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ABSTRACT12

Clinical research in infectious respiratory diseases has been profoundly affected by non-pharmaceutical interventions (NPIs)
against COVID-19. On top of trial delays or even discontinuation which have been observed in all disease areas, NPIs altered
transmission pattern of many seasonal respiratory viruses which followed regular patterns for decades before the pandemic.
Clinical trial design based on pre-pandemic historical data therefore needs to be put in question. In this article, we show
how knowledge-based mathematical modeling can be used to address this issue. We set up an epidemiological model of
respiratory tract infection (RTI) sensitive to a time dependent between-host transmission rate and coupled this model to a
mechanistic description of viral RTI episodes in an individual patient. By reducing the transmission rate when the lockdown
was introduced in the United Kingdom in March 2020, we were able to reproduce the perturbed 2020 RTI disease burden
data. Using this setup, we simulated several NPIs scenarios of various strength (none, mild, medium, strong) and conducted
placebo-controlled in silico clinical trials in pediatric patients with recurrent RTIs (RRTI) quantifying annual RTI rate distributions.
In interventional arms, virtual patients aged 1-5 years received the bacterial lysate OM-85 (approved in several countries for
the prevention of pediatric RRTIs) through a pro-type I immunomodulation mechanism of action described by a physiologically
based pharmacokinetics and pharmacodynamics approach (PBPK/PD). Our predictions showed that sample size estimates
based on the ratio of RTI rates (or the post-hoc power of fixed sample size trials) are not majorly impacted under NPIs which
are less severe (none, mild and medium NPIs) than a strict lockdown (strong NPI). However, NPIs show a stronger impact
on metrics more relevant for assessing the clinical relevance of the effect such as absolute benefit. This dichotomy shows
the risk that successful trials (even with their primary endpoints being met) still get challenged in risk benefit assessment
during the review of market authorization. Furthermore, we found that a mild NPI scenario already affected the time to recruit
significantly when sticking to eligibility criteria complying with historical data. In summary, our model predictions can help
rationalize and forecast post-COVID-19 trial feasibility. They advocate for gauging absolute and relative benefit metrics as well
as clinical relevance for assessing efficacy hypotheses in trial design and they question eligibility criteria misaligned with the
actual disease burden.

13

Introduction14

The COVID-19 pandemic and consecutive response measures to contain the spread of SARS-CoV-2 in the form of non-15

pharmaceutical interventions (NPIs) have not only changed people’s life and health1 but also the process of developing vaccines16

and potential treatments2. This has led to a rapid pursue of different immunization strategies against the virus3, 4, a surge of17

drug repurposing and the screening of new treatment candidates5, 6.18

Clinical development in non-COVID-19 disease areas, however, has been substantially impaired7. Due to the high number19

of COVID-19 cases during the pandemic in 2020, trial initiation dropped by up to 30 % in the USA8. During the first wave20

of the pandemic, more than 1000 trials were stopped as a consequence9. Social distancing and quarantine measures have21

negatively affected patients participation in clinical trials. The surge in hospitalizations of COVID-19 patients also affected22

personnel’s capacity to conduct trials10 and has led to incomplete or delayed data collection in ongoing trials with foreseeable23

difficulties for patient enrolment and follow-up in upcoming trials. Trialists expect that the collateral impact of COVID-19 on24

clinical trials will be persist for several years11, given that intermittent containment measures are possible beyond the year25
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202512.26

This is especially critical for trials investigating diseases of the pulmonary system. About 10% of all trials conducted in27

Europe in pre-COVID-19 times were on respiratory diseases13, 14. Due to COVID-19 containment measures that intend to28

attenuate SARS-CoV-2 transmission, respiratory disease transmission is altered at the population scale, and/or there might be29

under-reporting of respiratory diseases to healthcare services (see a recent systematic review by Alqahtani et al. (2021)15).30

Recent reports show that seasonal dynamics of common respiratory tract infections (RTIs) have almost vanished during the31

COVID-19 pandemic16–19. In England, overall fewer cases of common cold, flu, and bronchitis have been reported during the32

lockdown20. Hospitalization for acute bronchiolitis in children less than 1 year old saw a significant reduction, on the order of33

70 – 90% comparing 2020 with earlier years21. For COPD (often triggered by viral infections), healthcare professionals in34

Europe have reported fewer cases in community and acute hospital settings22, 23 and a decline in asthma exacerbations has35

been reported as well24. While this decline may be regarded as a positive side-effect of the pandemic, it is only temporary36

and rebounding of the respiratory disease burden can happen25, 26. At the same time, respiratory disease prophylaxis and37

international trials are strongly affected by these drastic changes because the design of clinical trials is usually conceived38

from pre-pandemic settings, e.g. the sample size calculation and the choice of endpoints and eligibility are based on historical39

interventional and observational. Therefore, clinical trial feasibility in respiratory diseases remains an open question in the40

medium term.41

Modeling and simulation might be an approach to address the lack in representativity of historical data if forecasts of42

disease transmission can be joined with clinical trial simulation. For example, simulated clinical trials have provided the43

means to test a multitude of design choices27–30 and became a field gaining attraction throughout regulatory agencies31. The44

COVID-19 pandemic has already transformed the modeling and simulation community. For example, governments rely on45

mathematical – often epidemiological – between-host viral transmission models to predict the evolution of the pandemic and46

to take evidence-based decisions32. On the other hand, viral kinetic modeling, focusing on the patient immunology and viral47

infection resolution, can be used to accelerate drug development33.48

However, to our knowledge, there is currently no available modeling approach that can simulate RTI prophylaxis trials49

under COVID-19 pandemic conditions and that could serve to better inform respiratory disease trials. Based on the applicability50

of viral kinetic models on the population and individual scale (i.e., immunology) for a broad variety of viruses, we hypothesized51

that a knowledge-based mechanistic model as schematized in Figure 1 could be used for in silico RTI prophylaxis trial52

simulation and to forecast trial feasibility. After matching known viral disease burden seasonality, intra- and inter-patient53

variability in RTI resolution and efficacy data, we built a mechanistic model and simulated placebo-controlled in silico trials54

in 1-5 year old pediatric patients with recurrent RTIs (RRTI) treated with the immunomodulator OM-85 (an agent approved55

in several countries for RTI prophylaxis in this population used here as a case study) under 4 different hypotheses of NPI56

intensities and assessed efficacy and benefit metrics as a function of NPI intensity. Subsequently, we explored sample size and57

recruitment considerations as aspects of trial feasibility.58

Results59

Effect of NPIs on RTI disease burden60

Our epidemiological model is based on a compartmental approach describing susceptible, infected, recovered and again61

susceptible (SIRS) individuals and explicitly describes transmission, recovery, and immunity loss rates (Figure 2a, Methods).62

As representative comparator, we used the 5-year average and the 2019-2020 upper and lower RTI (URTI and LRTI) incidence63

from the communicable and respiratory disease report 2019 to 2020 published in the UK by the Royal College of General64

Practitioners (RCGP)34 (points and full lines in Figure 2b). To model NPI, starting at week 12 in 2020, we decreased the65

scaling factor of the viral transmission rate (b0, Supplementary Methods: Between-host SIRS model) by 17.5% to reproduce66

the difference between the unperturbed 5-year average and the perturbed 2019-2020 URTI and LRTI incidence with lockdown.67

Results of the simulations are displayed as dashed lines in Figure 2b. Simulations and data show a similar strong decline of68

the disease incidence with the beginning of the lockdown in the UK during March 2020 (week 10-14)35 while the 2019-202069

disease burden closely follows the 5-year average (as reported in Lacobucci et al. (2020)20). With the adjusted transmission70

rate and otherwise unchanged parameters, the root mean square deviation (RMSD) for the weekly incidence per 100,000 of the71

simulation vs. data are 82 and 96 (unperturbed simulation vs. 5-year average data and perturbed simulation vs. 2019-2020,72

data, respectively), which is smaller than the variability within the observed data before lockdown (RMSD of 102 for the 5-year73

average vs. 2019-2020 data for the time points considered). Furthermore, reproduction of RTI incidence broken down into74

URTIs and LRTIs (Supplementary Figure S1) shows convincing capability to describe the effect of transmission perturbation75

on RTIs. Supported by this agreement, we applied this epidemiological model to modulate the instantaneous probability of76

exposure to RTI-causing viruses in our in silico trials with four different NPI scenarios.77
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Effect of NPIs on efficacy of RTI prophylaxis78

To represent the effect of different NPI scenarios for a 2-year clinical trial (when NPIs is introduced at the end of month 12, as79

an illustrative example), we defined scenarios where the transmission rate is decreased by 5%, 15% and 25% (Figure 3a). We80

quantified the effect of NPIs on the efficacy of RTI prophylaxis by running in silico clinical trials using our mechanistic model81

applied to the oral immunomodulator OM-85 in a pediatric population suffering from recurrent RTIs. For assessing the efficacy82

of a prophylactic treatment absolute and relative metrics have been suggested36, 37 and therefore we report model predictions83

for these metrics (Figure 3, Methods): absolute benefit (AB, difference between rate of RTI in both groups, Figure 3b), event84

rate ratio (ERR, ratio of RTI rates between both groups, Figure 3c), and two-dimensional analysis of rates of RTIs in treated vs.85

untreated patients (Effect Model, Methods: Efficacy analysis, Figure 3d). We define here the RTI rate as the number of RTIs86

counted during the 12-month follow-up period (year 2 of the trial).87

The absolute benefit of OM-85 decreases in parallel to the reduction of the transmission rate which leads to a decrease in88

the number of preventable episodes: no reduction of the transmission rate: 1.53-2.74, 5% reduction: 1.16-1.98, 15% reduction:89

0.60-1.14 and 25% reduction: 0.08-0.46 prevented RTI episodes. Assuming that an AB of 1 prevented RTI episode per year90

would be clinically relevant in a given context (see Discussion), only NPI-induced transmission rate reduction < 15% fulfills91

this criterion.92

The ERR quantifies efficacy based on event rates in the treated group relative to the control group. It is a common metric93

for performing statistical hypothesis testing with negative binomially distributed count data and may also be used for sample94

size estimations. We find that the ERR does not vary considerably in all but the strongest NPI scenario (no reduction of the95

transmission rate: 0.50-0.69, 5% reduction: 0.53-0.70, 15% reduction: 0.51-0.73 and 25% reduction: 0.50-0.87, Figure 3c). In96

consequence, all analyses based on the ERR (i.e., sample size estimations or post-hoc power analyses) are expected to be only97

affected under strong NPI (e.g. strict lockdown).98

To harmonize the interpretation of the different efficacy metrics (see e.g., Tripepi et al.36), we compared the RTI rates in the99

treated group (Rt) vs. RTI rates in the control group (Rc) directly in a two-dimensional analysis (Effect Model, 3d). Because100

Rc is often used to define the risk for RTI, this analysis characterizes the efficacy as a function of the risk. In all scenarios101

with nonzero NPI-induced viral transmission rate reduction in year 2, virtual patients experienced fewer RTIs than in year 1102

(≥5; required by eligibility criterion, no lockdown in year 1). A transmission rate reduction by 5% showed a reduction of 1.1103

RTIs on average (control group RTI rates are 4.0 vs 5.1 with 5% reduction, p<.001, two-tailed Students t-test). Transmission104

rate reduction by 15% and 25% showed reduction of RTI rates of 2.8 and 4.3 RTIs with respect to the non-perturbed scenario105

(control group RTI rate are 2.3 and 0.8 vs. 5.1 with 0% reduction, both p values are <.001).106

We then re-analyzed the efficacy distributions after the 12-month follow-up during the perturbed year 2 in relation to107

thresholds or for assumed clinical relevance (AB and Rc) and statistical significance of the trial (ERR) directly in the x-y plane108

of Figure 3d. We indicate a region matching three conditions (orange area in Figure 3d, lower right quadrant): i) recurrent RTI109

with more than 3 RTIs per year (in real-life clinical trials recurrent RTI is often defined as 3 or more RTIs in the previous year110

and clinical benefit is considered to prevent recurrence of RTI) as well as ii) an absolute benefit of at least 1 RTI per year under111

which significant clinical benefit becomes less evident to demonstrate and iii) a rate reduction of 20% in RTI rate which is a112

typical hypothesis for confirmatory trial design efficacy (that can be demonstrated with reasonable sample size and be clinically113

relevant). The percentage of in silico clinical trials complying with all three criteria is 92.8 %, 0.0 % and 0.0 % for the mild,114

medium, and strong NPI scenarios, respectively compared to 98.2 % when no NPI is applied. We thus regard trials conducted115

as feasible when viral transmission rates are reduced by 5% but not more than 15%, even though they may still meet their116

endpoints (given that patient selection is not impaired in our simulation scenario, see Figure 3a).117

Effect of NPI scenario on recruitment118

We gauged recruitment issues for RTI prophylaxis trials with estimations of the sample size estimated for a hypothesized efficacy119

in a given at-risk population (as a function of NPI strength) and needed power along with a more practical time-to-recruit120

consideration for given eligibility criteria (Figure 3e-f).121

The sample size estimations commonly used in RTI prophylaxis trial designs are based on ERR assuming that RTI count122

data are negative binomially distributed. We have therefore used a sample size estimation algorithm (Methods) using the ERR123

(and negative binomial dispersion coefficient) obtained from Rc and Rt distributions in our in silico trials for a significance level124

of α = 0.025. Our sample size estimations as a function of NPI strength closely follow the trend of the ERR itself (no reduction125

of the transmission rate: 40-79, 5% reduction: 42-71, 15% reduction: 55-89 and 25% reduction: 129-417, Figure 3e). Except126

for strong NPI, those estimates are in line with the unperturbed scenario (NPI do not affect patient selection in this example).127

We estimated the time required to recruit the estimated sample sizes (Figure 3e) if NPIs were started at the beginning of year128

1 (selection year) and by assuming a constant hypothetical screening rate of 1000 patients per year. A slight reduction of the129

transmission rate – as small as 5 % – increases the time to recruit by about 50 % from 0.23-0.45 years to 0.41-0.69 years). The130

medium and strongest NPI scenarios (15% and 25% transmission rate reduction, respectively) lead to infeasible recruitment131
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times (3-4 years and 169-546 years respectively).132

Discussion133

SIRS models are compartmental models which can describe infection prevalence dynamics on the population level without134

explicitly modeling each individual. They can be also used to reproduce periodic seasonality or attenuation of an epidemic,135

for example using time-dependent parametrization. Nonpharmaceutical interventions (NPIs) to help control the COVID-19136

pandemic such as lockdown measures or obligations to wear masks have been imposed by policy makers. More generally,137

behavioral changes such as improved hygiene (e.g. washing hands more frequently), avoiding closed rooms and social distancing138

have been adopted in society. NPIs are assumed to be able to decrease the transmission of the virus between the infected and139

susceptible parts of the population. Applying this mechanistic rationale to the SIRS model, different NPI strengths can then be140

systematically mapped to different transmission-related parameters. The SIRS model’s outcome represents therefore the average141

instantaneous probability density to contract a RTI in the described population under different NPI strength hypotheses. For142

assessing the capabilities to reproduce realistic RTI disease burden under NPI, we ran our epidemiological SIRS model (Figure143

2a) with and without scaling of the viral transmission rate to replicate the (2014-2019) average 5-year URTI and LRTI disease144

burden in the UK versus the 2019-2020 data which captured the effect of the first lockdown through (Figure 2b). Notice that the145

vast majority of RTI are considered to be of viral origin38). We calibrated the SIRS model with heterogeneous viral prevalence146

data in a knowledge driven manner, which limits the degrees of freedom to calibrate the model to the data. Nevertheless, we147

achieved an acceptable agreement (RMSD prediction-data smaller than the 5-year average vs. 2019-2020 RMSD of 102 per148

100,000 in our reference data). This agreement convinced us to use the simulated instantaneous RTI prevalence as modulator149

for the time-dependent instantaneous probability of an individuals exposure to viruses, where each exposure is evaluated by the150

within-host immunological model of RTI in an individual patient. While the use of retrospective epidemiological data about151

incidence rates in the time period of interest may be directly used for the coupling to the within-host model, explicit simulation152

allows to plausibly adjust and extrapolate this information (e.g. to another NPI scenario). As a limitation of the chosen approach,153

feedback from the patient scale back to the population scale (e.g. how immunomodulation can reduce viral shedding and thus154

transmission) is more challenging to implement. Additionally, no data are available to calibrate the OM-85 effect on viral155

shedding or the efficacy under lockdown. Therefore, we needed to assume that both treatment effect and transmission are156

independent factors.157

The central aspect of this work is to determine, rationalize and interpret the possible changes induced by lockdown and158

other NPIs for pandemic containment on respiratory disease trials with emphasis on RTI prophylaxis. A clinical trial has159

two general objectives: first, to demonstrate non-zero efficacy of the interventional strategy, a binary question with a binary160

answer given by a statistical test; second, to estimate the size of the clinical benefit for benefit-risk assessment. Well-designed161

trials fulfil both objectives through characterizing the efficacy with a quantitative measure. Not always, however, are common162

efficacy measures equally suitable for statistical testing and estimation of the clinical effect size. In recurrent RTIs, the event163

rates ratio (ERR) is often used for statistical hypothesis testing as this measure applies to negative binomially distributed count164

data39, 40. Nevertheless, a measured treatment efficacy that is relative to the control group event rate, is at-risk of incompletely165

representing the clinical benefit, in case of low event rate - as in times of NPIs to mitigate the COVID-19 pandemic. We166

therefore ran in silico clinical trials (based on the SIRS model, the within-host immunological model of RTI in an individual167

patient, virtual population and a simulation protocol resembling pediatric OM-85 trials) reproducing existing clinical efficacy168

data of OM-85 in a pediatric population suffering from recurrent RTI. To balance the interpretation for statistical significance169

versus clinical benefit considerations of these in silico trials we applied different efficacy metrics (AB and ERR) and reconciled170

them in a two-dimensional analysis of treated vs. untreated rates (termed Effect Model, see Methods).171

Sample size estimation is of crucial importance for planning clinical trials. For this, hypotheses on expected efficacy and172

chosen statistical power to detect it are needed and these may have to be adapted to the current pandemic context. Second, it is173

important to consider how much the efficacy in a trial can differ from an efficacy hypothesis used for the planning, especially174

when perturbations arise after the trial has been planned or when sample size estimates based on historical data need to be175

used. Here, the post-hoc power obtained from the statistical analysis of the trial outcome might be perturbed under NPI. The176

analysis of the NPI-dependent efficacy of OM-85 for RTI prophylaxis revealed that the ERR remains unchanged over a broad177

range of NPI scenarios. Because ERR is used for statistical testing and sample size calculations, both the estimated sample size178

and the post-hoc power, are not substantially affected unless strong NPIs, such as strict lockdown, are applied. In such case,179

however, the post-hoc power of trials may be reduced for a given sample size and consequently trialists should consider an180

adapted efficacy scenario for obtaining more realistic estimates.181

The situation is different for metrics of the clinical benefit which assess the benefit-risk ratio. Depending on the exact182

context and affected population, the definition of clinical relevance may vary. For example, prophylaxis of few LRTI episodes183

in neonates (often associated with inception of asthma) will be clinically relevant compared to prophylaxis of a much higher184

number of URTIs needed for clinical relevance in pre-school children, reflecting the different effect on patients lives and/or185
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long-term consequences. First, children frequently suffer from RTIs (especially URTIs) and 3 RTI episodes per year can be186

considered a normal physiological behavior41. Thus, prevention of recurrence (>3) of RTIs (of which most are URTIs) appears187

to be clinically relevant, however, our analysis has shown that under medium and strong NPI, the annual control group RTI rate188

is already smaller than 3, even though it was fulfilling the definition of recurrence in the unperturbed year of patient enrollment.189

Second, there might be a threshold for the number of prevented events for an individual (or at the population scale) which190

becomes relevant from a clinical or health economic standpoint. One may assume that e.g., one prevented URTI could be191

regarded as relevant, but we could not identify any guidance on that topic. Here again, we found that trials under medium and192

strong NPI scenarios do not fulfil our criterion of AB > 1 prevented RTI that could be indicative of a true clinical benefit.193

The Effect Model methodology42, 43, which may be obtained from meta-analyzing existing clinical data or simulation, is194

a tool to rationalize control vs. treated group event rates directly. Consequently both clinically meaningful and statistically195

demonstrable efficacy can be indicated in one analysis. In the optimal setting, the metrics used to demonstrate the efficacy with196

a statistical test go hand in hand with the size of the effect relevant for the benefit-risk assessment. This predictivity, however,197

seems to be weak under pandemic conditions given the ascertained dichotomy of NPI on AB and ERR. Under the medium NPI198

scenario, a substantial portion of trials with positive primary endpoint evaluation could be challenged for clinical relevance of199

the results and, in fact, clinical benefit-related metrics seem to be the most restrictive criteria when used to assess trial feasibility200

a priori. We concluded from this analysis that clinical studies need to anticipate potentially weak representativity of traditional201

or practical endpoints for benefit-risk assessment and that either more relevant endpoints need to be chosen or feasibility studies202

(including computational studies such as trial simulation) should be conducted for potential trial design adjustments.203

Our simulation setup for this analysis (year 1: patient selection, year 2: treatment and follow-up period) reflects RTI204

prophylaxis trials whose conduction takes place during the current pandemic. Therefore, we concluded that the benefit-205

risk assessment of these trials should account for the currently reduced disease burden, and that supporting data (such as206

observational studies and models) should be used to demonstrate that a low number of prevented episodes under pandemic207

conditions does not necessarily mean that under normal conditions equally few episodes will be prevented.208

Recruitment issues are probably the earliest and a very important indicator for difficulties to conduct clinical trials in the209

current COVID-19 pandemic era. For respiratory disease trials, such issues may be notably due to large sample size estimates210

and fewer eligible patients. NPI introduced during the follow-up period, but not during the observation period, merely scales the211

number of prevented events in year 2 for an already recruited population (NPI not present in year 1). Therefore, the included212

at-risk population (nor their immunological characteristics) are not altered in such scenarios as compared to the non-perturbed213

one. As the ERR used for statistical efficacy testing is a metric relative to the rate of events in the control group, it is robust214

towards fluctuations in the overall disease burden by design. Therefore, our analysis of estimated sample size for NPI-corrected215

efficacy (based on event rate ratios) did not show considerably increased recruitment needs (Figure 3e). Assuming that (e.g. for216

a trial with a fixed budget) an enrollment of 200 eligible patients is feasible, demonstration of efficacy in all but the strongest217

(25% reduction) NPI scenario, being introduced at the beginning of year 2, remains possible with the sample size planned under218

no-NPI scenario. We thus conclude that estimated large sample sizes and the associated issues for recruiting high numbers of219

patients are currently not a major difficulty for trials which have started and completed enrolment before 2020.220

By considering NPI during the observational period in year 1 of a 2-year trial, we can highlight the collateral effects of221

COVID-19 during patient recruitment which are caused by a reduction of the size of the pool of eligible patients. At-risk222

populations for a given age-range are included based on their history during a reference period (e.g., number of RTI episodes223

during the preceding 12 months) where risk for RTI is then defined as the average number of infections per average number of224

viral exposures (assumed to be a constant in that time period). In practice, in trials targeting patients aged 1 to 6 years with225

recurring RTI, patients with at least four to six RTI are included while the general populations suffer from e.g., only three226

episodes on average during the same time. This way of enriching the population with individuals at elevated risk, however,227

depends of the assumption that the virus exposure is a constant and that consequently the number of RTIs in the general228

population is also a constant. A reduction of the overall disease burden (e.g. by NPI) however, decreases the number of229

exposures and average number of RTIs in general. Consequently, in our simulations, small reductions of viral transmission230

already led to a reduced number of virtual patients who comply with any fixed definition of recurrent RTIs. We could translate231

this effect into a metric for recruitment difficulties, by considering the eligible fraction of the virtual population compared to the232

general virtual population and a defined fixed screening rate (Figure 3f). Under mild NPIs, recruitment time already increased233

by approximately 50%, which questions the feasibility to recruit enough patients in time especially for trials with a total234

planned duration of 6 to 12 months. Estimated recruitment times of 3-4 years for a medium NPI scenario significantly exceed235

the 12 months follow-up time of most trials and can thus be considered infeasible. As these analyses do not reflect any further236

behavioral changes and psychological effects (e.g. fear to contract COVID-19) contributing to barriers to participate in clinical237

trials, the presented analysis represents an optimistic scenario. Further, we did not yet account for year-to-year fluctuations in238

the transmission of respiratory viruses that could add to the perturbation of NPIs (or cancel it out). Nevertheless, as it is the only239

scenario where recruitment time does not exceed a 12-months follow-up, the mild NPI scenario is probably the only reasonable240
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condition compatible with recruiting enough patients for RTI prophylaxis trials under real-world conditions. Considering241

that during the first UK lockdown, transmission reduction by 17.5% best reproduces the disease burden data, 5% reduction242

as in the mild NPI scenario is a plausible assumption for a long-term effect on viral transmission (e.g., masks, a threshold243

number of people in events, hand sanitizers in public places). To conclude, the selection of patients with recurrent RTI based244

on pre-pandemic historical data would only include a very small fraction of patients, thus, we suggest considering eligibility245

criteria tailored to the current incidence of RTI at a given time to avoid misalignment of targeted and included population. But246

then, selecting the right at-risk population could become more challenging in turn.247

Overall, we present here a mechanistic in silico clinical trial approach in RTI prophylaxis which can incorporate available248

disease burden data to output efficacy metrics relevant for assessing clinical benefits and estimating sample sizes in perturbed249

scenarios (or evaluating impact on the post-hoc power of a trial for a given sample size) as well as recruitment times. Mechanistic250

description of the transmission of respiratory viruses can thereby translate lockdown and social distancing measures into a251

decreased rate of RTI events in patients, and into a shift of the risk-dependent efficacy for OM-85 treatment in clinical trial252

simulations. We highlighted that statistical significance of efficacy may be less predictive of the clinical benefit because there253

are fewer events to prevent (due to collateral impact of COVID-19 containment), and consequently benefit-risk assessment254

based on current RTI-prophylaxis trials might be difficult to establish. Recruitment of patients can be impeded as long as255

intermittent lockdown or perturbations of seasonal virus transmission persist - in particular when trialists rely on pre-pandemic256

historical data for trial design. Several open questions remain: What are the additional adjustments required for trial design to257

account for the effect of the pandemic? How does the altered and shifted seasonality of respiratory viruses affect follow-up258

duration? Is there a potential benefit of using inclusion criteria adapted to pandemic times (such as incidence matching) and do259

those adaptations risk to confound efficacy? What happens if the forecast of the disease burden turns out to be wrong?260

The limitations of traditional clinical trial design methodology and the proof of concept established in this Modeling &261

Simulation study advocates for the use of mechanistic computational models to address these questions in detail and to support262

go/no-go decisions in clinical development for a wide range of RTI prophylaxis-oriented treatments. Furthermore, when trials263

are deemed infeasible, the models could harness RTI disease burden monitoring (and prediction of COVID-19 and its associated264

containment measures) to indicate the time point when delayed or stopped trials can be restarted.265

Methods266

Modeling approach267

The in silico clinical trials in this work are simulations performed with system models using ordinary differential equations268

(ODEs) embedded in a virtual population approach where parameters are described by statistical distributions rather than scalar269

values, in order to represent different sources of variability. Each virtual patient corresponds to a vector of parameter values,270

drawn from the corresponding statistical distribution. Similar to a real clinical trial protocol, an in silico study protocol defines271

the use of the model, virtual population, simulation scenarios and statistical analyses to answer a question of interest.272

Multiscale RTI disease and treatment model273

The core element of the computational approach is the coupling of a within-host mechanistic disease model, representing the274

viral and immune dynamics, with a between-host disease burden model, representing the viral dynamics at the population-scale275

with a Susceptible, Infectious, Recovered, Susceptible (SIRS) framework, to obtain a multiscale RTI and immunomodulation276

model (Figure 1). The immunological and the SIRS models are both ODEs-based deterministic models (equations and277

parameters provided in the Supplementary Methods).278

Immunological within-host viral infection model279

The immunological model, implementing lytic versus nonlytic immune mechanisms during viral infection, was designed based280

on Wodarz et al. (2002)44 to simulate the within-host dynamics in response to respiratory virus exposure (co-infections are281

not accounted) (bottom part of Figure 1, Supplementary Methods, Supplementary Figure S2, Supplementary Table S1). To282

translate individual occurrences of RTI events for a given patient over time into the distributions of RTI rates in the population,283

inter- and intra-individual variability need to be taken into account. For this, stochastic processes determine time points of viral284

exposure and current state of antiviral defenses. A patient-specific state of antiviral defenses (immuno-competence) is therefore285

distributed in the population and a layer of random fluctuations is added around each individual value. Both distributions286

were calibrated so that the RTI distribution in the virtual population represents a reference RTI prevalence distribution data set287

(obtained from a reference birth cohort41). Describing age as a covariate for this distribution required inclusion of a maturation288

term into the immune effector functions to reproduce the higher risk for RTI in young children due the still developing immune289

system (Supplementary Methods, Supplementary Figure S3).290

Between-host viral infection and disease burden model291

RTI disease burden was simulated using a SIRS model (described in Supplementary Methods: Between-host SIRS model)292
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inspired by general literature on such models45. This SIRS model accounts for the seasonality of infection in an averaged293

manner in a given population; it is based on time-dependent transmission rates of selected viruses reproducing the seasonality294

of upper and lower RTIs attributed to RSV, RV and Influenza viruses (Supplementary Figure S4, Supplementary Table S2). We295

first ran the epidemiological model alone with NPI-adjusted transmission rate (reduction of mean transmission rates b0 by 0%,296

5%, 15%, 25%) and compared it with data digitized from the communicable and respiratory disease reports from 2019 to 2020297

published in the UK by the Royal College of General Practitioners (RCGP)34. The outcome of the SIRS model was then used298

to provide the data for the time-dependent instantaneous prevalence of RTI for the rest of the model.299

Treatment model300

To describe the immuno-modulating effect of OM-85 in RTI prophylaxis, a physiologically based pharmacokinetics and301

pharmacodynamics (PBPK/PD) model is linked to the immunological model through ingress in the respiratory tract of302

reprogrammed type-1 innate memory like cells46, regulatory T-cells47–49, and polyclonal IgA producing plasma cells50, 51
303

originating from the intestinal Peyer’s patches (Supplementary Figure S5) according to the current understanding of OM-85’s304

mechanism of action. Implementation of administration, distribution, metabolism and excretion follows common published305

approaches (Supplementary Methods: PBPK/PD model of OM-85 effect). In absence of OM-85 PK data, the unknown PBPK306

drug-specific parameters were calibrated using rodent PK data of a similar product (OM-89)52, 53 and were allometrically scaled307

to human physiology (Supplementary Figure S6, Supplementary Table S3). Unknown PD-relevant parameters were calibrated308

and checked using two sets of human PD response data under different treatment regimens (Supplementary Figure S7-8,309

Supplementary Table S4). Calibration of remaining parameters that quantify the size of the efficacy of OM-85 was performed310

based on the meta-analysis of Yin et al.54 (Supplementary Methods: Calibration of OM-85 clinical efficacy, Supplementary311

Figure S10-11).312

In silico clinical trial simulations313

We simulated placebo-controlled parallel two-arm trials of RTI prevention with OM-85 in pediatric subjects with 24 months314

duration (observational period of 1 year followed by a follow-up period of 1 year composed of 3 consecutive months of315

treatment followed by 9 without any treatment). A virtual population of more than 100,000 virtual patients was generated. The316

entire virtual population was screened during the observational period in the first year of the trial. After the first year, eligibility317

criteria were evaluated and randomization was performed. In line with the range of annual RTI episodes typically defining318

recurrent RTIs (3-6), children that experienced at least 5 RTIs were included into the follow-up period. Included virtual subjects319

were randomly allocated with equal weight to the interventional and control arms. During the first 3 months of the follow-up320

period, OM-85 was administered every day during the first 10 consecutive days of each month, in line with the current approved321

dosing regimen of OM-85 in the prevention of RTIs. The primary outcome was the number of RTIs during one-year follow-up,322

which was assessed at the end of trial. 600 in silico clinical trials were simulated for each of the four different NPI scenarios323

(reduction of the transmission rate by 0, 5%, 15%, 25%) by randomly sampling 50 subjects per arm from the screened virtual324

population (studies meta analyzed by Yin et al.54 have enrolled in average 45.4 patients per arm).325

Mechanistic uncertainty analysis326

To assess the effect of main drivers of uncertainty represented in the model (i.e., treatment efficacy related parameters) we327

simulated different mechanistic scenarios in parallel throughout the modeling procedure and analyses. We used 12 different328

conditions (testing different immunogenic hypotheses on the effect of OM-85, (Supplementary Methods:Mechanistic uncertainty329

management) for each of the 4 NPI scenarios. We pooled the results, as these variations of OM-85 immunogenicity may indeed330

contribute to the overall outcome (e.g. efficacy) variability.331

Efficacy analysis332

The Effect Model approach42, 55 is a tool which relates the rates (or risks) of events without treatment (Rc) and with (Rt), as333

supported by empirical evidence, simulations and theoretical considerations56–59. While simulations can be conducted for the334

same patient in different arms in in silico trials and yield paired observations, the Effect Model can also be reconciled with335

meta-analyses56, 60. Here we have used a similar approach which compares RTI rates in a series of individual in silico clinical336

trials, thus not reporting individual, but risk-stratified group metrics. As efficacy metrics, we consider absolute benefit (AB) and337

the event rate ratio (ERR). Average ERR and AB were assessed at one-year follow up. AB determined from a single in silico338

trial is the arithmetic difference between mean RTI rate in the control group (Rc) and in the treatment group (Rt). ERR refers to339

the ratio Rt/Rc. Distribution of the ERR and AB per scenario contain pooled results for different mechanistic conditions and340

visualized as maximum interquartile range (defined as the difference between maximum 75th percentile and minimum 25th
341

percentile across mechanistic conditions). AB and ERR were analyzed with a paired t-test/ANOVA with α level set at .05.342
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Sample size and recruitment estimation343

Sample size calculations for primary endpoint analyses of RTI prophylaxis trials require an adapted statistical method for344

overdispersed count data. We performed generalized linear regression analysis with negative binomial distributions (mean and345

dispersion parameter, glm function of the R package MASS) for the subsequent use of these parameters in the sample size346

calculation method proposed by Zhu et al. (2013)61. Calculations employed the power.nb.test function of the MKmisc package347

given the ratio of rates in both trial arms, average dispersion parameter, an α of 0.025 and correction for average study duration348

(e.g. due to dropout κ=0.75). Based on sample size calculations and the fraction of the entire Virtual Population eligible for349

inclusion, time to recruitment was calculated, assuming that in a typical study in respiratory diseases a screening rate of 1000350

patients per year can be achieved per center.351
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Figure 1. Multi-scale in silico approach to incorporate within-host and between-host respiratory tract infection (RTI)
model as well as a treatment model with bacterial lysate OM-85. The model is used to assess feasibility of clinical trials
in prophylaxis of RTIs during COVID-19 pandemic. The transmission of the major respiratory pathogens RSV, rhinovirus
and influenza type A and B viruses is given by a seasonal SIRS model (between-host model). This model is interfaced to a
within-host immunology model via a time-dependent instantaneous prevalence of infection triggering or not viral exposure
at randomly chosen time points. Individual patients are identified by their age and an immuno-competence meta-parameter
impacting the immune response from which infections are included or omitted from the cumulative number of infections
depending on viremia. To prevent RTIs, virtual patients are treated with the bacterial lysate OM-85 which acts through a
pro-type I immunomodulation mechanism of action and which is described by a physiologically based pharmacokinetics
and pharmacodynamics approach (treatment model) with downstream effects in the immunological model. The impact of
COVID-19 assiocated non-pharmaceutical interventions (NPIs) are simulated by scaling of the transmission term in the
between-host part of the model. Figure created with BioRender.com.
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Figure 2. Between-host model based on SIRS framework allows to reproduce RTI incidence during non-
pharmaceutical interventions (NPIs) to mitigate COVID-19 pandemic. a) Schematic of implemented SIRS model where
NPI can be modelled by a decrease of the transmission rate. b) Comparison of model predictions (dashed lines) and data
(solid lines) from RCGP34 for RTI weekly incidence (per 100,000 all ages) for the 5 years average (green) and 2020 (orange).
Lockdown was started on the 23th of March 2020 in the UK. This date was used to implement the lockdwon in the simulations
with a decrease of 17.5% of the transmission rate.
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Figure 3. Results of in silico clinical trials in prophylaxis of respiratory tract infections (RTIs) with four scenarios of
non-pharmaceutical interventions (NPIs) against COVID-19 pandemic with increasing strength (absent, mild, medium
and strong) modelled by a decrease of the transmission rate parameter (no reduction, -5%, -15% and -25%, respec-
tively). For all scenarios, the simulations are run for 2 years. Year 1 is the selection year during which patients are screened
and possibly included in an in silico trial. There is no NPI during year 1. The NPIs are started at the beginning of year 2 as well
as the treatment (10 daily administrations of 3.5 mg of OM-85 from the beginning of the month for 3 consecutive months).
RTIs are counted for the complete duration of year 2. a) Weekly incidence of RTIs per 100,000 is plotted for two years of
simulations for the four NPI scenarios. NPI is started at the beginning of year 2. b) Distribution (maximum IQR) of absolute
benefit is plotted for the four NPI scenarios. Absolute benefit can be interpreted as the number of prevented RTIs in year 2 when
comparing the treated and the control group. Maximum IQR is defined as the difference between maximum 75th percentile and
minimum 25th percentile across mechanistic conditions. c) Distribution (maximum IQR) of event RTI rate ratio (ERR, treated
over control group) is plotted for the four NPI scenarios. d) Effect Model plot for the four NPI scenarios. Each in silico clinical
trial is plotted (cross) with the number of RTIs in the control group as x coordinate and the number of RTIs in the treated group
as y coordinate. The region of clinically relevant efficacy is indicated in orange. It is defined by at least 1 prevented RTI in
absolute benefit (dashed-dotted line), at least 20% reduction in number of RTIs (solid line) and least 3 RTIs in the control
group. By that criteria, only trials with absent or mild NPI scenario are deemed feasible. e) Distribution (maximum IQR) of
sample sizes per arm required to show efficacy of OM-85 treatment in reducing number of RTIs for the four NPI scenarios. f)
Distribution (maximum IQR) of estimated patient screening times under the four NPI scenarios by assuming an hypothetical
screening rate of 1,000 patients per year and by taking year 2 as the selection year (without treatment).
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