
1 

 

 

Recurring Spatiotemporal Patterns of COVID-19 in the United States 
 
 
 
 
 
Hawre Jalal,1 Kyueun Lee,1 Donald S. Burke2,* 

 
 
 
 
Affiliations 
1Department of Health Policy and Management, University of Pittsburgh, Pittsburgh, PA 15261, USA  
2Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA 15261, USA  
 
*The corresponding author is Hawre Jalal, MD, PhD, Graduate School of Public Health, Department of Health 
Policy and Management, 130 DeSoto Street, Pittsburgh, PA 15261; phone: 412-624-3166;  
Email: hjalal@pitt.edu  
 
Author Contributions: Conceptualization: HJ, DSB; Methodology: HJ, KL; Investigation: HJ, KL; Visualization: 
HJ, KL; Funding acquisition: HJ, DSB; Project administration: HJ; Writing – original draft: DSB, HJ, KL; Writing 
– review & editing: DSB, HJ, KL 
 
Competing Interest Statement: Authors declare that they have no competing interests. 
 
Classification: Major: Biological Sciences, Minor: Medical Sciences 
 
Keywords: COVID-19, seasonality, weather, climate, SARS-CoV-2 
 
This PDF file includes: 

Main Text 
Figures 1 to 3 
Captions for Movies 1 and 2 

 Supporting Information (SI) 
   
  

 . CC-BY-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 24, 2021. ; https://doi.org/10.1101/2021.11.23.21266775doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2021.11.23.21266775
http://creativecommons.org/licenses/by-nd/4.0/


2 

 

Abstract 
We analyzed the waxing and waning patterns (“surges”) of reported SARS-CoV-2 cases from January 1, 2020 
through Oct 31, 2021 in all states and provinces (n = 93) in the USA, Mexico, and Canada, and across all 
counties (N = 3142) in the USA. A correlation matrix of the 576 x 576 daily case incidence rates in the 50 US 
states generates a distinctive “checkerboard” pattern showing that the epidemic has consisted of seven distinct 
internally coherent spatiotemporal wave patterns, four in the first year of the epidemic, and three thus far in the 
second year. Geoclustering of state case rate trajectories reveals three dominant co-varying spatial clusters of 
similar case rate trajectories, in the northeastern, southeastern and central/western regions of the USA. The 
spatiotemporal patterns of epidemic year 1 have thus far been repeated (p<.001) in epidemic year 2. The 
“checkerboard” pattern of the correlation matrix of case trajectories can be closely simulated as three sets of 
interacting sine waves with annual frequencies of 1:1:2 major cycles per year, corresponding to the 
northeastern, central/western, and southeastern state clusters. Case incidence patterns in Mexico and Canada 
have been similar to nearby regions in the southern US and the northern US, respectively. Time lapse videos 
allow visualization of the wave patterns. These highly structured geographical and temporal patterns, coupled 
with emerging evidence of annual repetition of these same patterns, show that SARS-CoV-2 case rates are 
driven at least in part by predictable seasonal factors.  
 
Significance Statement 
Local COVID-19 rates wax and wane. Often these epidemic changes are attributed to localized human 
behavioral factors.  Our finding of highly structured continental scale spatiotemporal patterns that cross state 
and national boundaries, coupled with emerging evidence of annual repetition of these same patterns, shows 
that COVID-19 transmission is driven at least in part by seasonal factors.  Other epidemic factors such as 
vaccine coverage rates, or emergence of new strains like the Delta variant of SARS-CoV-2 appear to modify, 
but not totally eclipse, these underlying seasonal patterns. COVID-19 seasonal transmission patterns are 
associated with, and may be driven by, seasonal weather patterns.  Predictability of these patterns can provide 
opportunities for forecasting the epidemic and for guiding public health preparedness and control efforts.  
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Main Text 
 
Introduction 
 
The public health approach to local COVID-19 surges has often been reactive, with increased control 
measures following rather than preceding epidemic surges. For example, vaccination rates increased in the 
southern US states only after high case rates were experienced during the summer of 2021 (1). Prevention 
efforts may be more effective if implemented earlier, based on credible forecasts (2).  
 
In earlier work, we showed that the incidence of COVID-19 in the United States has waxed and waned several 
times since the start of the epidemic, generating wave-like spatiotemporal patterns (3, 4).  In this prior analyses 
we used data until May 3, 2021, and we predicted that a summer wave in 2021 similar to the 2020 summer 
wave may occur in the southern states (3).  In the current manuscript, we extend the period of analysis through 
October 31, 2021, and we use methods to define spatiotemporal clustering of case time series.  Elucidation 
and characterization of these patterns may aid in understanding the disease dynamics, enable forecasting of 
future surges, and facilitate improved targeting of public health resources.   
 
 
Results 
 
Examining the time series of total US cases per day reveals wave-like patterns that are generated from the rise 
and fall of case incidence rates, as shown in Fig. 1A.  However, this national-level display can mask important 
spatiotemporal and seasonal patterns because it aggregates data across disparate spatial units which may 
have varying local temporal patterns. In  Fig. 1B we examine how cases covary across the 50 US states over 
time.  Specifically, this plot examines correlations in case rate time series trajectories across states for each 
date against every other date.  The color of each pixel represents the level of correlation between 1 (red-
brown, exactly the same pattern of state case rates on the two dates) and –1 (blue, exactly the opposite 
pattern of state case rates on the two dates).  Fig. 1C provides an example of the correlation behind one single 
pixel in this figure (of a total of 596^2 = 355,216 pixels)  at the intersection between state case incidence rates 
Aug 1, 2021 on the x-axis vs. Aug 1, 2020 on the y-axis.  This plot shows that the correlation of case rates 
across the 50 states  between these two dates is 0.79, demonstrating very similar patterns in the case rate 
patterns between these two dates one year apart.  Combining all possible correlations between all date pairs, 
creates the “checkerboard” pattern shown in Fig. 1B. The figure is dominated by alternating square shaped 
patches of high positive or negative correlation (p< .001). Note that these correlations measure the similarities 
of the relative magnitude of case rates across the 50 states from one day to another, but not the actual 
magnitude of the case rates.  There are at least three regular patterns that emerge from this checkerboard.  
The first pattern is on the main diagonal that shows the distinct roughly square shaped boundaries of six waves 
that coincide roughly with the seasons, as well as the start of a seventh wave in fall 2021 (which we call Wave 
6a, as explained below).  Note that unlike Fig.1A that shows Wave 3 as a single large temporal wave from fall 
through winter (Wave 3), Wave 3 in Fig. 1B is clearly displayed as two distinct processes with different 
geographical patterns, which we designate here as Wave 3a and Wave 3b.  Similarly, Waves 5 and the 
currently emerging Wave 6a are difficult to separate in Fig. 1A while their separation is revealed in Fig. 1B.  
The second main pattern is the remarkable similarity in the timing and geography of the waves observed in 
2021 as compared to the year before, 2020. These can be seen as regions of high correlations located 12 
months off the diagonal, and labelled as “1~4” at the intersection of spring waves of 2020 and 2021, “2~5” for 
the summer waves and most recently 3a~6a for the fall waves, forming a “shadow diagonal” parallel to the 
main diagonal but displaced by one year.  The third pattern is the high correlation regions between the summer 
2020 and winter 2021 (2~3b) waves and between the winter 2021 and summer 2021 (3b~5) waves.  These 
alternating regions of high and low correlations gives rise to annual patterns in the fall and bi-annual patterns in 
the winter and spring. Fig. 1D reveals the case trends by US regions.  These three regions are defined using a 
spatially constrained clustering algorithm that identifies regions with similarity in case rate trends.  The 
algorithm was able to identify 3 clusters, one in the northeast, one in the southeast and one in the central and 
western regions of the US ( northeastern, 11 states with 71 million persons; southeastern, 8 states with 67 
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million persons; central/western with 31 states and 187 million persons; see map). Comparing the patterns in 
Fig. 1D and those in Fig. 1B reveals that Waves 1 and 4 occurred in the springs of 2020 and 2021, 
respectively and were concentrated in the northeastern states.  Waves 2 and 5 occurred in the summers of 
2020 and 2021, respectively and were concentrated in the southeastern states. Wave 3a was by far the largest 
and started in the northern region of the centra/western states in the fall of 2020.  Although this display does 
not distinguish between wave 5 and 6a, it shows that while case rates declined sharply in the southeast, the 
decline has been much slower in the central/western region and lately cases have been slightly increasing in 
this region shown with the uptick of case rates at the end of the trend line.  Furthermore, Wave 3b occurred in 
the winter 2021 and was concentrated in the northeastern and southeastern states.  Overall, at least one 
region has been involved in each season since the epidemic has started, with patterns in 2021 repeating those 
in 2020.   
 
Next we sought to simulate this specific “checkerboard” pattern using simple mathematical functions.  The 
results are shown in Fig. 2.  This figure is intended to simulate and reproduce the relationships between the 
overall case trends in Fig. 1A and those in the checkerboard in Fig. 1B.  The deviation of the daily case rates 
from the average is shown on the top (Fig. 2A).  In contrast to Fig. 1D, this figure shows the relative rise and 
fall of case rates compared to the US national average.  Each deviation wave is mostly contained within a 
specific season of the year. For example, in spring of 2020, the northeast was above the average, while the 
southeast and central/western regions were below the average.  This display shows clearly that while case 
rates declined in all three regions in the fall of 2021, the rate of decline was faster for the southeastern region 
compared to the other regions in Fig. 1D, resulting in an upward trend in the deviation from the mean for the 
central and western states, similar to fall of 2020.   
 
We then approximated these dynamic patterns using three simple sine waves – one per each region shown in 
Fig. 2C. In this exercise, each sine wave peaks twice a year (wavelength = 6 months). However, the wave for 
the northeastern region and the central/western regions have alternating wave patterns in which they have a 
dominant peak in one season and a much smaller peak (10% of the full amplitude) six-months later.  These 
waves result in a summer and winter wave for the southeastern region and a predominant fall-winter wave in 
the central/western region and the northeastern region.  Examining the daily correlations among these three 
sine  wave patterns produces a checkerboard pattern very similar to what we observe when examining the 
correlations among all 50 states (similarity of the sine wave simulation matrix heat map in Fig. 2B and the 
actual 50 state data matrix heat map in Fig. 1B).  
 
The availability of US data at the county level provides an opportunity to further examining these seasonal 
waves.  We created an animation that displays the changing spatiotemporal hotspots of COVID-19 case 
incidence by county using Getis-Ord Gi* statistic (Movie 1).  The Gi* statistic represents the number of 
standard deviations above and below the national average for case incidence.  There are several patterns that 
can be seen in this animation: First, the hotspots in each wave are defined to specific geographical region 
within seasons that repeat in the second year of the epidemic.  For example, Waves 1 and 4 (springs waves) 
are mostly in the northeast, Wave 2 and 5 (summers waves) are in the southeast, while waves 3a and 6a (fall 
waves) are in the north central.  Wave 3b which appears to propagate from 3a in winter of 2021 to the south 
has not repeated yet.  Second, the hotspots in most of the waves spread to wide geographical areas beyond 
state boundaries despite variation in policies and biases in reporting, suggesting that the influence of large-
scale factors, such as weather. Close observation of Wave 3 shows the gradual county-by-county movement 
of the epidemic from west to east from Iowa through Illinois, Indiana, Ohio, and Pennsylvania to New York and 
New England over the period of October 15 through December 15, 2020.   
 
Next, we studied the relationship of the spatiotemporal patterns in US states to those across the border in 
Canada and Mexico using an animation of daily local intensity scores in COVID-19 incidence by states and 
provinces in the US, Canada, and Mexico (Movie 2).  Fig. 2 takes six frames from this video: one frame per 
wave summarizing the patterns described in this movie.  Wave 1 (spring 2020) started in New England and 
Eastern Canada, with subsequent scattered intensity in the northern half of North America. Wave 2 (summer 
2020) displayed a travelling wave pattern, starting from Mexico and southern and western states in the US. It 
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first appeared in Mexico, crested northward across the border to the southern and western US states, then 
ebbed back southward. Wave 3a and 3b (fall 2020 and winter 2021) appear as a single wave in this 
presentation.  Wave 3 emerged as a travelling wave from the Dakotas, flowing outward in a radial pattern to 
essentially all of North America. The ebb of this wave followed along the same general geographical pattern as 
its flow, again starting in the Dakota region, and ebbing outward in a radial pattern across the whole continent. 
Wave 4 (spring 2021) emerged from the tail end of Wave 3 in New England and rose quickly across all of 
Canada and some northern USA states.  Wave 5 (summer) has started from Mexico and traveled upward 
towards the southern states in a fashion similar to Wave 2.  Wave 6a has also started in the north-central 
region but have not peaked at the time of this writing.   
 
Since the results of our analysis point to the influence of large-scale factors, we explored the relationship 
between temperature as a weather variable and case incidence in the US.  We found a strong correlation 
between the timing between the Wave 3 peak date in each state and the timing of state temperature changes. 
The details of the analyses and the results are presented in the Supplementary Materials (Figs. S1-S3 and 
Movie S1). Further research is needed to examine the link between weather variables and cases. 
 
Discussion  
 
We used daily case rates from the beginning of the epidemic through October 31, 2021 to reveal COVID-19 
seasonality patterns in the US, and similar patterns in Canada and Mexico.  We showed that COVID-19 case 
rates in the US have waxed and waned six times, and that each wave has had a specific seasonal 
spatiotemporal pattern. In the northeastern US, COVID-19 waxed and waned during the spring season in both 
2020 (Wave 1) and 2021 (Wave 4).  The 2020 summertime wave in the southern US (Wave 2) repeated in the 
summer of 2021.  Currently, Wave 6a (fall 2021) is repeating the patterns of Wave 3a in fall 2020.  
Interestingly, the winter 2021 wave in the southern states (Wave 3b) recapitulated the geographical pattern of 
Wave 2, with the net effect being that the southern states have experienced local waves at six months, rather 
than annual intervals.  These waves had considerable seasonal spatiotemporal structure across international 
boundaries, such that patterns seen in Mexico are similar to patterns in the southern US, and patterns in 
Canada are similar to the northern US states.   
 
The repeating waves in all three countries at approximately the same time of the year, the striking geographical 
structure of the COVID-19 epidemic in these countries, and the obvious shifting north / south latitudinal 
gradients, taken together strongly suggest a role for seasonal weather-related factors as major drivers of the 
epidemic.  The overall wave structure suggests a bimodal relation between weather and cases in the southern 
states. Although complex, such a pattern has been seen in other studies (5).  However, establishing a direct 
causal link between weather and COVID-19 incidence is challenging.  Many infectious diseases exhibit 
complex seasonal patterns that are believed to be multifactorial and involve multiple complex interactions (6).  
Environmental factors and human behaviors that repeat around the same time every year might influence 
COVID-19 seasonality like other respiratory viruses (3, 7, 8).  COVID-19’s viral survival, and transmission rate 
might be affected by temperature and humidity (9-13). An association between COVID-19 and relative or 
absolute humidity has also been described (11). These environmental conditions may determine how long the 
virus persists in aerosols and on surfaces (14).  However, many of these factors (e.g., temperature and 
absolute humidity) are strongly correlated, complicating causal inference (15).  In addition, changes in human 
behaviors have been associated with changes in environmental factors such as increased indoor contact 
during the winter months (16, 17). It appears likely that different seasonal-associated mechanisms may 
account for COVID-19 seasonality, but determining the exact causal pathways warrants further research.   
 
The causes of transitory state and county level waxing or waning of COVID-19 case incidence rates have been 
the subject of prior analyses. Some studies support the effect of social-distancing measures such as closing 
schools and stay-at-home orders and other non-pharmaceutical interventions such as mask wearing on 
reducing the growth rate of infections (18-22). No doubt these measures among other factors can affect the 
state-by-state intensity patterns, including travel, population density and demographics, viral variants, vaccine 
coverage, and other important factors. These factors might have impacted the severity of the waves 
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(amplitude) but may have been less influential in determining the timing of these waves.  A proper causal 
analysis for the COVID-19 waves should include all these factors and their interactions.  
 
Whatever the exact causal mechanism, so far, the seasonality of COVID-19 in the US has been repeated with 
considerable regularity: Summer waves in the south, spring waves in the northeast, and fall waves appear to 
be currently repeating in the northcentral region.  It seems highly likely that the fall wave will continue similar to 
previous fall, given its strong correlation with seasons and its geographical pattern in 2020.  If the population 
remains at immunity levels that are lower than those required for herd immunity, and with the emergence of 
stronger variants, the seasonal forces that have driven the epidemic could result in measurable epidemic 
surges at the same times and same regions into the future.  
 
COVID-19 seasonality and its repeating spatiotemporal patterns can be used as tools in the effort of 
forecasting the epidemic and aid in prevention and control policies.  Similar spatiotemporal analyses of other 
large scale COVID-19 data sets could be done around the world, linking the local epidemic patterns to local 
seasonal weather patterns. Results of such comparable international analyses could extend and support 
possible new epidemic forecasting methods based on weather.  Consideration of the identified geographical 
patterns can be used to improve preparedness and response planning for future surges in COVID-19 which 
can disproportionately affect different regions.  Like influenza, timely vaccination and control policies of COVID-
19 can optimize resources, reduce economic burden, and effectively prevent future epidemics (23-25).   
 
This study has several limitations.  There are inconsistencies and biases in case reporting among states and 
provinces and across states.  In addition, reported incidence is a function of the number of tests administered 
which can fluctuate over time. To reduce these testing and reporting biases, we scaled cases within each state 
and province to focus on the timing of the waves rather than their intensity.  In addition, at the county level, the 
Gi* statistic incorporates the variability in a county and its neighbors, thus reducing the noise from any 
individual county.  In addition, it is not yet possible to determine exactly how seasons have affected COVID-19 
incidence.  It is likely that human and virus factors interact differentially at various seasons shaping the 
epidemic’s waves.  As future research investigates this complex relationship, we recommend that policies and 
decisions should seriously consider the seasonal patterns of COVID-19.  
 
This analysis shows that patterns of waxing and waning of COVID-19 incidence at the state and county level 
are driven by continental-scale seasonal and geographical patterns. This in turn suggests that future state and 
county level COVID-19 surges should be at least in part predictable, and therefore preventable.  
 
 
Materials and Methods 
 
Data sources:  
Daily COVID-19 incidence rates for Canada, US, and Mexico were obtained from both The New York Times’ 
and John Hopkins University’s (26) COVID-19 data repositories. We used the full series from the start of the 
pandemic through October 31, 2021, which was the latest date for which data was available at the time of 
writing this manuscript.  All our analyses use the 7-day moving average unless it is otherwise specified.   
 
Statistical Analyses:  
To examine periodicity in COVID-19 incidence in the USA, we measured the correlation in case rates between 
each date and every other date across states. This type of analysis is commonly used in signal processes to 
identify repeating patterns.  We chose this correlation analysis over standard time trends because they can 
clearly disentangle periods of “synchrony” in states’ COVID-19 incidence rates.  We produced a colored 
heatmap that highlights periods of high correlations on a single display.  Spatiotemporal trends repeat when 
daily case rates between two isolated periods have high correlations across states.  In addition, we used a 
spatially constrained clustering and regionalization algorithm to identify contiguous regions in the US that are 
similar in case incidence. Specifically, we used the implementation of the SKATER (Spatial ‘K’luster Analysis 
by Tree Edge Removal) algorithm (27) in the R package spdep.  Briefly, the algorithm uses graph partitioning 
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to efficiently divide the US into contiguous regions of states with similar COVID-19 case trend patterns. We 
conducted a sensitivity analysis in which we changed the number of clusters from 2 to 10.  We chose 3 
clusters as the additional clusters had only a state or two in some clusters.  
 
COVID-19 incidence data is available for the US at the county level.  To reveal how COVID-19 hotspots 
progressed over time, we animated a spatiotemporal hotspot progression using the Getis-Ord Gi* method 
(Movie 1).  The Gi* method is widely used to show geographical clustering of hot (high) and cold (low) spots of 
noisy geographical data (28).  The Gi* statistic is essentially a z-score which indicates the number of standard 
deviations for case rates in a county (and its neighbors) being above or below the national average. We used a 
modification of this method (29) to adjust the Gi* score over time.   
 
To reveal the propagation of each COVID-19 wave in North America, we produced a time-lapse movie of daily 
case incidence at the state and province level in Canada, USA, and Mexico (Movie 2).  Due to variations in 
reporting among states and provinces, we scaled COVID-19 incidence within each state and province to a 
range between 0 and 1, where 0 indicates no cases, and 1 indicates the highest number of cases in the state 
or province during the entire period.  Thus, this video illustrates the timing of the waves rather than their 
relative intensity across states and provinces.   
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Fig. 1. Correlation in daily COVID-19 case rates across states in the US from the start of the epidemic 
through Oct 31, 2021.  Panel A shows the patterns of total cases and the 7-day moving average in the US. 
Panel B is a heatmap of correlations of daily cases across states.  Each pixel in this figure represents the 
correlation in case rates between a date on the x-axis and another date on the y-axis.  Panel C displays a 
scatterplot of case rates between August 1, 2020 and August 1, 2021 indicated by the yellow dot on Panel B 
(correlation r = 0.79).  This scatterplot generates distinct regions of high and low correlations corresponding 
closely to the four seasons.  The numbers on the diagonals indicate the wave indices: 1 = spring 2020, 2 = 
summer 2020, 3a = fall 2020, 3b = winter 2021, 4 = spring 2021, 5 = summer 2021, and 6a = fall 2021. The 
case rates in the spring, summer and fall seasonal waves in 2020 are highly correlated with the corresponding 
seasonal waves in and 2021. These regions are indicated with the labels 1~4, 2~5 and 3a~6a in Panel B.  In 
addition, Panel B shows at least two additional areas of high correlation that occur in different seasons (e.g., 
2~3b between summer 2020 and winter 2021, and 3b~5 between winter and summer 2021). Panel D shows 
the average case rate across state by 3 contiguous regions defined with a spatially constrained clustering 
algorithm as described in the methods section. The states in each region are shown in the map under the 
legend.  The vertical lines indicate the boundaries of each wave as recognized from Panel B. Notice that these 
boundaries do not necessarily coincide with visible wave patterns for the total US cases or cases by region 
especially for waves 4 through 6a because of overlapping wave patterns in Panels A and D. 
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Fig. 2. Reproducing seasonal patterns using a mixture of 3 sine waves.  Panel A shows the deviation of 
daily case rates for the three regions from the daily average.  Panel B presents a “checkerboard” pattern 
similar to Fig 1B above, but this version is based on a mixture of three simple sine waves – one per region as 
shown in Panel C.  The three waves peak twice a year, but the waves for the central/western region and the 
northeast region alternate between a strong wave and a weak wave, whereas the amplitude of the southeast 
sine wave is fixed.  
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Fig. 3. Spatiotemporal patterns of COVID-19 waves in the US, Mexico, and Canada by season.  Panel A 
is a diagram illustrating the three major seasonal waves that has spanned the continent. The arrows indicate 
the direction of the spread.  Panel B shows frames taken from Movie 2 and reveals the geographical 
distribution of each wave and the similarity between the first and second year of the pandemic.  The color 
scales represent the local intensity of cases on a scale from 0 to 1.  As the movie shows, Wave 3a (fall 2020) 
continues through the winter months of 2021 (Wave 3b) as a travelling wave.  The spring frames are for Apr 
10, 2020 and 2021 (Waves 1 and 4), the summer frames are on July 28, 2020 and 2021, the fall frame 
represents Nov 20, 2020 (Wave 2 and 5), and the winter frame represents Feb 15, 2021 (Wave 3b).  Mexico’s 
state level data for Wave 1 was missing. 
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Movie captions:  
 
Movie 1. Animations of changing COVID-19 hotspots in US counties. The lower part of the graph shows 
the average trend for case rates across counties.  The colors on the map indicate hot- and cold-spots of 
COVID-19 case incidence by county measured by the number of standard deviations above or below the 
national average across time.  The animation uses 14 day moving average of case rates from March 29, 2020 
through October 31, 2021. The lower plot shows the corresponding average case incidence rate across 
counties to provide a reference point in relation to the epidemic curve.  
 
Movie 2. Animation of the continental spread of COVID-19 in the US, Canada, and Mexico. The animation 
starts from March 20, 2020 and ends on August 27, 2021.  The color scale represents the local intensity score 
between 0 and 1 within each state or province.  Zero indicating no cases in a state and 1 indicates the 
maximum number of cases for that state or province during the entire observation period. This animation 
shows the spatiotemporal patterns of the 6 waves in the US and the similarity of cases in the northeastern 
states with patterns in Canada and the southern states with patterns in Mexico. Wave 1 (Spring 2020) is 
centered in the northeast US and east Canada, Wave 2 (Summer 2020) appears as a travelling wave from 
Mexico to south US, Wave 3 appears also reveals a travelling wave pattern, with Wave 3a (Fall 2020) starts in 
the north-central US and continues through Wave 3b (Winter 2021) in south US.  Wave 4 (Spring 2021) resets 
the cycle anew in the northeast US, and Wave 5 (Summer 2021) is centered in Mexico and then southern US.   
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Supporting Information (SI) 
 
 
 
 

 
 
This SI file includes: 
 

Supplementary Text 
Figs. S1 to S3 
Movie S1 caption 
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Supplementary Text: An exploratory analysis of the relationship between temperature and case incidence. 
 
In this supplementary analysis we explored the relation between temperature as a weather variable and daily 
covid-cases.  Daily weather stations’ temperature data readings were obtained from the National Oceanic and 
Atmospheric Administration (NOAA) (30).  In addition, we obtained daily temperature on a 1-kilometer grid for 
the US from the Daymet Version 4 Monthly Latency Daily Surface Weather Data (31).  All data used in this 
analysis are publicly available through the sources identified. 
 
We chose the fall-winter 2020-21 wave to explore the relation between temperature and case incidences 
because the fall-winter wave was by far the most severe and widespread in the USA.  We used the mcp (32) 
package in R to fit a change-point model and measure the peak incidence date.  The supplementary Fig. S1 
shows the results of the change point analysis by state. The 95% Bayesian credible intervals were obtained 
from the posterior distribution of these change-points.  
 
Representing when a state’s temperature reaches a specific threshold is challenging.  Temperature varies 
every day between a low and a high value and a state may reach that temperature a few times during a 
season.  In our calculations, we used the 14-day moving average to smooth the temperature trends and 
focused on the first time when each state reached a specified threshold.  We estimated the date on which each 
state reached a temperature threshold.  We used daily average temperature from a one-squared kilometer grid 
raster of the US.  Considering the variation in the distribution of population within each state, we weighted the 
temperature by the proportion of the state population living in each squared kilometer in that state (33).  Then, 
we computed the 7-day moving average to smooth the temperature trends and measured the dates on which 
that state’s temperature curve reaches four thresholds (15, 10, 5, and 0°C) within +/- 1°C.  The supplementary 
Fig. S2 illustrates the temperature trend for each state indicating date on which each state’s temperature 
reached 10°C as an example.  ‘’ 
 
Fig. S3 reveals the correlation between the day on which a state reached a specific temperature and the day 
on which temperature peaked at that state.  The correlation coefficients were 0.62, 0.71, 0.77, and 0.73 for 
temperature thresholds of 15°C, 10°C, 5°C and 0°C, respectively. These are strong indicators supporting the 
association between air temperature and COVID-19 cases in Wave 3.  In addition, the supplementary Movie 
S1, compares the spatiotemporal patterns of case incidence and temperature.  This supplementary movie 
shows that Waves 2 and 5 coincide with temperature peaking in the southeastern states in the summers of 
2020 and 2021, and that the travelling Wave 3a and 6a coincides with the movement of the cold front in the 
2020 and 2021 fall seasons. 
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Fig. S1 Results of the multiple change point analysis by state. The x-axis is the days since January 
2020, and the y-axis is the log of 7-day moving average of case rates per 100,000.  The gray lines are s
from the Bayesian posterior fitted piece-wise linear models, and the density plots at the bottom are the 
posterior densities of the seven change points. We used change points 1, 3, 5 and 7 to represent the da
which waves 1 through 4 peak, respectively. 
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Fig. S2 Measuring the date when temperature reaches 10°C.  The x-axis is day counts since Januar
2020, and the y-axis is the mean temperature 7-day moving average.  Each figure represents a state w
are organized roughly by their locations in the US geological map.  Data for the District of Columbia and
Hawaii were not available.  The horizontal green line indicates the temperature threshold used in this ex
(10°C), and the vertical line indicates the day at which the state’s curve reaches that threshold within +/
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Fig. S3. Temporal association between average temperature and Wave 3 peak incidence. Each plo
shows a specific temperature threshold.  The x-axis displays the date on which the average temperature
each state reaches the specified threshold within +/-1°C, and the y-axis is Wave 3’s peak incidence date
2-letter abbreviations represent the USA states. The light blue vertical lines are the 95% credible interva
the peak dates, r is the correlation between the two dates across states, and n is the number of states th
reach the temperature threshold. This analysis excludes Hawaii due to missing temperature data.   
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Movie S1. Animations of average temperature and COVID-19 hotspots by county in the United States. 
This movie shows the changes in temperature (left) and cases hotspots (right) as an exploratory display of the 
relationship.  The lower part of the graph shows the average trend for both measures.  The colors in the map 
on the left indicates average temperatures in degrees Celsius by county. The data was obtained by mapping 
the closest NOAA station to the centroid of each county.  The colors for the map on the right indicate hot- and 
cold-spots of COVID-19 case incidence by county measured by the number of standard deviations above or 
below the national average (same as Movie 1 in the main text).  The animation is from Jan 14, 2020 through 
October 31, 2021.  Comparing the two animations reveals the spatiotemporal correlation between high 
temperatures in the southern states and the summer waves of 2020 and 2021, and the cooler temperature in 
the fall winter waves of 2020-21.  In addition, the county-level visualization reveals additional details for spread 
of COVID-19 in the US, especially for Wave 3a and more recently Wave 6a.  
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