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Background: Genetic influences on body mass index (BMI) appear to markedly differ across life, yet 

existing research is equivocal and limited by a paucity of life course data. Better understanding changes 

across life in the determinants of BMI may inform etiology, the timing of preventative efforts, and the 

interpretation of increasing number of studies utilizing genetically-informed designs to study BMI. We 

thus used a birth cohort study to investigate differences in association and explained variance in the 

polygenic prediction of BMI from infancy to old age (2-69 years) in a single sample. A secondary aim 

was to investigate how a key purported environmental influence on BMI (childhood socioeconomic 

position) differed across life, and whether it operated independently and/or multiplicatively of genetic 

influences.  

Methods: Data were from up to 2677 participants in the MRC National Survey of Health and 

Development, with measured weight and height from infancy to old age (12 timepoints from 2-69 years) 

and genetic data (obtained from blood samples at 53 years). We derived three polygenic indices derived 

from GWAS of a) adult BMI, b) recalled childhood body size, and c) childhood-adolescence BMI. We 

investigated associations of each polygenic index and BMI at each age and compared in terms of 

absolute effect size (β) and explained variance (R2). We used linear and quantile regression models, and 

finally investigated the additive or multiplicative role of childhood socioeconomic position. 

Results: Mean BMI and its variance increased across adulthood. For polygenic liability to higher adult 

BMI (Khera et al), the trajectories of effect size (β) and explained variance (R2) diverged: explained 

variance peaked in early adulthood and plateaued thereafter, while absolute effect sizes increased 

throughout adulthood. For polygenic liability to higher childhood BMI, explained variance was largest 

in adolescence and early adulthood; effect sizes were marginally smaller in absolute terms from 

adolescence to adulthood. All polygenic indices were related to higher variation in BMI; effect sizes 

were sizably larger at the upper end of the BMI distribution. Socioeconomic and polygenic risk for 

higher BMI across life appear to operate additively; we found little evidence of interaction. 

Conclusion: Our findings highlight the likely independent influences of polygenic and socioeconomic 

factors on BMI across life. Despite sizable associations, the BMI variance explained by each plateaued 

or declined across adulthood while BMI variance itself increased. This is suggestive of the increasing 

importance of chance (‘non-shared’) environmental influences on BMI across life.   

 

Keywords: BMI; life course; polygenic indices; socioeconomic inequalities; quantile regression. 
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Introduction 

Body mass index (BMI) is an important modifiable determinant of population health—its prevalence 

markedly increased from the 1980s onwards, and remains persistently high [1]. This drastic increase 

demonstrates the importance of environmental influences on BMI—population genetics do not change 

over such a short time span. Continuing evidence, however, has emerged on the link between genetic 

propensities and the level of BMI. For example, twin study estimates of heritability of BMI range from 

47% to 90% [2] – with heritability typically highest in childhood. Polygenic indices in unrelated 

individuals predict approximately 8.5% of the variance in BMI [3].  

Better understanding changes across life in the genetic determinants of BMI may inform etiology, the 

timing of preventative or weight loss efforts, and the interpretation of increasing number of studies 

utilizing genetically-informed designs to study BMI as either an exposure or outcome of interest [4–6]. 

Studies investigating genetic variation in the gene FTO—the first variant reliably linked to higher 

BMI—have repeatedly found that effect sizes are largest in earlier adulthood [7]. However, BMI is a 

complex and polygenic trait [3,5], necessitating a need to investigate how polygenic predictors of BMI 

differ across life.     

Recent studies have used polygenic indices (also referred to as polygenic scores) to investigate 

associations with BMI at different life stages[4]. However, interpretation is hampered by a paucity of 

data across life on the same individuals. While samples of multiple birth cohorts can be used to 

approximate how associations differ by age, they may be confounded by the sizable cohort differences 

in links between polygenic indices and BMI [8]. Further, multiple polygenic indices [9] now exist for 

both childhood and adulthood BMI. Assessment of their performance in predicting phenotypic data 

requires replication using life course data to assess their use as plausible instrumental variables in 

Mendelian randomization analysis [3,5]. 

Other gaps in evidence motivate the need for future work. First, increases in BMI across life are marked 

by increases in its mean and its variance [10]. Conventional analytical approaches such as linear 

regression solely investigate mean differences. There is suggestive evidence that influence of genetic 

factors is strongest amongst those already higher in weight where health risks are greatest [11,12], yet 

this requires replication and formally testing.  

Second, it is unclear how genetic and socioeconomic position (SEP) [13–15] influences on BMI operate 

together. While they may operate independently, it has been suggested that there may be multiplicative 

effects [16–18], such that genetic influences are largest amongst those in disadvantaged SEP whom 

have fewer resources available to protect against weight gain or to initiate/maintain weight loss. 

Alternatively, it has been hypothesized that genetic factors may confound associations between SEP 
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and BMI [19] (or health outcomes more broadly [20]), or that in contrast to genetic influences shared 

environmental factors (such as of SEP) influence BMI in childhood but not adolescence  [21]. 

We sought to address the above gaps in evidence using life course BMI data from a single national birth 

cohort study—this study, initiated in 1946, contains BMI data from infancy to old age. We used multiple 

polygenic indices, thought to indicate liability for either childhood or adult BMI. We investigated 

change across age in effect size and explained variance since each is likely to be informative; we also 

investigated the additive/multiplicative role of SEP and polygenic indices for BMI, and utilized quantile 

regression analysis to investigate associations across the BMI distribution. 

Methods 

Participants 

The  MRC National Survey of Health and Development [NSHD] (also known as the 1946 British birth 

cohort) is a longitudinal birth cohort study comprised of 5362 singleton births in mainland Britain born 

in a single week during March 1946 [22]. The cohort has been followed-up repeatedly across life, with 

blood samples obtained at 53 years and subsequently used for genotyping of common genome-wide 

genetic variation. DNA was extracted from whole blood samples obtained at 53 years, and purified 

using the Puregene DNA Isolation Kit (Flowgen, Leicestershire, UK) according to the manufacturer's 

protocol. The study has received ethical approval from the North Thames Multicentre Research Ethics 

Committee (reference 98/2/121 and 07/H1008/168) and informed consent was provided.  

Measures 

BMI 

BMI (kg/m2) was derived from weight and height at 12 timepoints from 2-69 years of age (see Figure 

1 for all ages); these were measured by health visitors, doctors, or nurses at all ages except 20 and 26 

years where only self-reported data were available.  

Polygenic indices 

A total of 2851 individuals were genotyped using the DrugDev microarray (assaying 476,728 SNPs) 

platform. Quality control (QC) analyses performed using PLINK 1.9 [23]. Sample QC removed data on 

individuals with call rates <95%, extreme heterozygosity (µ ± 3 standard deviations), sex mismatches, 

relatedness and duplicates ( >2), and principal component analysis (PCA) outliers. All participants were 

of European ancestry. Genotyped SNPs were excluded on the basis of the following parameters: call 

rate<95%, MAF<0.01 or HWE P<1e-4. The genotyped SNPs were used to impute information on 

missing common variants using the Haplotype Reference Consortium v1.1 reference panel, accessed 

via the Michigan Imputation Server [24]. QC of imputed data led to SNPs being excluded with INFO 

score<0.3 and MAF<0.005. Only biallelic SNPs were retained. Following these steps, data for 2794 

individuals and 8,755,070 variants were retained for polygenic score calculations.  
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Three previously derived BMI-related polygenic scores were calculated for the NSHD participants:  

I. An adult BMI score derived using UK Biobank data (N=119, 951), then tested in 4 cohorts 

from birth to adulthood; N=306,135 from Khera et al (2019) [3]. This yielded a score 

composed of 2,100,302 SNPs. 

II. A score for retrospectively reported childhood body size, derived from adults in UK 

Biobank self-reporting relative weight perception at age 10 (N=453,169) by Richardson et 

al (2020) [5].  This score consisted of 295 SNPs. 

III. A score for directly measured childhood BMI score derived from a meta-analysis of 41 

childhood GWAS samples between ages 2 and 10 (N=61,111) from Vogelezang et al 

(2020) [6]. This yielded 25 SNPs for the score. 

SNP data and weights for the adult BMI score and retrospective childhood body size score were 

downloaded from the PGS Catalog using trait PGS IDs PGS000027 and PGS000716, respectively [25]. 

Equivalent data for the direct childhood scores were extracted from the relevant publication and 

reformatted manually. To avoid strand ambiguities in each score, we removed palindromic SNPs from 

the two childhood scores (palindromic SNPs were already excluded by the authors of the adulthood 

BMI polygenic score prior to derivation). The three scores were then calculated from NSHD genotypes 

using Plink 2.0 [26], assuming additive genetic effects. Scores were based on 2,083,940 SNPs (99.2%) 

available from the original adult BMI score, 234 SNPs (79.3%) of the retrospective childhood body size 

score, and 21 SNPs (84.0%) of the direct childhood BMI score. 

Socioeconomic position 

To examine the association between BMI and childhood SEP and potential gene environment 

interactions between SEP and polygenic indices, we measured SEP as paternal occupational class at 4 

years (Registrar General’s classification [RGSC] – I professional, II intermediate, III skilled non-

manual, III skilled manual, IV semi-skilled, and V unskilled). To simplify interpretation, we converted 

this variable to a ridit score such that the resulting quantity in regression models shows the difference 

in BMI between lowest and highest SEP. To minimize missing data, we used information at 11 years 

for individuals missing SEP at age 4 (n = 125). As a robustness check, we alternatively measure SEP 

using maternal age at leaving education (10-23), again converted to a ridit score. 

Statistical analysis 

First, we estimated the association of each polygenic index with BMI separately at each age (adjusted 

for sex) using linear regression. From these regressions, we extracted coefficients and incremental R2 

values to examine the size of the association and the variance explained by age. We investigated 

associations on the absolute (kg/m2) and relative (percentage, percentile rank and standardized score) 

scales separately, since each may be informative; the absolute scale may aid comparability of effect 

sizes across adulthood as a 1 unit increase in BMI may have equivalent health risk; the relative scale 
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may aid comparability across childhood and adulthood given sizable differences in mean BMI and its 

variation across age.   

Second, we used quantile regression [27] to examine whether the association of BMI with polygenic 

indices differed across the distribution of BMI. Unlike linear regression, which estimates differences in 

the conditional mean of a distribution, quantile regression estimates differences in conditional quantiles 

of a distribution. Repeated across different quantiles, the method allowed us to examine differences in 

the shape (variability) and location (central tendency) of a distribution according to the values of an 

independent variable. We estimated quantile regressions at each decile (10th, 20th, …, 90th) for each 

polygenic index.  

Third, we tested whether the relationship between SEP, polygenic indices and BMI was additive or 

multiplicative by regressing BMI on SEP, by including SEP × polygenic index interaction terms. We 

again repeated these regressions for absolute and standardized BMI indices, each polygenic index, and 

each measure of SEP (father’s social class and mother’s education).  

Data cleaning and analysis was conducted using R version 4.1.0 [28]. We focused interpretation on 

estimates and measures of precision (95% CI) rather than binary interpretation of p-values [29]. 

Sensitivity analyses 

We first tested whether results differed by sex by conducting sex-stratified analyses. We then 

investigated if the associations were driven by weight and/or height – BMI (kg/m2) is a ratio measure 

and thus could reflect associations with height, particularly at younger ages. To account for this, we 

estimated separate associations with weight, height, and BMI; we also calculated a corrected weight-

for-height index, dividing weight (kg) by height raised to a power that reduced the correlation between 

height and the index to zero at each age.     

Our main analyses were conducted using those with observed BMI data at each age. Due to loss to 

follow-up, sample sizes differ across age. To explore whether this influenced our results, we 1) 

investigated whether polygenic indices were related to whether the participant had observed BMI at a 

given age; and 2) repeated analyses in samples with valid data for all follow-ups from a given age up 

to age 69, iterating across follow-ups (e.g., those followed from age 2 had complete case data at all 

timepoints, while those followed-up from 53 years had valid data from 53-69 years). 

Results 

Descriptive statistics 

From age 7 onwards, BMI indices increased and exhibited more variability (higher SD); see Figure 1. 

All polygenic indices were moderately-strongly positively correlated. The adult index was correlated at 

r = 0.38-0.39 with both childhood indices, and childhood indices were correlated at 0.56 with each 
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other. There was some evidence that polygenic indices differed by social class, indicating social 

patterning of genetic risk (Figure S1). Notably, participants from professional backgrounds have 

approximately 0.2 SD lower polygenic index values (for all indices) relative to sample averages. 

FIGURE 1 HERE 

Polygenic index (adulthood) and BMI 

The polygenic index for adult BMI derived from Khera et al. [3] was positively associated with BMI at 

all ages; Figure 2, top panel. The size of the association was small in infancy and childhood and 

increased in strength from early adolescence (age 11) to older adulthood (age 69). Effects sizes were 

largest at age 53 and remained similarly large at ages 63 and 69. A 1 SD increase in polygenic index 

was associated with 1.46 (95% CI: 1.26, 1.67) kg/m2 higher BMI at age 69.  Findings were similar when 

examined in terms of percentage BMI (log transformed*100) differences (Figure S2). However, when 

examined in terms of standardized BMI differences (i.e., relative to the mean and SD at each age), effect 

sizes remained similar from ages 15-69 (Figure S2). This was likely due to the increasing variance of 

BMI across time, such that larger absolute (kg/m2) effects did not equate to bigger differences relative 

to the sample SD. Similarly, the incremental variance (R2) explained by the polygenic index peaked at 

age 26 and were slightly weaker thereafter—from 0.1 (95% CI: 0.08, 0.12) at age 26 to 0.08 (95% CI: 

0.06, 0.1) at age 69 (Figure 2). These figure in mid-later adulthood are similar to those found by Khera 

et al (~ 8.5%). 

FIGURE 2 HERE 

The results of quantile regression analyses are shown in Figure 3. (Results with confidence intervals 

shown in Figure S3.) Associations between the polygenic index and BMI were progressively stronger 

at higher quantiles, suggesting that a higher polygenic index was associated with higher variability in 

BMI. For example, at age 69, the association between polygenic index and BMI was over twice as large 

at the 90th percentile (β = 1.93; 95% CI = 1.57, 2.30) as the 10th percentile (β = 0.87; 95% CI = 0.69, 

1.20). 

FIGURE 3 HERE 

Polygenic index (childhood) and BMI 

Results using the Richardson et al. [5] and Vogelezang et al. [6]  polygenic indices for recalled 

childhood body size, and measured childhood BMI respectively are shown in Figure 2 (bottom two 

panels) and Figures S4-S5 (quantile regression results). The association between polygenic indices and 

BMI was largest in adolescence and early to mid-adulthood for both indices; associations were weak 

from ages 2-7, increased in size at age 11, and were marginally smaller at later ages (Figure 2). When 

examined on the relative scale (as percentage or z-score differences in BMI), the peak in effect size was 

more clearly evident from 11-20 (Figure S2), with declines in association thereafter corresponding to 
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the increased sample BMI mean and SD with age. Similarly explained variance was highest in later 

adolescence to early adulthood (ages 11-20), and declined in mid to later adulthood (Figure 2). Overall, 

these polygenic indices explained less than 6% of variance in BMI at any age, which was less than that 

obtained when using the Khera et al. [3] polygenic index. Associations between the polygenic indices 

and BMI were progressively stronger at higher quantiles, particularly in adolescence and young-to-

middle adulthood (Figures S4-S5). 

Polygenic indices and SEP interaction 

More disadvantaged SEP in childhood (measured by father’s social class) was associated with higher 

BMI across multiple life stages; this association emerged from adolescence onwards and strengthened 

at each subsequent age, and was largely unchanged after adjustment for Khera et al. [3] polygenic 

indices (top panel, Figure 4). There was little evidence of SEP × polygenic index interaction; 

coefficients for interaction terms were close to zero at all ages with confidence intervals overlapping 

the null in almost all cases (bottom panel, Figure 4). Findings were similar across multiple 

specifications, including using childhood polygenic indices and measuring SEP with mother’s 

education level (Figures S6-S7). Further robustness checks using standardized or log BMI and SEP 

measured as mother’s education level measured on cardinal scale yielded qualitatively similar results 

(data available on request). The incremental explained variance (R2) attributable to SEP was low and 

similar across adulthood (< 2%, Figure S8).  

FIGURE 4 HERE 

Sensitivity analyses 

Patterns of age difference in association between polygenic indices and BMI were similar in each sex 

(Figure S9), with some evidence that the associations were larger in females. Supplementary results 

suggested that differences in association across life were largely due to differences in weight rather than 

height (Figure S10); results were also similar when using weight-for-height indices constructed at each 

age using an optimal power of height, to remove the association between BMI and height (Figure S11).  

Polygenic indices were related to missing BMI data at some ages (Figure S12). Notably, non-missing 

BMI data at ages 63 and 69 was related to lower than average Khera et al. [3] polygenic indices. 

Investigation of associations between polygenic indices and BMI using samples of the same participants 

across time showed broadly similar results as the main analysis (Figures S13-S18). However, there was 

some evidence that the plateauing of effect sizes in the Khera et al. [3] Index-BMI associations from 53 

to 69 years was an artefact of differences in the samples at each age—when using the same sample 

across this age span, effect sizes were slightly higher at ages 63 and 69 (Figure S13). 
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Discussion 

Summary of findings 

Using life course BMI data spanning 2-69 years of age, and multiple polygenic indices for higher 

childhood and adulthood BMI, we found:  

1. For polygenic liability derived from adult BMI (Khera et al. [3]), the trajectories of effect 

size and explained variance diverged across life: explained variance peaked in early 

adulthood and plateaued thereafter, while absolute effect sizes increased throughout 

adulthood.  

2. For polygenic liability derived from recalled childhood body size and measured childhood 

BMI, explained variance was largest in adolescence and early adulthood; effect sizes were 

marginally smaller from adolescence to adulthood. 

3. All polygenic indices were related to higher variation in BMI; effect estimates were sizable 

and larger at the upper end of the BMI distribution.  

4. Childhood socioeconomic and polygenic risk for higher BMI across life appear to operate 

additively; with little evidence of interactions. The explained variance attributable to SEP 

on BMI was similar across adulthood.  

 

Comparison with previous studies and explanation of findings 

Our findings are consistent with recent studies which used polygenic indices for higher adult BMI, 

typically in separate cohorts of different age spans. For example, Khera et al. [3] reported increasing 

effect sizes in regional cohorts followed-up from infancy to early adulthood (18 or 25 years). Sanz-de-

Galdeano et al. [30] used separate cohorts and reported increasing strength of association from 

adolescence to early adulthood; while findings from a separate cohort suggested stability of effect sizes 

across older age. The results here show that these findings generalise to a single population born in 

1946 and followed across the life course (2 to 69 years). Further research is required using multiple 

cohorts to examine how these results may differ by year of birth; the cohort used in this study was 

exposed to post-war rationing, and an increasingly obesogenic environment in midlife [31].  

Our findings using polygenic indices for higher childhood BMI are also consistent with existing 

findings [5,6] – that indices derived using either recalled childhood weight or objectively measured 

childhood weight both have larger explained variance in childhood/adolescence/early adulthood. Our 

results suggest that such indices remain associated with higher BMI throughout early, mid and later 

adulthood, potentially leading to problems for their use in Mendelian randomization studies using 

childhood indices of BMI in relation to later outcomes. 
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Differences in findings across polygenic indices (or individual variants) suggests there may be age-

specific mechanisms which link genetic liability to higher BMI. For example, genetic variants which 

have particularly stronger influence in early life may capture accelerated tempo of each life growth [32]. 

Multiple studies investigating FTO have reported largest effect sizes in early adulthood [7]: this was 

also found for the cohort used in this paper for FTO [33] and its nearby variants [32]. Further work is 

therefore required to elucidate the biological and behavioural mechanisms which link these polygenic 

indices to higher BMI.  

Our findings highlight the importance of environmental influences on BMI across life. First, low 

childhood SEP was associated with higher adult BMI independently of polygenic risk; second, the mean 

and variance of BMI increased across life—this is likely to be due to environmental influences, since 

the explained variance attributable to genetic influence plateaued in early adulthood. The fact that 

explained variance attributable to SEP was small and remained similar across adulthood is suggestive 

of the increasing importance of chance or ‘non-shared’ environmental factors being increasingly 

important causes of between person in BMI variability across life. This finding is consistent with 

reported declines of heritability of BMI from adolescence to adulthood in twin studies [2]. It is notable 

that other traits have contrasting heritability patterns across life. For example, the heritability of 

cognitive performance appears to strengthen across life [34], potentially due to genetic influences 

indirectly influencing future environments which in turn strengthen genetic influence. In the context of 

BMI, such pathways may be sizably weaker relative to the large variability in the environment which 

influences BMI. Finally, all polygenic indices were associated with greater variability in BMI, with 

effect sizes largest in higher BMI centiles—one possible cause of this is the influence of unmeasured 

modifiers of association which may be environmental in origin [35]. 

 

Strengths and Limitations 

Strengths of this study include the use of life course data on a national birth cohort sample and use of 

multiple polygenic indices. Further, our analytical strategy enabled estimation of life course trajectories 

of effect size and explained variance; previous studies have tended to focus on either set of results yet 

both are informative. Our analysis also enabled formal testing of distributional effects, and the testing 

of the independent and/or multiplicative role of childhood SEP. Yet the necessary use of historic data 

had some inherent limitations. First, the cohort preceded the wider availability of body composition 

measures—thus, we cannot distinguish associations of fat or lean mass across the life course; it is 

possible that associations with these phenotypes may differ. Second, as in other prospective longitudinal 

studies missing data occurred. Genotyping occurred using blood samples measured at 53 years (in 

1999); thus those with valid BMI data in early life yet no genotyping data were not included. However, 

we found little evidence that early life BMI was related to likelihood of having valid genotyping data 
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at 53 years (Figure S18), though there was evidence that higher BMI during middle adulthood was 

related to having missing polygenic indices. Loss to follow-up occurred following genotyping from 53 

to 69 years; the associations at later ages may have been downwardly biased (Figure S13).  

Conclusion 

Our findings suggest sizable polygenic effects on BMI which differ in terms of size of association and 

explained variance across life. Findings also highlight the importance of the environment—adverse 

early life SEP was associated with higher BMI independently of polygenic risk, and increases in the 

population mean and variability of BMI across adulthood lead to stability of explained variance despite 

increasing effect sizes.  
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Figures 

 

Figure 1. Histograms of body mass index from infancy to old age in the 1946 British birth cohort 

sample. 
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Figure 2: Association between polygenic indices and body mass index (BMI). Drawn from bivariate 

OLS regressions including adjustment for sex, repeated for each polygenic index and age at follow up. 

Left panel: coefficient difference in BMI per 1 SD increase in polygenic index (95% CI). Right panel: 

incremental R2 compared to OLS regression model of BMI on sex (95% CI estimated using 

bootstrapping [500 replications]). 
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Figure 3: Heatmap of the association between Khera et al. [3] polygenic index and BMI. Drawn from 

quantile regressions including adjustment for sex, repeated at each follow up (y-axis) and decile (x-

axis). The size of the coefficient is represented by a colour (see legend). Coefficients are interpreted 

analogously to linear regression: for example, Q50 shows the median (rather than mean) difference in 

body mass index per 1 SD increase in polygenic index. 
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Figure 4: Association between childhood socioeconomic position and body mass index (BMI) across 

life. Top panel shows the kg/m2 difference in BMI in the lowest compared with highest socioeconomic 

position, before and after adjustment for Khera et al. [3] polygenic index for higher BMI. Bottom panel 

shows coefficients for the social class x polygenic index interaction term (null line is evidence for no 

interaction). SEP measured as father’s occupational class converted to ridit score. Results from top 

panel drawn from OLS regression models including adjustment for sex (blue solid line) and further 

adjustment for polygenic indices (orange dashed line). Results from bottom panel drawn from OLS 

regression models including adjusted for sex, polygenic index score [3] and SEP.   
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