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Supplementary information  

1. Application of the Euroimmun anti-SARS-CoV-2-S1-IgG ELISA antibody test to dried blood 

spots 

2. Grouping of districts based on the incidence of notified SARS-CoV-2 infections over time 

3. Methodological details and sensitivity analyses for the calculation of the underascertainment 

ratio and the estimated proportion of undetected cases. 

 

1. Application of the Euroimmun anti-SARS-CoV-2-S1-IgG ELISA antibody test to dried 

blood spots 

The qualitative Euroimmun Anti-SARS-CoV-2-ELISA (IgG) test for S1 antibodies has been most 

commonly used in the analysis of serum samples since early 2020. In the RKI-SOEP-study presented 

here, however, it is used to analyse dried blood spots (DBS). A method study was therefore 

conducted comparing serum with dried blood, embedded in the 'CORONA-MONITORING lokal' study 
69. This method study comprised 276 individuals who had participated both in the baseline survey in 

May/June 2020 and in the follow-up survey of the study 'CORONA-MONITORING lokal' in October 

2020. The sample was made up of individuals who either had a positive or indeterminate IgG test 

result in serum measurements at the time of the baseline survey (n = 265) or had a negative test 

result but reported a positive PCR test before the baseline survey in the questionnaire (n = 11).  

Study execution and laboratory methods 

During the follow-up, the study team collected both a venous blood sample, which was processed 

into serum, and a capillary blood sample, which was processed into dried blood. Both samples were 

tested for IgG antibodies using Anti-SARS-CoV-2-ELISA (IgG) (Euroimmun AG, Lübeck, Germany, lot 

E200518BC). The results of this test are semiquantitative ratio values which were classified for serum 

samples using the manufacturer-supplied cutpoints (positive: ratio ≥ 1.1; indeterminate: 0.8 ≤ ratio < 

1.1, negative: ratio < 0.8). 

 

Statistical analysis 

The aim of the analysis was to examine the test characteristics of the IgG test based on DBS 

compared to serum samples and, if appropriate, to derive a cutpoint adapted to dried blood so that 

the seroprevalence based on dried blood is comparable to a seroprevalence based on serum 

samples. The categorization used was 'positive' versus 'non-positive' (negative or indeterminate). 

Results of the serum measurement using the manufacturer-supplied cutpoints were regarded as the 

gold standard for the present analysis. 

On the one hand, the adapted cutpoint was determined by minimizing the misclassification rate. To 

this purpose, cutpoints in the range 0.7–1.1 were used to classify the dried blood ratio values. This 

range was chosen since first analyses showed that dried blood spot samples yielded somewhat lower 
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ratio values than serum samples. For each cutpoint, the proportion of misclassified DBS test results in 

comparison to serum results was determined, i.e. the proportion of all dried blood samples that were 

classified differently from the corresponding serum sample. Confidence intervals for the proportion 

of misclassified DBS test results were calculated using the Wilson score method [2,3].  

On the other hand, a correction formula was estimated to predict serum ratio values from DBS ratio 

values, and the cutpoint was converted using this formula. The correction formula was estimated via 

piecewise linear regression, with the ranges for the piecewise regression defined by examining 

residual plots. 

Results 

The measurements performed with dried blood (mean value 1.52, range 0.09 - 6.97) yielded slightly 

lower ratio values compared to the results from serum (mean value 1.68, range 0.11 - 6.72). Half of 

the serum samples collected in the follow-up survey were IgG positive (Supplemental Table S1).1 

Overall, the proportion of DBS samples misclassified was 5.1% compared to the corresponding serum 

sample, applying the manufacturer-supplied cutpoint to the DBS samples (14 of 276 dried blood 

samples were misclassified, 95% CI  3.0 - 8.3%) (see Supplemental Table S1). All misclassifications 

were false negative categorizations (10.1% of 138 positives in serum were categorized as negative in 

the DBS sample, 95% CI 6.1 - 16.3%). 

Supplemental Table S1: Categorized IgG measurement in serum vs. categorized IgG measurement in 

dried blood spot using the manufacturer-supplied cutpoint (number, row percentage) 

Result of serum sample Result of dried blood spot sample  

 Positive (≥ 1.1) 
Non-positive  

(< 1.1) 
Total 

Positive (≥ 1.1) 124 (89.9%)   14 (10.1%) 138 

Non-positive (< 1.1)     0 (0%) 138 (100%) 138 

Total 124 152 276 

The minimum misclassification over all cutpoints tested was 2.9% (8 of 276 samples misclassified, 

95% CI 1.5 - 5.6%). It was reached with a cutpoint of 0.94 and 0.95, respectively (see Supplemental 

Table S2; the categorizations for these two cutpoints were identical). With this cutpoint, false 

positive and false negative misclassifications occurred with equal frequency. 

 

Supplemental Table S2: Categorized IgG measurement in serum vs. categorized IgG measurement in 

dried blood spot using the cutpoint that minimizes the overall misclassification rate (number, row 

percentage) 

 

                                                           
1 Differences to the baseline IgG categorization may be explained by two factors: (1) waning of antibodies 

between baseline and follow-up; (2) use of a different test batch. 
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Result of serum sample Result of dried blood spot sample  

 Positive (≥ 0.94) 
Non-positive  

(< 0.94) 
Total 

Positive (≥ 1.1) 134 (97.1%)     4 (2.9%) 138 

Non-positive (< 1.1)     4 (2.9%) 134 (97.1%) 138 

Total 138 138 276 

As another way to establish a cutpoint, a correction formula was derived to convert the DBS values 

into serum values. This resulted in a good model fit when using piecewise linear regression: 

(1) For DBS values < 0.19 (n = 8):  

 predicted serum ratio value = DBS value 

(2) For DBS values from 0.19 to 2.2 (relevant range for the categorization into positive/negative), 

the following applies (n=201): 

 predicted serum ratio value = 0.074 + 1.093 × DBS ratio value 

The explained variance (R²) in this range is 95.5%. The intercept (0.074) has a standard error 

of 0.0169, and the slope parameter (1.093) has a standard error of 0.017. 

(3) For DBS values > 2.2 the following applies (n=67): 

 predicted serum ratio value = 0.166 + 1.013 × DBS ratio value 

The explained variance (R²) for these high DBS values is 92.1%. The intercept (0.166) has a 

standard error of 0.015 and is therefore not significantly different from zero. The slope 

parameter (1.013) has a standard error of 0.037 and is not significantly different from 1. 

Supplemental Figure S1 (left panel) shows the data points together with the estimated regression 

line. The right panel of the figure examines the agreement between measured serum ratio values 

and the serum ratio values predicted from the regression on DBS ratio values, using a Bland-Altman 

plot [4]. For this plot, the difference between the measured value and the predicted value is plotted 

against the mean of the two values. The plot indicates a uniform distribution of differences around 

zero throughout the range of values with only a small number of outliers, indicating a good model fit.  

According to the correction formula (2), a DBS ratio value of 0.94 corresponds to a serum ratio value 

of 1.1 (by inverting the above regression equation: (1.1 − 0.074)/1.093 = 0.939). Thus, this method 

yields an adjusted cutpoint of 0.94 for dried blood spot samples. 

Implementation in the analysis of the seroprevalence study 

Both using the correction formula and by minimizing the misclassification rate, 0.94 is obtained as 

the adapted cutpoint for classifying dried blood spot samples as IgG positive. This cutpoint was 

therefore used in the evaluation of the RKI-SOEP seroprevalence study to classify the ratio values of 

the Euroimmun IgG antibody test in dried blood spot samples. 
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Supplemental Figure S1: Left panel: Data points and piecewise regression line for the regression of 

serum IgG ratio values on DBS IgG ratio values. Right panel: Bland-Altman plot of the difference 

between the measured serum IgG ratio value and the value predicted by the regression model against 

the mean of the two values. The lines show the limits of agreement (red, dashed line: ± 2 standard 

deviations; green, dotted line: ± 3 standard deviations).  
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2. Grouping of districts based on the incidence of notified SARS-CoV-2 infections over 

time 

The aim of the analysis described here was to derive a regional stratification within Germany, forming 

strata of districts with a similar distribution of notified COVID-19 cases over time. 

Data used 

The data set comprises the weekly 7-day incidence of notified laboratory-confirmed SARS-CoV-2 

infections per 100,000 inhabitants for each of the 401 German districts. Data was extracted on 2021-

03-21 from the internal server of the Robert Koch Institute, which hosts the mandatory infectious 

disease notifications in Germany. The data set comprises the incidence from calendar week 5 in 2020 

(end of January) when the first COVID-19 case in Germany was reported to calendar week 6 in 2021 
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(mid-February). This end date was chosen as study participation continued until the end of February 

2021 and we assume IgG antibodies can be detected on average 14 days after symptom onset.  

Statistical analysis  

The 7-day incidence of SARS-CoV-2 infections was categorized from very high incidence (200 cases and 

more per 100,000) over high incidence (100 to less than 200 cases per 100,000), elevated incidence 

(50 to less than 100 cases per 100,000), medium incidence (15 to less than 50 cases per 100,000) to 

low (<15 per 100,000) and zero incidence (no new cases per 100,000).  

In order to build trajectories over time, so-called (temporal) sequences were built for each of the 401 

districts, displaying their time-ordered categorized weekly incidence in a sequence index plot.  Figure 

S2 shows the temporal sequences for 10 districts as an example. Of note, the term “sequence” here 

refers to the time-ordering of the incidences, and its meaning is different from a genetic sequence in 

molecular epidemiology. 

  

Supplemental Figure S2: Temporal sequence index plot: Weekly new COVID-19 cases per 100,000 for 

ten exemplary districts 

To form groups of districts with similar patterns over time, a so-called sequence analysis was 

performed using ‘TraMineR 2.2-1’ [1,2] in the R statistical package, version 4.0.5 (R Core Team 2021, R 

Foundation for Statistical Computing, Vienna, Austria). Pairwise distances between the temporal 

sequences were calculated using optimal matching. Using the distance matrix obtained from optimal 

matching, a statistical cluster analysis was performed using the ‘WeightedCluster 1.4-1’ [3] and the 

‘cluster 2.1.1’ package [4]. Best clustering method and optimal number of clusters were evaluated 

using the ‘wcCmpCluster’ function. We chose 4-medoids clustering with the PAM algorithm, 

determining the start medoids with hierarchical Ward clustering. The statistical clusters found through 

this analysis are referred to as “district incidence strata” in the main text of the manuscript. 
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Results 

Plotting all temporal sequences (first unordered as a temporal sequence index plot (Supplemental 

Figure S3, left panel) and second ordered as temporal sequence density plot (Supplemental Figure S3, 

right panel)) shows that the data captures the complete first wave of the SARS-CoV-2 pandemic in 

Germany and almost the complete second wave.  

Supplemental Figure S3: Left panel: Temporal sequence index plot: Weekly new COVID-19 cases per 

100,000 for each of the 401 districts in Germany, January 2020 to mid-February 2021. Right panel: 

Temporal sequence density plot: Weekly distribution of the COVID-19 incidence categories, January 

2020 to mid-February 2021. 

Based on this data, four statistical clusters (groups of districts) were formed (Supplemental Figure S4). 

Cluster A (‘high incidence’) includes 50 districts. These districts were all at least affected with medium 

incidence in the first wave and were strongly and for a long time confronted with high and very high 

incidences during the second wave. Cluster B has a similar distribution in the first wave, but these 223 

districts were less strongly affected in the second wave. As it captures the majority of the districts, it 

is called ‘average incidence cluster’. The last two statistical clusters had lower incidences during the 

first wave. In the second wave, Cluster C (67 districts) was highly affected, similar to Cluster A, but with 

a later onset compared to the first two clusters. It is therefore called ‘late second wave’. Cluster D (61 

districts, ‘low incidence’) had lower incidences in both waves compared to the other clusters. 

Supplemental Figure S5 shows the regional distribution of the four statistical clusters in Germany. 
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Supplemental Figure S4: Temporal sequence density plots for the four statistical clusters, 401 districts 

in Germany, January 2020 to mid-February 2021 

 

Supplemental Figure S5: Regional distribution of the four statistical clusters in Germany, January 2020 

to mid-February 2021  
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3. Methodological details and sensitivity analyses for calculation of the 

underascertainment ratio and the estimated proportion of undetected cases.  

The number of infections missed by the mandatory notification system was estimated in two 

ways: first internally, by estimating the proportion of seropositive cases that was unaware of the 

infection (main text Table 2); and second by comparing the observed seroprevalence, adjusted 

for test characteristics, to the number of notified cases, adjusted for sampling density (main text 

Table 3 and Supplemental Table S3).  

To this end, we calculated the cumulative incidence of notified cases individually for each 

participant, counting notified cases with symptom onset until DBS sampling date minus 14 days. 

If symptom onset was missing in notified cases, it was imputed by the median based on age, 

calendar week, federal state and day of the week (overall median: 4 days from symptom onset to 

notification date). In the main analysis, only cases with non-fatal disease course were included, 

as deceased cases had no opportunity to participate in the study. In sensitivity analyses 

(Supplemental Table S3), all cases were included. Next, the underascertainment ratio (ratio of 

seroprevalence to cumulative incidence of notified cases) and the estimated proportion of 

undetected cases were calculated (seroprevalence minus cumulative incidence of notified cases, 

divided by seroprevalence). In these calculations, we used the internally estimated sensitivity of 

0.616, as this accounts for antibody decay over time as observed in the study population and 

thus represents the most appropriate assumption in our view. In addition, Supplemental Table 

S3 shows results adjusting seroprevalence for the initial test characteristics, but with three 

different assumptions on antibody decay implemented in calculating the cumulative incidence of 

notified cases: (a) no antibody decay over time, (b) loss of seropositivity in 1/3 of infected 

persons 4 months after (reported or imputed) symptom onset, (c) loss of seropositivity in all 

infected persons 6 months after (reported or imputed) symptom onset.   
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Supplemental Table S3: Sensitivity analyses for the underascertainment ratio and the estimated 

proportion of undetected cases 

  Sensitivity analyses Base case 

  Seroprevalence:  

population-weighted and adjusted for initial test 

characteristics 

Seroprevalence: population-weighted 

and adjusted for specificity = 0.997 and 

sensitivity = 0.616 that includes 

antibody decay observed in the study  

 Assumption on 

antibody decay 

over time: 

Notified cases: 

(a) as is   

Notified cases: 

(b) 1/3 of 

notified cases 

older than 4 

months 

discounted 

Notified cases: 

(c) all notified 

cases older than 

6 months 

discounted 

Notified cases:  

(a) as is  

Population 

age group 

Notified cases 

considered 

Cumulative incidence of notified cases* 

18-99 yrs All cases 0.9% 0.8% 0.7% 0.9% 

 Non-fatal cases 0.9% 0.8% 0.7% 0.9% 

18-69 yrs All cases 1.0% 0.9% 0.8% 1.0% 

 Non-fatal cases  1.0% 0.9% 0.8% 1.0% 

  Underascertainment ratio (95% CI)*,** 

18-99 yrs All cases 1.35 (0.9 – 1.9) 1.51 (1.1 – 2.1) 1.82 (1.3 – 2.5) 1.78 (1.3 – 2.5) 

 Non-fatal cases 1.38 (1.0 – 1.9) 1.54 (1.1 – 2.1) 1.85 (1.3 – 2.6) 1.82 (1.3 – 2.5) 

18-69 yrs All cases 1.43 (1.0 – 2.0) 1.58 (1.1 – 2.2) 1.88 (1.3 – 2.6) 1.88 (1.3 – 2.6) 

 Non-fatal cases 1.44 (1.0 – 2.0) 1.59 (1.1 – 2.2) 1.88 (1.3 – 2.6) 1.90 (1.3 – 2.7) 

  Proportion of undetected cases (95% CI)*,*** 

18-99 yrs All cases 26% (5 – 47) 36% (8 – 55) 45% (22 – 60) 44% (20 – 60) 

 Non-fatal cases 28% (3 – 48) 35% (7 – 53) 46% (23 – 61) 45% (22 – 60) 

18-69 yrs All cases 30% (1 – 50) 37% (9 – 55) 47% (23 – 62) 47% (24 – 62) 

 Non-fatal cases 30% (0 – 50) 37% (10 – 55) 47% (23 – 62) 47% (24 – 62) 

*Sampling density adjusted, i.e. each participant contributes according to the cumulative incidence of notified cases with 

symptom onset (notified or imputed) corresponding to his/her DBS testing date minus 14 days, discounting cases with 

symptom onset more than 4 months or more than 6 months before DBS testing as indicated. 

**Underascertainment ratio: Ratio of seroprevalence to cumulative incidence of notified cases.  

***Proportion of undetected cases: Seroprevalence minus cumulative incidence of notified cases, divided by 

seroprevalence. 

****NA = estimate not available 

 


