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sMethods 

Estimation of the effective sample size of the common liability genome-wide association analysis 

To derive an estimate of the effective sample size for the overall genome-wide association (GWA) analysis, we followed the formula proposed by 
Mallard et al.1: 

𝑛𝑗 =
(𝑍𝑗/𝛽𝑗)2
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Where nj is the unknown effective sample size per SNP j, Zj is the Z statistic of SNPj, MAFj is the minor allele frequency SNPj and βj is the effect 
estimate obtained from the GWA on the common liability for SNPj. As this formula may produce incorrect estimates for SNPs with low MAF, the 
effective sample size (Neff) was estimated as an average of nj based on m SNPs with MAF a > 10% and MAF b < 40%. 

 

Enrichment analysis  

We used Data-driven Expression-Prioritized Integration for Complex Traits (DEPICT2) to test for tissue/cell type enrichment. DEPICT relies on 
gene expression data derived from 77,840 samples (gene expression microarrays) and public pathway annotation datasets (e.g., GO, KEGG, 
REACTOME, MGI). DEPICT was applied to a set of a set of LD-independent SNPs (r2<0.05 within 500 kb) outside genome-wide significance 
(p<5×10-5), using the default settings. The common liability GWA results were filtered according to QSNP prior to its analysis using DEPICT, 
including only SNPs that did not show heterogenous effects (QSNP p>5×10-8). 

Pathway SCoring ALgorithm (PASCAL)3 was used to test for enrichment of all SNPs, using three gene sets (BIOCARTA, KEGG, REACTOME) curated 
by the Molecular Signatures Database (MSigDB4) and gene sets defined by DEPICT. Results obtained from PASCAL were corrected for multiple 
testing using false discovery rate (FDR) correction. FDR correction was applied separately to two sets of results, namely the 𝜒2 p-values obtained 
from enrichment analysis using MSigDB4 (1077 sets) and enrichment analysis using gene sets defined by DEPICT (14462 sets). We used the 
default settings set by PASCAL, using the sum option (based on the average association signal across a region) to run conduct gene scoring. The 
common liability GWA was filtered according to QSNP prior to its analysis using DEPICT, including only SNPs that did not show heterogenous 
effects (QSNP p>5×10-8). 

 

Standardization of beta estimates 

To facilitate comparability of the Mendelian Randomization results, the beta estimates and corresponding standard errors of all included SNPs 
were standardized based on the following formula: 

𝑍𝑗 =  
𝛽(𝑆𝑁𝑃𝑗)

𝑆𝐸(𝑆𝑁𝑃𝑗)
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Where Zj is the Z statistic of SNPj, Nj is the GWA sample size per SNPj, β (SE) is the unstandardized effect estimate (corresponding standard error) 
of SNPj with the phenotype and βSTD (SESTD) is the standardized effect (corresponding standard error) of SNPj with the phenotype. For binary 
traits, Nj indexes the effective sample size of the GWA per SNPj, estimated as: 
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sFigures 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

sFigure 1. Manhattan and QQ-plot of the uni- and multivariate genome-wide association analyses  

 
Column 1. Manhattan plots of the SNP effects obtained from the multivariate genome-wide association analysis on the 
common heritable liability, as well as the SNP effects from the univariate genome-wide association analyses on the individual 
substance use phenotypes. Labels are provided for the LD-independent genome-wide significant SNPs (i.e., SNPs above the 
horizontal line, with p<5×10−8) and gene names obtained through positional mapping. The x-axis refers to chromosomal 
position, the y-axis refers to the p-value on a -log10 scale. Genetic variants coloured in red index variants that showed 
heterogeneous effects across the individual cigarette, alcohol and cannabis use phenotypes (Qsnp p<5×10−8), indicating that 
their effects operate not entirely through the common liability. Genetic variants coloured in blue index variants that did not 
show heterogeneous effects across the individual cigarette, alcohol and cannabis use phenotypes (Qsnp p>5×10−8), indicating 
that their effects are likely to operate through the common liability. 
  
Column 2. QQ-plot of the observed and expected p-values for each of the genome-wide association results.  
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sFigure 2. PASCAL pathway enrichment 
analysis of genes associated with the 
common heritable liability 

 
Shown is the full set of results obtained 
from pathway enrichment analysis 
conducted in PASCAL. All estimates are 
also included in sTable 11. The common 
liability GWA (filtered according to Qsnp p-
<5×10−8) and the individual substance use 
GWA summary statistics were used as the 
input. The violet shading indexes the 
significance level corresponding to each 
tested pathway. The asterisk marks 
pathways that remained significant after 
correction for multiple testing (False 
Discovery Rate (FDR) controlled at 5%). 
Displayed in the figure are the 496 
pathways that were significant after FDR 
correction for at least one of the analysed 
phenotypes. 



 6 

Evaluation of the causal relationships implied by the common liability theory 

sFigure 3. displays the results from Mendelian Randomization (MR) analyses, assessing paths from the common liability to the individual substance 
use phenotypes (direct causation) and the reverse (reverse causation), from the indicator to the common liability. Using 42 QSNP-filtered LD-
independent SNPs from the common liability GWA, the MR findings provide validation for the factor loadings of the initial common liability model 
(cf. Figure 1b, main manuscript) – that is, the loadings obtained from genome-wide analyses were reproduced using a number of genetic 
instruments indexing the common liability. Reverse causation, was most strongly implicated for two of the indicators (frequency of cigarette and 
alcohol use) and, albeit to a lesser extent, alcohol dependence (pIVW=0.044). This result reflects either 1) true causal effects (which would violate 
the model assumptions) or 2) biased effects resulting from the inclusion of invalid instruments. With respect to 1), causal effects of the indicators 
may be interpreted as pathways where the use of specific drugs (e.g., cigarettes, alcohol) would sensitize common pathways (e.g., dopamine), 
which in turn would increase the risk of using other drugs. With respect to 2), some of the selected instruments for measures of frequency of use 
may affect the common liability through pathways other than the exposure they are indexing, which would violate the MR assumptions and result 
in biased MR estimates. Since the common liability explains less variance for measures of frequency of use compared to measures of dependency, 
larger residual substance-specific effects exist for measures of frequency of use. As such, reciprocal causal pathways may simply reflect the 
resulting pleiotropy, where substance-specific effects correlate with variant effects estimated for the common liability. 
 
 

sFigure 3. Bi-directional Mendelian Randomization analysis assessing causality between the common liability and the substance use phenotypes 
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Shown are the standardized beta coefficients obtained from 
Mendelian Randomization (MR) analysis assessing the bi-
directional relations between the common heritable liability to 
addiction and the six individual substance use phenotypes. 
Direct causation was estimated as the effects of the common 
liability on the substance use phenotypes, including n=42 
genome-wide significant genetic variants (p<5×10-8) operating 
through the common liability (Qsnp p- >5×10-8) as instruments. 
Reverse causation was assessed by estimating the effects of 
the individual substance use phenotypes on the common 
liability, including only genome-wide significant genetic 
variants that did not operate through the common liability 
(Qsnp p<5×10-8) as instruments. In instances where the GWA 
data did not contain genetic variants reaching genome-wide 
significance, we selected the top 10 LD-independent SNPs as 
instruments. A description of the instruments used in the 
analysis, as well as full set of MR results can be found in sTable 
13. 
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