement system in COVID-19: friend and foe? JCI Insight 15, e140711. 

https://doi.org/10.1172/jci.insight.140711 (2020). 

45. Lo, M., Kemper, C., & Woodruff, T. COVID-19: Complement, Coagulation, and Collateral Damage. J 

Immunol  205, 1488-1495. 10.4049/jimmunol.2000644 (2020). 

46. Noris, M., Benigni, A., & Remuzzi, G. The case of complement activation in COVID-19 multiorgan impact. 

Kidney Int 98, 314-322. https://doi.org/10.1016/j.kint.2020.05.013 (2020). 

47. Dunn, E., & Connor, J. Chapter 9 - HijAkt: The PI3K/Akt Pathway in Virus Replication and Pathogenesis. 

Prog Mol Biol Transl Sci 106, 223-250. https://doi.org/10.1016/B978-0-12-396456-4.00002-X (2012). 

48. Lamy, P., Rébillard, X., Vacherot, F., & de la Taille, A. Androgenic hormones and the excess male 

mortality observed in COVID-19 patients: new convergent data. World J Urol 39, 3121-3123. 

https://doi.org/10.1007/s00345-020-03284-y (2021). 

49. Wambier, C. et al. Androgen sensitivity gateway to COVID-19 disease severity. Drug Dev Res 81, 771-776 

(2020).  

50. Shang, D., Wang, L., Klionsky, D., Cheng, H., & Zhou, R. Sex differences in autophagy-mediated diseases: 

toward precision medicine. Autophagy 17, 1065-1076. https://doi.org/10.1080/15548627.2020.1752511 

(2021). 



15 
 

51. Wyce, A., Bai, Y., Nagpal, S., & Thompson, C. Research resource: the androgen receptor modulates 

expression of genes with critical roles in muscle development and function. Mol Endocrinol 24, 1665–

1674 (2010). 

52. Bettoun, D. et al. Interaction between the androgen receptor and RNase L mediates a cross-talk 

between the interferon and androgen signaling pathways. J Biol Chem 280, 38898-901. 

https://doi.org/10.1074/jbc.C500324200 (2005). 

53. Basrawala, Z. et al. Androgen receptor levels are increased by interferons in human prostate stromal and 

epithelial cells. Oncogene 25, 2812–2817. https://doi.org/10.1038/sj.onc.1209304 (2006). 

54. Lin, B. et al. Prostate-localized and androgen-regulated expression of the membrane-bound serine 

protease TMPRSS2. Cancer Res 17,4180-4 (1999). 

55. Huang, Q. et al. Leucine zipper transcription factor-like 1 (LZTFL1), an intraflagellar transporter protein 

27 (IFT27) associated protein, is required for normal sperm function and male fertility. Dev Biol 477, 164-

176. https://doi.org/10.1016/j.ydbio.2021.05.006 (2021). 

56. Baldassarri, M. et al. Shorter androgen receptor polyQ alleles protect against life-threatening COVID-19 

disease in European males. EBioMedicine 65, 103246. https://doi.org/10.1016/j.ebiom.2021.103246 

(2021). 



16 
 

Methods 

Recruitment of cases and phenotype definitions for the discovery phase 

In Spain, 11,939 COVID-19 positive cases were recruited as part of SCOURGE study from 34 centres in 

25 cities. The complete list of hospitals or research centers and the number of samples that each 

contributed to the study is shown in Table S1. Study samples and data were collected by the 

participating centers, through their respective biobanks after informed consent, with the approval of 

the respective Ethic and Scientific Committees. The whole project was approved by the Galician Ethical 

Committee Ref 2020/197. All samples and data were processed following normalized procedures. 

Study data were collected and managed using REDCap electronic data capture tools hosted at Centro 

de Investigación Biomédica en Red (CIBER) [57, 58] (Supplementary Note). Individuals were diagnosed 

as COVID-19 positive through a PCR-based test or according to local clinical and laboratory procedures. 

All cases were classified in a five-level severity scale (Table 1).  

Two Spanish sample collections with unknown COVID-19 status were included as general population 

controls in some analyses: 3,437 samples from the Spanish DNA biobank (https://www.bancoadn.org) 

and 2,506 samples from the GR@CE consortium [17].  

Replication study 

A total of 1,598 COVID-19 cases from six different Spanish Biobanks (Biobanco CNIO, Biobanco Vasco, 

Biobanco Hospital Ramón y Cajal, Biobanco Hospital Puerta de Hierro, Biobanco Hospital San Carlos, 

and Banco Nacional de ADN) were recruited under the ethical committee approval CEI PI 34_2020-v2. 

Additionally, 1,068 individuals from Spanish DNA biobank were included as controls in the analysis 

whenever necessary. We will refer to these cases and controls as the Centro Nacional de 

Investigaciones Oncológicas (CNIO) study.  

Genotyping 

The discovery phase samples were genotyped with the Axiom Spain Biobank Array (Thermo Fisher 

Scientific) following the manufacturer’s instructions in the Santiago de Compostela Node of the 

National Genotyping Center (CeGen-ISCIII; http://www.usc.es/cegen). This array contains 757,836 

markers, including rare variants selected in the Spanish population. Genomic DNA was obtained from 

peripheral blood and isolated using the Chemagic DNA Blood100 kit (PerkinElmer Chemagen 

Technologies GmbH), following the manufacturer's recommendations. 

For the replication study samples, a total of 250 ng of DNA was processed according to the Infinium 

HTS assay Protocol (Part # 15045738 Rev. A, Illumina), including amplification, fragmentation and 
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hybridization using the Global Screening Array Multi-disease v3.0. This. This array contains a total of 

730,059 markers and was scanned on an iScan platform (Illumina, Inc.). Clustering and genotype calling 

were performed using Genome Studio v2.0.4 (Illumina, Inc.). 

 

Quality control 

A quality control (QC) procedure was carried out for the SCOURGE study samples and control datasets. 

First, a list of probe sets was removed based on poor cluster separation or excessive minor allele 

frequency (MAF) difference from The 1000 Genomes Project data (1KGP) [59]. Then, the following QC 

steps were applied using PLINK 1.9 [60] and a custom R script. We excluded variants with MAF<1%, call 

rate <98%, a difference in missing rate between cases and controls >0.02, or deviating from Hardy-

Weinberg equilibrium (HWE) expectations (p<1x10-6 in controls, p<1x10-10 in cases, with a mid-p 

adjustment [61]). Samples with a call rate <98% and those in which heterozygosity rate deviated more 

than 5 SD from the mean heterozygosity of the study were also removed. 

 

To assess kinship and assign ancestries, autosomal SNPs (MAF>5%) were pruned with PLINK using a 

window of 1,000 markers, a step size of 80 and a r2 of 0.1. Additionally, high-linkage disequilibrium (LD) 

regions described in Price et al. [62] were also excluded. A subset of 131,937 independent SNPs was 

used to evaluate kinship (IBD estimation) in PLINK. Given the possible confusion between relatedness 

and ancestry, we removed only one individual from each pair of individuals with PI_HAT>0.25 (second-

degree relatives) that showed a Z0, Z1, and Z2 coherent pattern (according to theoretical expected 

values for each relatedness level). The unrelated SCOURGE individuals were merged with samples from 

1KGP and the common SNPs were LD-pruned as previously indicated. Ancestry was then inferred with 

Admixture [63] using the defined 1KGP superpopulations. Those individuals with an estimated 

probability >80% of pertaining to European ancestry were defined as European (N=15,571). 

 

Genomic principal components (PCs) were also computed using a LD-pruned (r2 < 0.1 with a window 

size of 1,000 markers) subset of genotyped SNPs passing quality check for controlling the population 

structure in the GWAS. 

The CNIO study was filtered following the same QC procedures, where 220 individuals were identified 

as non-European and, therefore, were excluded from further analysis.  

Variant imputation 

Imputation was conducted based on the TOPMed version r2 reference panel (GRCh38) [64] in the 

TOPMed Imputation Server. After post-imputation filtering (Rsq>0.3, HWE p>1x10-6, MAF>0.01), 
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15,045 individuals (9,371 COVID-19 positive cases and 5,674 population controls) and 8,933,154 

genetic markers remained in the SCOURGE European study (discovery). The final dataset of the CNIO 

study (replication) included 2,446 individuals (1,378 COVID-19 positive cases and 1,068 population 

controls) and 8,895,721 markers. For directly genotyped variants, the original genotype was 

maintained in place of the imputed data. 

 

Statistical analysis 

Association testing was computed by fitting logistic mixed regression models adjusting for age, sex, and 

the first 10 ancestry-specific PCs. SNPRelate [65] was used for prior LD-pruning and data management. 

Association analyses were performed in SAIGEgds [66], which implements the SAIGE [67] two-step 

mixed model methodology and the SPA test while using more efficient objects for genotype storage. A 

null model was fitted in the first step using the LD-pruned genotyped variants (MAF >0.005%, missing 

rate <98%) to estimate variance components and the GRM. Then, in a second step, association 

analyses were performed for both genotyped and imputed SNPs. Significance was established at 

p<5x10-8 after meta-analysis of the discovery and replication phases. 

 

To align the results with those from the COVID-19 HGI, three outcomes were evaluated in relation to 

severity: hospitalization, severe COVID-19 (severity ≥3), and very severe COVID-19 (severity=4, critical 

illness). For each comparison, three control definitions were used (Table 2): 

- A1 analysis: COVID-19 positive not satisfying the case condition and control samples from the 

general population (COVID-19 untested). 

- A2 analysis: control samples from the general population.  

- C analysis: COVID-19 positive not satisfying the case condition. 

Additionally, the risk to COVID-19 infection was also analysed by comparing all COVID-19 positive cases 

with control samples from the general population. 

All analyses were conducted for each complete dataset and stratified by sex and age (<60 years, ≥60 

years). The SNP*sex (and SNP*age group) interaction term was tested for each SNP in the subset of 

clumped signals, adjusting the models for the same covariates.   

Then, the main results of both Spanish cohorts (SCOURGE and CNIO) for the overall and sex-stratified 

analyses were meta-analysed assuming a fixed-effects model using METAL [68].  

Because of the similarity of both the SCOURGE and CNIO studies in the clinical variables recorded and, 

more importantly, in the definition of the severity scale, the leading variants from the significant and 
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validated loci in the hospitalization analysis were also analysed under a multinomial model 

(supplementary note).  

Validation of findings in independent studies 

In order to validate the findings in independent study samples of European ancestry, a meta-analysis of 

hospitalization risk was performed for the overall and sex-stratified summary statistics of both Spanish 

cohorts (SCOURGE and CNIO) and other four sex-stratified Europeans studies from the COVID-19 HGI 

consortium (BelCOVID, GenCOVID, Hostage-Spain, and Hostage-Italy). 

Bayesian fine-mapping of GWAS findings 

Credible sets were calculated for the GWAS loci to identify a subset of variants most likely containing 

the causal variant at 95% confidence level, assuming that there is a single causal variant and that it has 

been tested. We used corrcoverage for R [69] to calculate the posterior probabilities of the variant 

being causal for all variants with an r2>0.1 with the leading SNP and within 1 Mb. Variants were added 

to the credible set until the sum of the posterior probabilities was ≥0.95. VEP 

(https://www.ensembl.org/info/docs/tools/vep/index.html) and the V2G aggregate scoring from Open 

Targets Genetics (https://genetics.opentargets.org) were used to annotate the most prominent 

biological effects of the variants in the credible sets. 

Genetic risk score 

A genetic risk score (GRS) was created for the SCOURGE cohort individuals and population controls 

using the list of SNPs associated with hospitalization, severity, or risk in the meta-analysis performed 

by the COVID-19 HGI [9]. We used the reported effects as weights and prioritized the hospitalization 

weight for variants significantly associated in the three analyses. To evaluate the existence of genetic 

risk differences along the disease stages, we fitted an ANOVA using the six-level severity scale (controls 

from the general population and the five severity levels defined in Table 1) as the independent 

variable. A post hoc Duncan test was performed to statistically assess the pairwise differentiation 

between the levels.  

SNP heritability of COVID-19 severity  

We relied on GCTA-GREML 1.93.2beta [70] to assess the heritability of severe COVID-19 symptoms 

among SCOURGE patients, excluding those with cryptic relatedness or with missing genotypes above 

0.5% and assuming a prevalence of COVID-19 hospitalization of 0.5%. This analysis considered all 

patients (modelling for age, sex, sex*age, and the 10 first PCs), and males and females separately 

(modelling for age and the 10 first PCs). We also partitioned the variance to assess the heritability 
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changes among the patients <60 or ≥60 years old. We focused on the 547,206 autosomal variants with 

MAF>1% and missingness <0.5%. Assuming 0.5% of prevalence of severe COVID-19, and at least 1,500 

cases and 1,500 controls per stratum, we estimate >97.9% power to detect a heritability >0.2. 

ROH calling 

The ROH segments longer than 300 Kb were called in SCOURGE using PLINK 1.9 in the European QC-ed 

genotyped dataset (before imputation) with the following parameters: homozyg-snp 30, homozyg-kb 

300, homozyg-density 30, homozyg-window-sn 30, homozyg-gap 1000, homozyg-window-het 1, 

homozyg-window-missing 5, homozyg-window-threshold 0.05. No LD pruning was performed.  

  

Calculating genomic inbreeding coefficients 

Different genomic inbreeding coefficients were calculated [71]:  

FROH measures the actual proportion of the autosomal genome that is autozygous above a 

specific minimum length ROH threshold. 
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FGRM is an alternative genomic inbreeding coefficient that was obtained using PLINK’s 

parameter -ibc (Fhat3). This coefficient described by Yang et al. 2011 [70]; where N is the 

number of SNPs, pi is the reference allele frequency of the ith SNP, and xi is the number of 

copies of the reference allele. The reference allele frequencies were site-specific and included 

only variants with MAF >0.05. 
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Testing and replicating the inbreeding depression 

Inbreeding depression (ID) is defined as the change in the mean phenotypic value in a population 

because of inbreeding [12, 13]. The ID was modelled in SCOURGE by a multiple logistic regression. The 

covariables used in this study were sex, age, and the first ten PCs. 

The results were replicated in a cohort gathered by Tomoko et al. 2021 [24]. This consists of clinical 

and genomic data from 4,418 European ancestry individuals (3,946 hospitalized COVID-19 cases and 
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422 controls): 2,597 men (1,072 men <60 years old, 1,525 men ≥60 years old) and 1,821 women (808 

<60 years old, 1,013 women ≥60 years old). The cohort was built by harmonizing individual-level data 

from 16 different studies [24]. The FROH and FGRM coefficients were obtained following the procedure 

explained above. The model described above with the same covariables (age, sex, and the first then 

PCs) was applied in this cohort. 

Genome-specific effects on COVID-19 severity and hospitalization were tested through ID in genomic 

windows, ROH islands (ROHi) and regions of heterozygosity (RHZ) (Supplementary Note). 
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Table 1. Genome-wide significant variants in global or sex-stratified meta-analysis between the SCOURGE 

and CNIO studies. Representative SNPs were selected using the clump function of PLINK 1.9 (clumping 

parameters r
2
=0.5, pval=5x10

-8
 and pval2=0.05).  

 

SNP chr:position EA NEA 

Meta-ALL Meta-males Meta-females Nearest 

gene beta SE p-value beta SE p-value beta SE p-value 

rs115679256 3:45587795 G A 0.43 0.08 1.1E-08 0.48 0.10 2.3E-06 0.40 0.11 2.9E-04 LIMD1 

rs17763742 3:45805277 A G 0.60 0.05 4.1E-29 0.74 0.07 3.3E-25 0.43 0.08 4.5E-08 LZTFL1 

rs35477280 3:45932600 G A 0.39 0.05 1.4E-17 0.48 0.06 6.3E-15 0.28 0.07 1.6E-05 FYCO1 

rs4443214 3:46136372 T C 0.25 0.04 9.0E-09 0.26 0.06 1.4E-05 0.26 0.06 4.4E-05 XCR1 

rs115102354 3:46180545 A G 0.41 0.07 1.6E-08 0.52 0.10 2.1E-07 0.32 0.10 2.0E-03 CCR3 

rs10813976 9:33426577 A G 0.18 0.03 2.7E-08 0.16 0.04 2.5E-04 0.19 0.05 3.5E-05 AQP3 

rs1230082 17:45422978 C G 0.16 0.03 2.1E-08 0.17 0.04 2.8E-05 -0.15 0.04 2.5E-04 ARHGAP27 

rs77127536 19:35687796 G A -0.22 0.04 1.3E-08 -0.25 0.05 2.1E-06 -0.19 0.05 4.3E-04 UPK1A/ZTBT32 

rs17860169 21:33240996 A G 0.19 0.03 2.3E-11 0.27 0.04 1.4E-11 0.12 0.04 3.7E-03 IFNAR2 

EA=Effect Allele; NEA=Non-Effect Allele; beta=Effect coefficient; SE=Standard Error 

 

 

Table 2. Results of European meta-analysis for hospitalization risk. Summary statistics of both phases (SCOURGE 

and CNIO) were meta-analysed with four additional sex-disaggregated European studies from the COVID-19 HGI 

consortium.  

    Meta-all Meta-males Meta-females  

SNP chr:position EA NEA beta SE p-value  beta SE p-value  beta SE p-value  Nearest gene 

rs115679256 3:45587795 G A 0.37 0.06 1.3E-08 0.41 0.08 5.6E-07 0.36 0.09 1.6E-04 LIMD1 

rs13078854 3:45820440 G A 0.53 0.04 6.7E-34 0.64 0.05 2.7E-33 0.38 0.06 1.0E-09 LZTFL1 

rs41289622 3:45973053 T G 0.36 0.04 3.6E-21 0.44 0.05 3.4E-20 0.27 0.05 7.2E-07 FYCO1 

rs115102354 3:46180545 A G 0.40 0.06 8.9E-12 0.48 0.07 6.8E-11 0.26 0.08 1.8E-03 XCR1 

rs61882275 11:34482745 G A -0.12 0.02 1.0E-06 -0.17 0.03 4.1E-08 -0.08 0.03 1.3E-02 ELF5 

rs4767028 12:112921383 A G -0.16 0.02 1.6E-10 -0.19 0.03 2.5E-09 -0.11 0.04 8.7E-04 OAS1 

rs12609134 19:35687796 G A -0.19 0.03 2.3E-08 -0.22 0.04 9.5E-08 -0.13 0.05 6.0E-03 UPK1A/ZBTB32 

rs17860169 21:33240996 A G 0.18 0.03 3.9E-12 0.21 0.03 1.6E-10 0.15 0.04 2.9E-05 IFNAR2 

EA=Effect Allele; NEA=Non-Effect Allele; beta=Effect coefficient; SE=Standard Error 
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Figure 1. Association results of SCOURGE for A1 hospitalization analysis in a) global analysis, and b) sex-

disaggregated analyses (Miami plot, top panel: males, bottom panel: females). A quantile-quantile plot of the 

global analysis is also shown as an inset. 
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Figure 2. Regional plot of a novel association at 9q21.32 found among females from the SCOURGE study. The x 

axis reflect the chromosomal position, and the y axis the -log(p-value). The sentinel variant is indicated by a 

diamond and all other variants are colour coded by their degree of linkage disequilibrium with the sentinel 

variant in Europeans. Credible set for this signal is shown within a dashed square. The horizontal dotted blue line 

corresponds to the threshold for genome-wide significance (p=5x10
-8

). 
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Figure 3. a) Heatmap illustrating the results in all analyses performed in this study (rows) for the 13 leading 

variants in the COVID-19 HGI study (columns). Each box illustrates the top associated variant within the focal 

region. The colour (grey to dark red) indicates the strength (significance level) of the association in SCOURGE. 

Note: In three cases (chr12: 112919388, chr19: 4719431 and chr21: 33242905), the imputed variants did not pass 

QC filters in SCOURGE and they were replaced by the nearest QC-ed imputed variant (chr12:112919404, 

chr19:4719822, and chr21:33241950, respectively). b-d) Estimates of the GRS mean (and 95% confidence 

interval) built from the 13 leading variants found by the COVID-19 HGI GWAS for each category of the severity 

scale recorded in SCOURGE in global (b), sex-disaggregated (c) and sex-age disaggregated analysis (d). 

 

a)

 

 

 

 

 



28 
 

Figure 4. Regional plots of novel association signals found in 9p13.3 (a-c), 17q21.31 (d-f), and 19q13.12 (g-i) from 

the meta-analysis between the SCOURGE and CNIO studies. The x axes reflect the chromosomal position, and the 

y axes the -log(p-value) of the SCOURGE-CNIO meta-analysis. On panels a, d, and g the sentinel variant is 

indicated by a diamond and all other variants are colour coded by their degree of linkage disequilibrium with the 

sentinel variant in Europeans. Whenever a concise set of variants was prioritized, a credible set is shown within a 

dashed square. The horizontal dotted blue line corresponds to the threshold for genome-wide significance 

(p=5x10
-8

). In the rest of panels, the x axes reflect the chromosomal position, and the y axes the -log(p-value) 

resulting from the eQTL analyses in whole blood (b, e, and h) and in the lung (c, f, and i) whenever a significant 

finding is available from GTEx v8. 
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Figure 5. Forest plot of the SNP heritability estimates for the COVID-19 hospitalization risk analysis on the liability 

scale. 
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Figure 6. Effect of the inbreeding depression on COVID-19 hospitalization in the SCOURGE cohort. Forest plots 

are shown for global analyses as well as for sex and age-disaggregated analyses. 
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Extended Data Table 1. Five-level severity scale used to classify SCOURGE patients. 

Level Clinical findings 

Severity 0 (asymptomatic) Asymptomatic 

Severity 1 (mild) With symptoms, but without pulmonary infiltrates or need of oxygen 

therapy 

Severity 2 (moderate) With pulmonary infiltrates affecting <50% of the lungs or need of 

supplemental oxygen therapy 

Severity 3 (severe) Hospitalized with any of the following criteria:  

N PaO2 < 65 mmHg or SaO2 < 90%  

N PaO2/FiO2 <300  

N SaO2/FiO2 <440  

N Dyspnoea  

N Respiratory frequency ≥ 22 rpm 

N Infiltrates affecting >50% of the lungs 

Severity 4 (critical) With fatal outcome, admission to the ICU or need of mechanical 

ventilation (invasive or non-invasive)  

PaO2: Partial pressure of oxygen in arterial blood; SaO2: Saturation of oxygen in arterial blood; FiO2: 

Fraction of inspired oxygen. 
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Extended Data Table 2. Baseline characteristics of European patients from 

SCOURGE included in the analysis. 

    
Variable 

Global 

N = 9,371 

males 

N = 4,343  

females 

N = 5,028 

Age – mean years (SD) 62.6 (17.9) 64.3 (16.3) 61.1 (19.1) 

Severity - N (%) 

  
 

0 - asymptomatic 582 (6.6) 161 (3.9) 421 (8.9) 

1 - mild 2,689 (30.3) 748 (18.2) 1,941 (40.8) 

2 - intermediate 2,099 (23.6) 1,093 (26.5) 1,006 (21.1) 

3 - severe 2,379 (26.8) 1,300 (31.6) 1,079 (22.7) 

4 - critical illness 1,128 (12.7) 817 (19.8) 311 (6.5) 

Hospitalization - N (%) 5,966 (63.8) 3,436 (79.3) 2,530 (50.5) 

Severe COVID-19 - N (%) 3,507 (39.2) 2,117 (51.2) 1,390 (28.9) 

Critical illness - N (%) 1,128 (12.6) 817 (19.8) 311 (6.5) 

Comorbidities - N (%) 

  
 

Vascular/endocrinological 4,099 (43.7) 2,207 (50.8) 1,892 (37.6) 

Cardiac 1,057 (11.3) 634 (14.6) 423 (8.4) 

Nervous 773 (8.3) 341 (7.9) 432 (8.6) 

Digestive 264 (2.8) 153 (3.5) 111 (2.2) 

Onco-hematological 647 (6.9) 411 (9.5) 236 (4.7) 

  Respiratory 905 (9.7) 565 (13.0) 340 (6.8) 
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Extended Data Figure 1. Manhattan plots and quantile-quantile plots of the GWAS results of the A1 

analysis from the overall SCOURGE study and Miami plots for the sex-stratified analysis (top: males, 

bottom: females). a, b, c: Manhattan plots for severe illness, critical illness, and risk of infection, 

respectively. d, e, f: Miami plots for sex-stratified analyses in severe illness, critical illness, and risk of 

infection, respectively.  

 



35 
 



36 
 

Extended Data Figure 2. Regional plots of two previously reported association signals in 3p21.31 (a-c) 

and 21q22.11 (d-f). The x axes reflect the chromosomal position, and the y axes the -log(p-value) in the 

SCOURGE study. On panels a) and d), the sentinel variant is indicated by a diamond and all other 

variants are colour coded by their degree of linkage disequilibrium with the sentinel variant in 

Europeans. Credible sets for each signal are shown by squares. The horizontal dotted blue line 

corresponds to the threshold for genome-wide significance (p=5x10-8). In the rest of panels, the x axes 

reflect the chromosomal position, and the y axes the -log(p-value) resulting from the eQTL analyses in 

whole blood (b and e) and in the lung (c and f) whenever a significant finding is available from GTEx v8. 
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Supplementary Material for: A genome-wide association study of COVID-19 related hospitalization in 

Spain reveals genetic disparities among sexes 

 

Supplementary Tables are provided by a separate excel file 

 

Supplementary Figure 1. Manhattan plots and quantile-quantile plots of the GWAS results for the 

overall SCOURGE study corresponding to A2 (left) and C (right) analyses for hospitalization (a, d), 

severe illness (b, e), and critical illness (c, f). 
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Supplementary Figure 2. Miami plot of the GWAS results of SCOURGE for sex-disaggregated analyses 

of the presence of comorbidities. Top: males; bottom: females 
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Supplementary Figure 3. Violin plots showing the distribution of ROH longer than 1.5 Mb for different 

population groups in the SCOURGE study. Median and interquartile range are shown for each group.    
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Supplementary Figure 4. Effect of the inbreeding depression on COVID 19 hospitalization using 

different control groups. Two different population groups were used as control group: 1) Healthy 

COVID-19 negative individuals, and 2) Non-hospitalized COVID-19 positive individuals. Forest plots are 

shown for individuals disaggregated by sex and age. 
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Supplementary Figure 5. Genomic representation of the chromosomal location and size of the runs of 

homozygosity islands (ROHi) for hospitalized males and females in the SCOURGE study. Unique ROHi of 

hospitalized males and females are shown in red. Common ROHi between hospitalized and non-

hospitalized individuals are shown in blue.  
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Supplementary Figure 6. Genomic distribution of regions of heterozygosity (RHZ). Genomic 

representation of the chromosomal location and size of regions of heterozygosity for non-hospitalized 

males. Unique RHZ of non-hospitalized males are shown in red. Common ROHi between hospitalized 

and non-hospitalized males are shown in blue. 

 

 

 



44 
 

Supplementary Note 

 

Research electronic data capture (REDCap) 

REDCap tools, hosted at Centro de Investigación Biomédica en Red (CIBER), was used to collect and 

manage the demographic, epidemiological, and clinical variables, together with the results of 

laboratory tests and imaging studies. 

REDCap is a secure, web-based software platform designed to support data capture for research 

studies, providing 1) an intuitive interface for validated data capture; 2) audit trails for tracking data 

manipulation and export procedures; 3) automated export procedures for seamless data downloads to 

common statistical packages; and 4) procedures for data integration and interoperability with external 

sources. 

 

Multinomial regression on severity scale 

As the GRS analysis outlined the existence of three severity categories in the SCOURGE study, as 

opposed to the clinically-based six-level scale, we used the multinomial model to test the association of 

this three-level severity scale (“mild”: control+asymptomatic+mild severity level; “intermediate”: 

intermediate+severe cases; “severe”: very severe cases) with the clumped loci that reached genome-

wide significance in the meta-analysis of SCOURGE and CNIO studies (Table 1). Multinomial regressions 

were performed with the mlogit R library [1]. The null hypothesis for the leading variants was tested 

with the likelihood-ratio test. Supplementary Table 6 shows the results of multinomial regression for 

both the SCOURGE and CNIO studies. The SNPs showing a p-value < 0.0056 (Bonferroni adjusted 

threshold of 0.05/9) were considered significant. All variants remained significantly associated with the 

phenotype in the SCOURGE study, yet only four variants (three in 3p21.31 and the one in 9p13.3) were 

significantly associated in the CNIO cohort.  

 

Evaluating the associations of leading SNPs in relation with comorbidities 

Further analyses were carried on hospitalized patients from the SCOURGE study to exclude a 

confounder effect of comorbidities in the genetic associations reported in this study. Firstly, we 

performed sex-disaggregated GWAS analyses on the presence/absence of comorbidities. No genome-

wide significant associations were found, concluding that there is no evidence of direct association of 

comorbidities with the reported sex-specific signals (see Supplementary Figure 2). 
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Additionally, we adjusted the logistic models by the comorbidities of Extended Data Table 2 (vascular, 

cardiac, nervous, digestive, onco-haematological, or respiratory) for each of the leading variants 

depicted in Table 1 and Table 2, adjusting also for age, sex, and 10 PCs. This confirmed that none of the 

leading variants was individually associated with any of the comorbidities recorded. Besides this, we 

also confirmed that there was a lack of confounding with the most frequent specific comorbidities 

(arterial hypertension, hypercholesterolemia, diabetes, EPOC or other chronic respiratory diseases, and 

obesity).  

 

Measuring genome-specific effects on COVID-19 severity and hospitalization 

Different approaches were used to learn more about the genetic architecture of COVID-19 severity, 

namely the assessment of inbreeding depression (ID) in genomic windows, of the islands of runs of 

homozygosity (ROHi), and of the regions of heterozygosity (RHZ). 

First, region-dependent ID was tested in the SCOURGE study by assessing the association of 

hospitalization and severity with ROH in nearly a thousand 3 Mb-wide windows along the genome 

(significance established at p<5x10-5 after Bonferroni correction). We found no evidence of major loci 

that may be exerting large effects, rather the ID was polygenetic in origin. 

ROHi are defined as regions in the genome where the proportion of individuals of a population 

deviates from the expected under a binomial distribution. These regions have been found to be 

enriched with protein coding genes under selection [2, 3]. To search for ROHi in the SCOURGE study, a 

sliding window of 100 kb was used. In every 100 kb genomic window, the number of subjects with ROH 

was obtained and a binomial test was applied (threshold for significance established at p<2x10-5, 

corresponding to an adjustment for 2,500 windows). To prevent sampling bias, a resampling approach 

was followed. ROH from 100 men and women separately in both hospitalized and non-hospitalized 

groups were resampled (with replacement) 500 times and each replicate followed the above indicated 

methodology. Lastly, consecutive windows found to be statistically significant in at least 400 

resampling events were considered as a part of the same ROHi. It was considered that both groups had 

the same specific ROHi if they shared  ≥75% of their genomic positions. Protein coding genes present in 

the ROHi were obtained using the biomaRt R package and Ensembl database and an enrichment 

pathway analysis was done on the gene lists using g:Profiler (https://biit.cs.ut.ee/gprofiler/gost, last 

access: August 23 2021). We found 592 ROHi in hospitalized males, 38 of them (6.4%) were unique to 

this group and were not found in non-hospitalized males (Supplementary Figure 5, Supplementary 

Table 11). A total of 152 protein coding genes were present in those 38 unique ROHi. In 
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Supplementary Table 12 we show an enrichment analysis of pathways based on those 152 protein-

coding genes, strikingly revealing links with coagulation and complement pathways. Different ROHi 

were found to be unique for hospitalized COVID-19 females (Supplementary Figure 5, Supplementary 

Table 11). From a total of 433, 19 unique ROHi with 44 protein-coding genes were found in 

hospitalized females. Instead of coagulation or the complement, other pathways were enriched among 

females (Supplementary Table 12). 

Finally, we searched for RHZ, where ROH are scarce or absent. To search for RHZ, an extra step of QC 

consisting of removing the SNPs in LD using PLINK was performed before calling for ROH. ROH longer 

than 100 Kb were called for this analysis and a 100 Kb sliding window was used. Two different cut-offs 

were considered to call RHZ in each window: a) No individual is homozygous, or b) 2% or fewer of the 

individuals are homozygous. Consecutive windows that fulfilled this requirement were considered part 

of the same RHZ. Among males, we found a total of 239 RHZ in non-hospitalized control group (non-

hospitalized COVID-19 and population controls) and 214 RHZ in hospitalized COVID-19 patients. A total 

of 61 of the RHZ present in non-hospitalized individuals were found to be unique of this group 

(Supplementary Figure 6, Supplementary Table 11). Unique RHZ in non-hospitalized COVID-19 

patients involved a total of 707 protein-coding genes. A total of 33 pathways were significantly 

enriched from this gene list, being olfactory receptor activity and sensory perception of smell the most 

significant ones (Supplementary Table 12). Surprisingly, we found 36 RHZ, where no individual has 

ROH, in both hospitalized and non-hospitalized COVID-19 individuals. These 36 RHZ involved 67 genes 

related to olfactory receptors, spermatogenesis, and survival of motor neurons. 
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