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I. ABSTRACT 

The Coronavirus Disease 2019 (COVID-19) has demonstrated that accurate forecasts of infection and 

mortality rates are essential for informing healthcare resource allocation, designing countermeasures, 

implementing public health policies, and increasing public awareness. However, there exist a multitude of 

modeling methodologies, and their relative performances in accurately forecasting pandemic dynamics are 

not currently comprehensively understood. 

In this paper, we introduce the non-mechanistic MIT-LCP forecasting model, and assess and compare 

its performance to various mechanistic and non-mechanistic models that have been proposed for forecasting 

COVID-19 dynamics. We performed a comprehensive experimental evaluation which covered the time period 

of November 2020 to April 2021, in order to determine the relative performances of MIT-LCP and seven 10 

other forecasting models from the United States’ Centers for Disease Control and Prevention (CDC) Forecast 

Hub. 

Our results show that there exist forecasting scenarios well-suited to both mechanistic and non-

mechanistic models, with mechanistic models being particularly performant for forecasts that are further in 

the future when recent data may not be as informative, and non-mechanistic models being more effective with 

shorter prediction horizons when recent representative data is available. Improving our understanding of 

which forecasting approaches are more reliable, and in which forecasting scenarios, can assist effective 

pandemic preparation and management.  

II. INTRODUCTION 

During the COVID-19 pandemic, the Centers for Disease Control and Prevention (CDC) broadcasted 20 

an open call to forecast COVID-19 cases and deaths at a state level. All data scientists and research teams 

with models that predicted the course of the COVID-19 pandemic were welcomed to submit their models to 
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the CDC COVID-19 Forecast Hub. CDC COVID-19 Forecast Hub pipeline teams were invited to submit 

predictions of the numbers of new cases, hospitalizations, and deaths in future days, weeks, and months, for 

the county, state, and national levels in the U.S. 

Groups across the U.S. assembled organically and a community emerged that consisted of individuals 

with different backgrounds and expertise but with a shared vision of forecasting to inform policy. Despite the 

existence prior to COVID-19 of troves of data which could be analyzed for real-time prediction in the event 

of a disaster, the pandemic exposed the fault lines in our data-verse. The world was ill-prepared to leverage 

the data tsunami that no one group, university, or country had the ability to harness in order to understand and 30 

forecast the trajectory of the pandemic. 

Accurate predictions concerning future disease spread, mortality, and analysis of what-if scenarios can 

be critical for guiding decision-makers in a pandemic. Government officials may utilize this information to 

issue public health guidelines and policy, while health system leadership may utilize it to make resource 

allocation and triage decisions. Decisions can be characterized as upstream or downstream of transmission 

drivers. Certain upstream decisions, such as mandatory lockdowns, affect the spread of infection. Other 

downstream decisions, such as canceling elective surgeries in order to free up hospital beds to treat infected 

patients, are unlikely to meaningfully affect the spread of infection.  

Forecasting models typically fall along a spectrum of what we could call ‘mechanistic’ to ‘non-

mechanistic’ models. Mechanistic models incorporate a given understanding of the underlying causal structure 40 

of the data generation process. Non-mechanistic models do not incorporate such structural assumptions.  

Mechanistic models are necessary for studying the potential effect of decisions that interact with 

underlying disease spread dynamics since this is an inherently counterfactual task. Mechanistic models allow 

the data of the observed portion of the action space to be projected into estimates in the unobserved parts.  
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While evaluating the accuracy of these forecasts in the unobserved actions is not a feasible empirical 

exercise, it stands to reason that if the structure of the data generation process is being captured, it should not 

make worse predictions in the observed part of the action space than models that do not make such 

assumptions.  

Our approach utilized standard machine learning techniques that impose little structure on the data 

distribution, while other groups employed a much more mechanistic modeling approach. Our empirical results 50 

provide a benchmark against which to measure mechanistic models, and thus to evaluate how the implied 

structure they impose performs in those parts of the action space that are observed.   

  This work presents a non-mechanistic approach to real-time forecasting of U.S. COVID-19 mortality 

using a gradient-boosted regressor model (named MIT-LCP). 

III. RELATED WORK 

A. Non-mechanistic approaches to forecasting 

Non-mechanistic approaches to forecasting have been implemented in numerous application 

domains from influenza forecasting [11] to population dynamics of beetles [15]. In prior epidemics such as 

the Ebola epidemic, flexible non-mechanistic or semi-mechanistic models have been implemented since 

parameterizing mechanistic models was often difficult in real-time, when information on behavioral 60 

changes, interventions and routes of transmission were not readily available [12]. In both the influenza 

endemic and Ebola epidemic, non-mechanistic models had promising results in real-time forecasting when 

compared to traditional statistical models. 

B. CDC COVID-19 Forecast Hub 

The CDC COVID-19 Forecast Hub has featured 50+ models of both the non-mechanistic and 

mechanistic types [20]. In the mechanistic variety there are time dependent Susceptible-Exposed-Infectious-

Removed (SEIR) models [25] which is a compartmental model [21]. There are also metapopulation models 
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which are compartmental models that investigate interactions and movements among different 

subpopulations [22]. Some models are modified SEIR models, such as the Texas Tech [24] or Delphi [23] 

models which incorporate additional compartments for undetected cases and quarantined populations. 70 

Mechanistic models can also be combined with machine learning methods as is seen with the UMass model 

[8]. There were a number of non-mechanistic models on the CDC hub as well [26] - with a majority being 

regression models with augmentations such as the UMich model. 

C. Prior comparisons with non-mechanistic and mechanistic models 

Machine learning and mechanistic models have been compared in multiple public health-adjacent 

contexts [27] from a biological context [28] to a clinical context [29]. These studies do not consider 

mechanistic and non-mechanistic models as direct competitors [28]. In the biological context, it was found 

that integrating non-mechanistic and mechanistic models yielded better performance than utilizing just one 

[28]. In the clinical setting, there exist studies that report on mechanistic models outperforming non-

mechanistic machine learning models in breast cancer metastatic relapse prediction [29]. However, in 80 

particular in the context of COVID-19, there exist published examples of performant non-mechanistic 

models addressing clinical prediction tasks [30, 31].  To the best of our knowledge, there do not yet exist 

studies directly comparing mechanistic and non-mechanistic models in the public health setting. 

IV. METHODS 

A. Data Sources 

The MIT-LCP model is implemented using a gradient boosted regressor to forecast COVID-19 deaths 

at the state and national levels. It uses novel digital data sources including prior COVID-19 cases and deaths, 

demographic, socioeconomic, mobility, and healthcare-related county-level covariates for feature generation. 

The details and characteristics of the data sources are described in Table I.  Table I lists the description, scope, 

time frame, and the number of features used for each dataset.90 
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TABLE I.   

Data Sources for MIT-LCP Model 

Data source Description Scope Time frame 
Number of 

Features 

JHU [1] 

 

Daily US COVID-19 

Deaths and Cases 

County 

Level 
2020-2021 6 

COVID Tracking 

Project 
Daily COVID-19 Tests 

State 

Level 
2020-2021 3 

County-level 

Socioeconomic 

Dataset [2] 

300 variables that 

summarize population 

estimates, demographics, 

ethnicity, housing, 

education, employment and 

income, and healthcare 

system-related metrics 

County 

Level 

Static, data 

from 2018-

2020 

57 

PlaceIQ [3] 

Exposure indices derived 

from PlaceIQ movement 

data 

County 

Level 
2020-2021 2 

Hospitalizations 

COVID-19 Hospital 

capacity and utilization 

from HHS 

State 

Level 
2020-2021 2 

 

In addition to serving as the target data for forecasts, the Johns Hopkins University Center for Systems 

Science and Engineering (JHU CSSE) deaths and cases data were an important component in the training of 
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the model. 3-week lagged cases and deaths were used to predict 1-4 weeks ahead. The COVID-19 tracking 

project’s state-level testing data also served as a useful feature for forecasting deaths. The test positivity rate 

in a specific state was a good indicator of the severity of the pandemic at that time [4]. The county-level 

socioeconomic dataset was the only dataset used that was not in a time-series format. Although it was static, 

the variables in the dataset, specifically the demographics and education variables were valuable because 

certain groups of people are more vulnerable to COVID-19 [5], and the model can leverage these variables to 100 

predict mortality. Additionally, the healthcare variables from this dataset served as a strong indicator of each 

county's healthcare system’s relative strength [6]. Previous studies have established that an increase in 

mobility metrics leads to an increase in COVID-19 cases and deaths [7], so PlaceIQ exposure indices were 

used in the feature set for training as well. State-level hospitalization data as correlates for pandemic severity 

were the final variable added to the feature set. 

B. Forecasted Data Targets 

In accordance with the structure of the CDC Forecast Hub, we made probabilistic forecasts for 1–4 

weeks ahead of incident and cumulative deaths for each county in the US, which were then aggregated to 

the state and national level.  

The primary modeled quantity of the model was weekly incident deaths, which were added to 110 

previous forecasts for incident deaths as well as previous cumulative deaths to create the cumulative death 

forecast. The forecasts evaluated in this paper are state and national-level real-time weekly incident 

forecasts only. This means that they submitted forecasts weekly during the period of evaluation as new data 

arrived. 

C. Model Pipeline Architecture 

Figure 1 shows the various stages of the MIT-LCP model pipeline. The first step in the forecasting 

pipeline was conducting data source retrieval for data sources that refreshed on a daily basis. Upon retrieval, 
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the data were parsed and preprocessed, and used to generate specific features for the model. The datasets 

were then combined to generate additional features. The regression model was trained on the features and 

the strength of each feature was determined using SHAP (SHapley Additive exPlanations) values (Figure 2) 120 

[10]. 

 

Figure 1: MIT-LCP Model Pipeline Architecture 
Data are processed, and features are assembled. Training of the model occurs and features are reassembled. Afterwards 

predictions n weeks ahead are made and then submitted to the CDC forecast hub. 
 
 

 

Figure 2: Mean absolute value of feature SHAP values 
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The features with higher relative strength were then separated from the rest, and the model was then 130 

trained again specifically on these features. Finally, the model predicted incident and cumulative deaths for 

1-4 weeks ahead at the county-level for all the counties in the US, and these predictions were then 

aggregated to the state and national level. The forecasts were formatted for submission to the CDC Forecast 

Hub and then submitted to their Github repository. 

D. Software and Algorithms 

The real-time forecasting model was implemented using Python 3.6 in Jupyter notebooks. Python 

packages used include NumPy [16], Pandas [17], scikit-learn [18], and XGBoost [9]. The model consisted 

of an ensemble of extreme gradient boosted trees of linear regressors trained with the mean squared error 

loss function. Gradient boosting involves iterative combinations of ensembles of weak prediction models 

into one strong learner. The package XGBoost uses second-order Taylor series to approximate the value of 140 

the loss function and reduces the likelihood of overfitting [9]. The model utilized hyper parameter 

optimization, the approach being a cross-validated grid search. The optimized hyper parameters were the 

learning rate, number of trees, and maximum tree depth. Since non-stationary time series data, like COVID-

19 deaths or cases, can be problematic for cross validation, we used scikit-learn’s TimeSeriesSplit  for 

training and validation instead of a k-fold split.  

Among the most important features for the MIT-LCP model were the “Two Week prior Cases” and 

“Three Week prior Cases” in the area, which aligns with the typical period of time from infection to death 

of a COVID-19 patient. Additionally, the “Three Week prior Deaths” and “Two Week prior Deaths” also 

had a high SHAP value, as the model used past weeks’ deaths to predict the trend for the future weeks’ 

deaths. Another feature with a high SHAP value was the “Population with Less than a High School 150 

Diploma”, which might indicate hesitancy towards mask-wearing and vaccination in counties with larger 

populations of that category. “Population in Poverty” also had a high SHAP value, as did “Total Hospitals”, 

which line up with findings of past studies into the levels of transmission in areas with high poverty or areas 
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with less access to healthcare. Features with the largest negative SHAP values did not have very significant 

impact compared to the features with the largest positive SHAP values - as they all have SHAP values less 

than -0.1 

E. Evaluation Metrics 

The following three metrics were used for the evaluation of the forecasts. For the model training, the 

R2 Score was used. For comparison of the models, two evaluation metrics were used: FAPE and MAE. 

● R2 Score - Coefficient of Determination was used in the training of the model, the objective in the 160 

training was to maximize the R2 score. 

● FAPE - Forecast Absolute Percentage Error was used for the national level comparison. The metric 

was calculated using the actual value and the forecasted value of deaths for a given week. 

 

● MAE - Mean Absolute Error was used for the state-level comparison. The metric was calculated 

using actual values and the forecasted value of deaths for each state in a given week. 

 

 

V. RESULTS 

To evaluate the MIT-LCP model performance, seven other CDC Forecast Hub models were chosen 170 

for comparison. The mechanistic SEIR (Susceptible, Exposed, Infected, Resistant) models used for 

comparison were CovidAnalytics-DELPHI (Delphi), CU-select (Columbia), TTU-Squider (Texas Tech), 

JHU-APL, and UCLA-SuEIR (UCLA). UMich-RidgeTfReg (UMich) and UMass-MechBayes (UMass) [8]  

were among the best-performing models on the CDC Forecast Hub during this time period and they were 

also included for comparison. UMich is a non-mechanistic model, while UMass is a mechanistic model 

implemented using machine learning methods.  
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Figure 3 shows the national mortality Forecast Absolute Percentage Error (FAPE) over the course of 

22 evaluation weeks. MIT-LCP had a lower median FAPE compared to 4 of 5 mechanistic SEIR models 

submitted to the Forecast Hub and similar or higher FAPE compared to UMich and UMass models. At the 

national level, the MIT-LCP model achieved a median FAPE of 15.05% across the 22 weeks for all forecast 180 

dates whereas the SEIR models except for the UCLA model had FAPEs in the range of 20-25% during the 

same period. MIT-LCP model also had a smaller interquartile range within the distribution of FAPEs 

compared to every mechanistic model in the comparison set except for the UMass model.  

 

Figure 3. Comparison of MIT-LCP versus other CDC Forecast Hub Models in terms of Forecast 
Absolute Percentage Error (FAPE) for predicting national mortality rates 1 week in advance. 

Data covers the period from November 1st  2020 to April 2nd 2021. 
 

Figure 4 shows US states mortality forecast Mean Absolute Error (MAE) for 1-4 week ahead 

predictions over the course of 22 weeks. MIT-LCP had a lower median MAE compared to most 190 

mechanistic models for the 1 week ahead target. MIT-LCP improved uniformly over most models for  

every target with MAE ranging 34-400 deaths across the 1–4 week ahead predictions. Only the UMass 

model had a lower distribution of errors than MIT-LCP across the 1, 2, 3, and 4 weeks ahead forecasts. 

Significant variability in the distribution of errors by forecast date for different target weeks reflects the 

difficulty in forecasting throughout the pandemic.
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Figure 4. Comparison of MIT-LCP versus other CDC Forecast Hub Models in terms of Mean 
Absolute Error (MAE) for predicting US states’ mortality rates 1, 2, 3, and 4 weeks in advance. Data 

covers the period from November 1st 2020 to April 2nd 2021. 200 
 

VI. DISCUSSION 

Policymaking is especially challenging during an emerging infectious disease pandemic. Public 

health interventions and policies that curtail individual freedom, such as movement restrictions or 

isolation and quarantine orders, can be particularly challenging for policymakers in positions that are 

sensitive to public opinion and the prevailing political winds. Decision-makers nevertheless rely heavily 

on public health experts to advise them and provide compelling data that policymakers can utilize to 

defend their decisions to the public.  

Accurate non-mechanistic forecasting models offer a critical tool for public health policy and 

practice to inform downstream policy decisions and facilitate -- particularly with regard to future 210 
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pandemics that involve new or emerging diseases where sufficient knowledge to effectively inform 

mechanistic forecasting models is lacking.  

For the COVID-19 pandemic, many mechanistic models underperformed compared to a non-

mechanistic baseline. Mechanistic models that implemented the SEIR framework typically 

underperformed relative to other models. However, some mechanistic models utilized the SEIR 

framework with a more Bayesian approach -- such as the UMass-MechBayes model. This particular 

model performed quite well compared to both the mechanistic SEIR models and MIT-LCP’s non-

mechanistic model.  

One major limitation of many non-mechanistic models is the lack of causal inference. Integration 

of causal inference methods with machine learning in non-mechanistic models could improve the overall 220 

performance of the model. A second limitation is the lack of policy data integration with forecasting 

models. Datasets of policies and public health guidelines issued at the state and local-level could aid in 

the creation and advancement of forecasting models. With these policy datasets, conditional predictions 

could be standardized, where forecasts are generated depending on the policies that could be 

implemented. This improvement could increase the accuracy of forecasts as well as expand the potential 

impact of the forecasts on policy decisions. 

 

VII. CONCLUSION 

Infectious disease forecasts provide critical data for informing public health policy and 

interventions. Mechanistic and non-mechanistic disease transmission forecasting models each have their 230 

own respective use case advantages and disadvantages, which can be used to complement the other. In 

terms of performance metrics, non-mechanistic forecasting models perform at least equally well as 
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mechanistic models, even outperforming mechanistic models in some cases, and should be used in 

conjunction with each other. Utilizing both types of forecasting models and implementing improvement 

measures that are widely used in real-time forecasting can assist in more effectively preparing for future 

pandemics.  

Finally, this paper calls attention to the community that organically grew around a shared 

purpose of leveraging existing data to forecast the trajectory of the pandemic in order to inform policy. 

This community spanned multiple institutions, disciplines, and expertise levels, drawing from academia, 

industry, and government, and has attracted contributors from senior investigators all the way to high 240 

school students. This paper’s group of authors reflects that diverse, cross-disciplinary community. Prior 

to COVID-19, the authors had formed a global consortium called MIT Critical Data to advance health 

data science, which consisted of healthcare practitioners, computer scientists, engineers and social 

scientists from around the world, who believed that data and learning can be the best medicine for 

population health. During the pandemic, they came together to contribute their respective skills and 

interdisciplinary perspectives to assist in the public health fight against COVID-19 in real time. We 

therefore hope our work will inspire others to reflect upon the vast untapped potential of building 

communities of shared purpose to address challenges faced by healthcare systems around the world with 

meaningful data, diverse and interdisciplinary perspectives and deep domain expertise - in particular in 

contexts with comparatively limited resources.  250 

The forecasting value produced by this relatively small-scale and ad-hoc cooperative effort 

illustrates just one of the ways in which countries with limited resources could leverage existing troves 

of data to conduct real-time data analyses when responding to future pandemics. As the COVID-19 

pandemic has made clear that no single organization or even country was fully prepared, this paper calls 
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on governments, universities, health organizations, and industries to invest in and build upon initiatives 

that create, nurture, and grow these collaborative communities in preparation for the next global disaster. 
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