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Abstract

Hospital resources, especially critical care beds and ventilators, have been strained by additional demand
throughout the COVID-19 pandemic. Rationing of scarce critical care resources may occur when available
resource limits are exceeded. However, the dynamic nature of the COVID-19 pandemic and variability in projec-
tions of the future burden of COVID-19 infection pose challenges for optimizing resource allocation to critical care
units in hospitals. Connecticut experienced a spike in the number of COVID-19 cases between March and June
2020. Uncertainty about future incidence made it difficult to predict the magnitude and duration of the increased
COVID-19 burden on the healthcare system. In this paper, we describe a model of COVID-19 hospital capacity
and occupancy that generates estimates of the resources necessary to accommodate COVID-19 patients under
infection scenarios of varying severity. We present the model structure and dynamics, procedure for parameter
estimation, and publicly available web application where we implemented the tool. We then describe calibration
using data from over 3,000 COVID-19 patients seen at the Yale-New Haven Health System between March and
July 2020. We conclude with recommendations for modeling tools to inform decision-making using incomplete
information during future crises.
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1 Introduction

The novel severe acute respiratory syndrome coronavirus (SARS COV-2), which causes coronavirus disease
2019 (COVID-19), emerged in 2019 in Hubei province in China. People infected with COVID-19 are at high risk for
severe respiratory disease and serious complications [1]. Management of respiratory failure and acute respiratory
distress syndrome (ARDS) often requires mechanical ventilation managed in an intensive care unit (ICU). In 2020
and the spring of 2021, the surge of COVID-19 patients in the United States revealed that critical care resources
available in some health systems were insufficient to address the COVID-19 outbreak. Localized bed shortages
occurred in parts of New York City [2], spurring hospital systems [3] and governors [4} 5] to order immediate bed
capacity expansion. Failure to meet the critical care needs of COVID-19 patients has dire consequences; in ltaly,
reports of rationing of ventilators based on age cutoffs emerged from overwhelmed hospitals and ICUs [6], [7].
Furthermore, the spread of COVID-19 has affected the availability of staff [8].

The development and administration of vaccines such as Pfizer BNT162b2 and Modern mRNA-1273 in high-
income nations like the United States, Israel, and the United Kingdom has slowed rates of infection with SARS-
Cov-2, but critical care capacity continues to be overwhelmed by the unvaccinated population and the develop-
ment of aggressive variants. As of fall 2021, one in four ICUs in the southern United States are above 95%
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capacity, with COVID19 patients accounting for approximately half of all ICU patients [9]. These high hospitaliza-
tion rates are driven by evolving variants of COVID-19, such as the Delta variant, which the CDC has deemed
more contagious than previous variants, more likely to cause severe iliness, and capable of causing breakthrough
infections in vaccinated people [10].

Tools for managing hospital capacity during surges in COVID-19 cases will be required as long as vaccination
rates remain low in some countries and new variants continue to arise. Rapid practice guidelines recommend the
use of mathematical modeling to guide surge capacity planning in hospital systems which expect to encounter
potential shortages in critical care resources [11]. Guidelines state that the models should “be pragmatic and
focus on the only relevant question for surge capacity: how many patients will need hospital and ICU resources
on a given day?" More specifically, the models should provide early predictions, insight regarding both best and
worst case scenarios, and the local rate of spread of infection and rate of hospitalization. Many modeling tools
were created at the beginning of the COVID-19 pandemic to assist with predictions of incident COVID-19 cases
and hospitalizations [12H25]. However, a comparison of four prominent models by Chin et al. [26] found that “for
accuracy of prediction, all models fared very poorly." These tools used population-level epidemic projections as
inputs to their model of hospital occupancy, which may have contributed to compounding errors in forecasting
hospital bed occupancy due to uncertainties in the early epidemiological models of COVID-19. The authors
concluded that “trustworthy models require trustworthy input data" and that the models “need to be subjected to
pre-specified real time performance tests."

In this paper, we present a model of COVID-19 hospital occupancy that uses data from health systems to gen-
erate its predictions. The model is independent of the uncertainty in population-level epidemiological predictions
of infection and can flexibly accommodate local variations important to decision-makers, such as significant dif-
ferences in patient demographic distributions and hospital protocols. The model provides predictions of floor and
ICU occupancy and mortality for infection scenarios specified by the hospital administrator or decision-maker.
These infection scenarios can be informed both by observed presentations of COVID-19 patients to the health
care system and epidemiological predictions of infection. The model can predict the effects of planned modifi-
cations to hospital capacity, and projections can be tailored to the dynamics of a specific hospital system using
several parameters estimable from electronic health record data. We introduce the model structure and describe
both the model dynamics and the calibration procedure for the model parameters. The model was calibrated us-
ing observed patient trajectories from the 3000-bed Yale New-Haven Hospital system, collected and processed
during the surge in COVID-19 cases in Connecticut between March and July 2020. We validate the model
dynamics using the observed hospital census during this time period. We conclude with recommendations to
guide scientists developing model-based recommendations for managing hospital capacity during the COVID-19
pandemic.

2 Methods

2.1 Model structure

The goal of the model is to allow hospitals to generate projections of their occupancy and expected clinical
outcomes. In this model, we describe the flow of COVID+ patients through a hospital system using a system of
ordinary differential equations. Figure[f]shows the possible patient trajectories in the hospital system. By COVID+
patients, we refer to patients who have tested positive for COVID-19 prior to admission, those that test positive for
COVID-19 within 14 days of admission, and transfers from other hospitals. We model transitions between eight
different compartments: 1) presentations to the health system or emergency department, where triage occurs P,
2) floor beds F', 3) ICU beds C, 4) M S, corresponding to a state post-discharge from the emergency department
(ED) for those patients with mild symptoms, 5) R, corresponding to recovery post-discharge for patients admitted
to the hospital, 6) W F', the queue for floor beds which would develop if floor beds are not available, 7) W C, the
queue for ICU beds which would develop if ICU beds are not available, and 8) death.
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Table 1: Rate parameters included in the model of hospital capacity

Parameter Description

Rates of departure from ED

oMms Rate at which ED patients are triaged as having mild symptoms
oc Rate at which ED patients are triaged to the ICU (boarding)
oF Rate at which ED patients are triaged to the floor

Rates of departure from the floor or floor queue

Or Rate of stepping up from the floor to the ICU

XF Rate of stepping down from the floor (discharge)

¢ Rate at which patients are moved to the floor from the floor queue
XWE Rate of stepping down from the floor queue (discharge)

Owr Rate of stepping up from the floor queue to the ICU

Rates of departure from the ICU or ICU queue
Xc Rate of stepping down from the ICU to the floor or the floor queue
n Rate at which patients are moved to the ICU from the ICU queue

Rates for those with mild symptoms
10) Rate of recovery of patients triaged as having mild symptoms
éms Rate at which patients with mild symptoms return to the ED

Death rates

HMS Death rate of patients triaged as having mild symptoms
we Death rate of patients in the ICU

753 Death rate of patients on the floor

Hwe Death rate of patients waiting for an ICU bed

JOWE Death rate of patients waiting for a floor bed

The rate parameters associated with each step of the model are shown in Table Governing equations are
described fully in the Supplement.

2.2 Specifying dynamics and capacity scenarios

The following features of the model are modifiable by the user in the web application in which the model is
implemented.

The user begins by specifying an infection scenario: the number of COVID+ patients that present to a health
system per day during a specified time horizon, between 2 and 60 days. They also select the number of COVID+
presentations at day zero of the projection and the expected change in the number of COVID+ presentations
during the time of the simulation. For example, the user could choose an initial number of presentations of
50 patients, “exponential" change in patients, a doubling time of 14 days, and a time horizon of 14 days. This
scenario corresponds to an exponential increase in the number of COVID+ presentations per day, such that 100
COVID+ patients present to the health system on day 14. Choices for the type of increase were: exponential,
linear, saturated, and flat (no increase).

We allow the user to specify both the baseline number of available beds in the ICU and on the floor and a possible
policy response, an increase their number of floor and ICU beds dedicated to COVID+ patients. The user may
specify a one-time linear ramping of capacity.
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Figure 1: Model structure and parameters. Simplified dynamics are presented here for the case of one age-group
for clarity. Patients present to the hospital system via the ED, where they are triaged and either discharged or
admitted to the hospital. Patients who are admitted may go to the floor or directly to the ICU. The model captures
patient flow from the floor to the ICU and back, as well as discharge dynamics from both the ED and the floor
to recovery. Rate parameters which capture the speed at which patients transition between compartments are
included here and described in Table [f] Arrows in red and blue represent patient-flow over-flow dynamics in the
ICU and floor, respectively. Olive-colored arrows represent death rates from each compartment.


https://doi.org/10.1101/2021.11.18.21266407

medRXxiv preprint doi: https://doi.org/10.1101/2021.11.18.21266407; this version posted November 20, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
All rights reserved. No reuse allowed without permission.

The user may also modify several parameters which reflect the patient population in a specific catchment area,
allowing the user to tailor the model to their particular needs. These parameters include the age distribution of
admitted COVID+ patients, the average length of stay of COVID+ patients in the ICU and on the floor, and the
probability of death of COVID+ patients in the ICU and on the floor. Default values in the web application are
based on the YNHHS patient population.

Key outputs of the model which inform decision-marking regarding resource allocation are: the number of days
to overflow, extra beds needed for COVID+ patients, number of deaths in each department, and predicted case-
fatality rate. The ability to predict overflow could lead to dedication of non-COVID resources to COVID+ patients
or the acquisition of additional space, for example. It is also clinically important, especially as the outcomes
of patients that need ICU care are significantly worse if there are no available beds (a surge scenario). The
predicted number of deaths among COVID+ patients in each department helps decision-makers understand the
possible consequences of allocating beds and resources in different ways.

2.3 Model calibration
2.3.1 Data sources

We used data from the Yale-New Haven Hospital System (YNHHS) collected between March 2020 and July
2020 to calibrate the model. YNHHS consists of five hospitals: Yale-New Haven Hospital (1,608 beds), Bridge-
port Hospital (719 beds), Greenwich Hospital (304 beds), Lawrence and Memorial Hospital (260 beds), and
Westerly Hospital (81 beds). For parameters which could not be estimated using available YNHHS data, we
used population-level estimates from the Center for Disease Control's Morbidity Mortality Weekly Report (CDC
MWWR) [27H30]. This study received approval from the Institutional Review Board of Yale University’s Human
Research Protection Program (IRB ID: 2000028666). We used three YNHHS data sources to calibrate the model:
individual-level records for patients who had tested positive for COVID-19 in the YNHHS Emergency Departments
(ED), individual-level records for patients who had been admitted to the hospital, and hospital-level summaries
of capacity. Using these data, we reconstructed patient trajectories through the YNHHS hospitals. Figure
shows the total census of hospitalized COVID+ patients in YNHHS, as well as the census on the floor and ICU
specifically. Figures[2B-E show the survival probabilities of death and departure from the floor and ICU, without
accounting for competing hazards.

2.3.2 Procedure for calibration of parameters

We used survival analysis with competing risks to estimate the following parameters governing rates of transition
between hospital departments using the patient records available in the YNHHS dataset. We estimated three
parameters describing rates of departure from the ED: from the ED to discharge (o,s), the ED to admission
to the floor (o), and the ED to admission to the ICU (o¢). We used inpatient data to estimate the rate of
transition from the floor to the ICU (), rate of discharge from the floor (x r), rate of transition from the ICU to
the floor (x¢), death while on the floor (1) and death while in the ICU (u¢c). We performed a primary analysis
in which time to all competing events were assumed to follow a gamma distribution. We estimated parameters in
three age groups (0-17 years, 18-64 years, 65+ years). We used bootstrapping with 1,500 samples to generate
estimates of the variance of these parameters. Additional statistical details of the procedure are described in
the Supplement, as well as two secondary analysis two secondary analyses with simpler parameterizations to
assess the performance of the estimated model parameters under different distributional assumptions.
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Figure 2: A: The census of hospitalized patients throughout YNHHS. The total census is shown with gray points,
the census on the floor is shown in black, and the census in the ICU is shown in red. B and D: Kaplan-Meier
curves describing the probability of remaining on the floor or ICU given time since arrival to the floor or ICU
respectively. Patients are considered to be right-censored if they are still on the floor or in the ICU at the end
of the observation period. Departure includes discharge, transfer to another department, and death. C and E:
Kaplan-Meier curves describing the probability of survival, and not death, on the floor and in the ICU given time
since arrival to the floor or ICU respectively. Patients are considered to be right-censored if they are transferred
to another department, are discharged, or remain in the floor or in the ICU at the end of the observation period.
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0-18 years 18-64 years 65+ years

Estimated parameters

ovs 1.1(0,4.1) 0.081 (0, 1 9) 0.55 (0.43, 0.68)
oc 0.017 (0, 0.32) 0.075 (0, 0.67) 1.1 (0.87,1.2)
or 0.37(0,2.3) 0.035 (0, 2.4) 3.4 (3.2, 3.6)
xc 0.12(0.011,0.27) 0.061 (0.05, 0.072) 0.064 (0.052, 0.076)
xr 0.28 (0.17,0.4) 0.11 (0.11,0.12) 0.071 (0.068, 0.075)
xwr 0.28(0.17,0.4) 0.11 (0.11,0.12) 0.071 (0.068, 0.075)
0r 0.0095 (0, 0.041) 0.014 (0.011, 0.017) 0.013 (0.011, 0.016)
Owr 0.0095 (0, 0.041) 0.014 (0.011, 0.017) 0.013 (0.011, 0.016)
¢ 27(1.54) 1.2(1.1,1.3) 0.87 (0.79, 0.95)
&vs  0.012(0.012,0.012) 0.0054 (0.0054, 0.0054) 0.0039 (0.0039, 0.0039)
uas  0.00066 (0.00066, 0.00066) 0.00066 (0.00066, 0.00066) 0.00066 (0.00066, 0.00066)
ue 0.0035 (0.0023, 0.0048) 0.0083 (0.0038, 0.013) 0.024 (0.018, 0.03)
wr 0.002 (0.0018, 0.0022) 0.00033 (0, 0.001) 0.012 (0.0092, 0.015)
uwr 0.002 (0.0018, 0.0022) 0.00033 (0, 0.001) 0.012 (0.0092, 0.015)
Fixed parameters
¢ 0.088" 0.094* 0.095*
pwe 4 4 4
n 36 36 36

Table 2: Model parameters: Included in this table are both estimated rates of transition with 95% confidence
intervals, rates taken from external sources [27H30] and rates which we set after being unable to determine
then either from data or the literature. The estimated rates are based on the assumption that the time to each
competing risk follow a two-parameter gamma distribution, where the product of the two parameters yield the
estimated mean of the distribution. These parameters were estimated separately for each age group. Rates
labeled with (*) were taken from CDC MMWR [27].

2.4 Parameter estimates

The observed time-series of patients entering each department included both COVID-19 patients admitted di-
rectly to each department and direct transfers from other hospitals. Figure[2JA shows the total census of COVID-19
patients admitted to all YNHHS hospitals during the observation period. Parameter estimation used all observed
YNHHS patient trajectories, and model fit was evaluated using the the largest hospital, YNHH, where decision-
making regarding resource allocation was most critical. In total, 2,275 COVID-19 patients who met criteria were
admitted or transferred to YNHH during the observation period. The estimated capacity of YNHH for COVID-19
patients was 180 beds in the ICU and 578 beds on the floor. YNHH neither reached capacity nor ran out of
ventilators during the surge in COVID-19 cases.

We used individual-level patient trajectories and time-stamped transitions between departments to calculate the
time spent by each patient in each department, as well as the destination of each patient following departure. The
estimated rates, assuming gamma-distributed time to event, are listed in Table [2] Using these estimated rates,
we computed transition probabilities between the ED, floor, and ICU, and lengths of stay in each department; we
include these transformed values in Table[3] Average length of stay (LOS) on the floor was 10 days (95% Cl: 9.0,
11) for those over the age of 64 and 7.6 days (95% ClI: 7.1, 8.1) for those between 18-64 years. LOS in the ICU
was longest on average, 14 days (95% ClI: 12, 116)) for adults between 19-64 years, 11 days (95% CI: 9.7, 13)
for adults over 65 years, and 8.5 days (95% CI: 1.5-15) for children under the age of 18.
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0-18 yrs 19-64 yrs 65+ yrs
Age distribution in ED, % 0.02 (0.02, 0.02) 0.58 (0.58, 0.58) 0.4 (0.4,0.4)
% discharged from ED  0.73 (0.56, 0.9) 0.54 (0.33, 0.75) 0.11 (0.09, 0.13)
% admitted from ED to floor 0.25 (0.1, 0.4) 0.26 (-0.053, 0.57) 0.68 (0.65, 0.71)
% admitted from ED to ICU  0.037 (-0.02, 0.052) 0.2 (0.095, 0.31) 0.21 (0.19, 0.24)
% death on the floor 0.024 (0.015, 0.033) 0.0052 (-0.00013, 0.011) 0.13 (0.1, 0.15)
% death in the ICU  0.01 (0.0069, 0.013) 0.13 (0.069, 0.18) 0.27 (0.22, 0.32)
% step up from floor to ICU  0.52 (0.22, 0.81) 0.79 (0.73, 0.85) 0.65 (0.59, 0.7)
% step down to the floor 0.042 (-0.034, 0.12)  0.11 (0.089, 0.13) 0.14 (0.12,0.16)
Triage time in ED (days) 0.81(-0.17, 1.8) 4(-1.2,9.3) 0.2 (0.18,0.21)
Average LOS on floor (days) 3.3 (2, 4.6) 7.6 (7.1,8.1) 10 (9.6, 11)
Average LOS in ICU (days) 8.5 (1.5, 15) 14 (12, 16) 11 (9.7, 13)

Table 3: Probabilities of transition between the ED, Floor, and ICU, and lengths of stay: Included in this
table are both estimated probabilities of transition with 95% confidence intervals, and lengths of stay in each
hospital department. As with the estimated rates in Table |2} the estimated probabilities and lengths of stay are
based on the assumption that the time to each competing risk follow a two-parameter gamma distribution, where
the product of the two parameters yield the estimated mean of the distribution. These parameters were estimated
separately for each age group.

2.5 Model fit

Accurate predictions of occupancy were the most important output of the model, as a tool to help hospital admin-
istrations with surge planning. We evaluated the ability of the model to generate predictions of hospital occupancy
at YNHH that matched the observed occupancy during a surge in COVID-19 patients at Yale-New Haven Hos-
pital (YNHH), the largest of the five hospitals in YNHHS. These predictions were generated using the observed
time series of patients admitted to each YNHH department between March 8 and June 12, 2020, and were com-
pared to the observed occupancy in each department during this time. Parameters were estimated assuming
gamma-distributed time to departure from a department. Figure [3]show the observed occupancy and occupancy
predicted by the model according to this analysis.

The model accurately predicts occupancy in YNHH. Figure shows that the ICU occupancy predicted by the
model closely matches the increase in the observed YNHH ICU occupancy between March and April, the period
of peak occupancy between April and May, and the decrease in occupancy between May and June. Similarly,
Figure [3A demonstrates that the model also accurately predicts the increase in floor occupancy between March
and April and the date of peak occupancy, April 18, 2020. The model predicts that floor occupancy on April 18
would be 343 patients (95% Cl: 323, 365). The observed YNHH occupancy on April 18 was 405 patients. The
model’s prediction for deaths among COVID-19 patients on the floor and in the ICU were also reasonable but are
not shown for privacy reasons.
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Figure 3: Inpatient predicted and observed COVID19 floor occupancy (A) and ICU occupancy (B). Parameters
describing rates of transition between hospital departments were estimated assuming gamma-distributed time
to event. The dotted line represents occupancy at YNHH. The solid red line represents model output based
on parameters calculated using our fitting procedure and capacity estimates from YNHH. The dotted red lines
represent estimated occupancy according to the bounds of 95% confidence intervals for each parameter.

3 Discussion

In this paper, we have presented a model of hospital capacity which was utilized by YNHHS to inform decision-
making regarding resources which would be necessary to handle the surge in COVID-19 patients at YNHHS.
As requested by rapid response guidelines [11], the model predicts the number of patients requiring hospital
resources under a variety of scenarios. We have described the process that we used to fit the model using
data from YNHHS collected as the surge in COVID-19 patients was occurring. We have provided evidence that
our estimation procedure provides a reasonable estimate of the true dynamics in a system by comparing the
performance the model to the observed dynamics in YNHH during the surge in COVID-19 cases.

The model successfully predicted the most important quantity: occupancy in the ICU, which is the most scarce
resource and most important for helping severely ill COVID-19 patients. However, this method may have several
weaknesses. The model slightly underpredicted floor occupancy. This could be due to inaccurate assumptions
used to estimate the model parameters. The model parameters were estimated for 3 age groups. The model
fit could be improved in future versions by creating additional subgroups according to age and other risk factors
for hospitalization and severe disease in COVID-19 patients. The model also assumes that rates of transition
between departments remains constant over time. However, several factors, including changing hospital protocols
for triage and treatment, may have resulted in fluctuations in the rates of transition over time. Such non-stationary
behavior is challenging to capture and would not be captured by the model or parameter estimation procedure.
In addition, the model is deterministic, and the estimates of variance in occupancy are based on uncertainty in
parameter estimation rather than inherent stochasticity in the model. Improved estimates of variance might be
achieved by making the model fully stochastic.

The urgency of the crisis caused by surging COVID-19 patients contributed substantially to the challenge of
developing a useful model. We would like to conclude by providing a few recommendations for creating a model
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in a crisis. First, early collaboration with end-users of the product was essential. After creation of the model
structure and early implementation of the web application, we met several times with administrators at YNHHS
who were in charge of capacity planning. They provided feedback on the model and the web application, in
addition to crucial perspective on the most urgent unmet needs which could be addressed by the model. Second,
we recommend reducing the dependence of these models on unverifiable assumptions. Instead of constructing a
population-level model which would predict hospitalizations without explicitly modeling dynamics within a hospital,
almost all of the parameters used to fit this model are based on observable data from electronic health records.
Despite using observable data to construct the model, we still had to consider the implications of the incomplete
nature of the dataset. The model was sensitive to differences in parameters that were estimated using different
procedures. The fidelity in the predictions of ICU occupancy was only achieved after we took into account right-
censoring of patient trajectories, with sicker patients remaining in the hospital at the time of the analysis. Third,
interactive implementations of any model results should be streamlined to involve the smallest possible number of
parameters for ease of use, and the rest should be reasonable defaults. Despite the large number of parameters
necessary to use the model, we included only a limited number for users of the web application to manipulate.
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