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What is already known about this subject  

 

◦ Previous dexmedetomidine pharmacokinetic (PK) studies in pediatric populations have 

limited sample size. 

◦ Smaller studies present a challenge for identifying covariates that may impact individual 

PK profiles. 

 

What this study adds  

 

◦ We performed a dexmedetomidine population PK study with a large pediatric cohort us-

ing data obtained from electronic health records and remnant plasma specimens to enable 

increased sample size. 

◦ Differences in PK due to UGT1A4 or UGT2B10 variants or CYP2A6 risk score are not 

clinically impactful for this population.   

 

Abstract 

Aim 

Our objectives were to perform a population pharmacokinetic analysis of dexmedetomidine in 

children using remnant specimens and data from electronic health records (EHRs) and explore 

the impact of patient’s characteristics and pharmacogenetics on dexmedetomidine clearance. 

 

Methods 

Dexmedetomidine dosing and patient data were gathered from EHRs and combined with 

opportunistically sampled remnant specimens. Population pharmacokinetic models were 

developed using nonlinear mixed-effects modeling. The first stage developed a model without 

genotype variables; the second stage added pharmacogenetic effects. 
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Results 

Our final study population included 354 post-cardiac surgery patients age 0 to 22 years (median 

16 months). The final two-compartment model included allometric weight scaling and age 

maturation. Population parameter estimates and 95% confidence intervals were 27.3 L/hr (24.0 – 

31.1 L/hr) for total clearance (CL), 161 L (139 – 187 L) for central compartment volume of 

distribution (V1), 26.0 L/hr (22.5 – 30.0 L/hr) for intercompartmental clearance (Q), and 7903 L 

(5617 – 11119 L) for peripheral compartment volume of distribution (V2). The estimate for 

postmenstrual age when 50% of adult clearance is achieved was 42.0 weeks (41.5 – 42.5 weeks) 

and the Hill coefficient estimate was 7.04 (6.99 – 7.08). Genotype was not statistically or 

clinically significant.  

 

Conclusion 

Our study demonstrates the use of real-world EHR data and remnant specimens to perform a 

population PK analysis and investigate covariate effects in a large pediatric population. Weight 

and age were important predictors of clearance. We did not find evidence for pharmacogenetic 

effects of UGT1A4 or UGT2B10 genotype or CYP2A6 risk score.  

 

Introduction 

Dexmedetomidine is an alpha2-agonist with anxiolytic, sedative, and analgesic properties 

with minimal effects on respiratory depression.1,2 It is routinely used as part of intraoperative 

anesthetic management during surgical repairs of congenital heart disease (CHD) and in the 

postoperative period in the intensive care unit (ICU)3,4 and is commonly dosed as a continuous 

intravenous (IV) infusion using a fixed weight-based rate (e.g., starting at 0.3 mcg/kg/h). This 

dosing regimen will be adequate for some, but necessarily results in inappropriately low or high 
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dosing for others. The proper dose for these latter individuals is not achieved until the initial 

sedation effect is observed, recognized as inadequate or excessive by the clinical team, and the 

dose adjusted accordingly. These patients are at risk for dose-related dexmedetomidine side 

effects, including bradycardia and hypotension, or use of additional sedative agents, including 

opioid analgesics. Accurate prediction of an individual’s dexmedetomidine requirement 

(precision dosing) could help minimize titration time to achieve sedation and analgesia goals 

without toxicity.  

 Many population pharmacokinetic (PK) studies of dexmedetomidine in pediatric 

populations have been reported.5–17 For example, Potts et al.17 report on dexmedetomidine use in 

95 pediatric ICU patients using data pooled from several previous studies, Su et al.15 studied 59 

children on mechanical ventilation after open heart surgery, Pérez-Guillé et al.12 assessed 30 

children undergoing ambulatory surgery, and Zuppa et al.9 examined dexmedetomidine PK 

among 119 children undergoing cardiac surgery.  Most have a small number of individuals and 

frequent specimen collection. For pediatric ICU populations, the median sample size is 29.5 

(range 18-119), and the median number of total drug levels collected is 236.5 (range 89 – 1967) 

with a median of 9 per subject (range 2 – 16).5,7,9–12,14,15 Some studies have addressed small 

sample size with methods that combine information from multiple populations including pooled 

pediatric analyses,17 creating “universal” models for children and adults,6,8 and Bayesian 

analyses with informative priors;16  however, even these models only include information from at 

most around 130 children.  

Previously, studies have identified weight5–12,14–17 and age5,6,8–10,14–17, along with cardiac 

bypass9,10,15, as important factors to explain inter-individual variability. However, lower sample 

size may limit identification of additional covariates impacting inter-individual variability. For 

example, although it is known that dexmedetomidine is rapidly distributed and metabolized in 

the liver by two pathways – direct glucuronidation by uridine 5′-diphosphate- 
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glucuronosyltransferase (UGT) 1A4 and 2B10 and cytochrome P450 (CYP) 2A6 mediated 

aliphatic hydroxylation2,18 – small studies of the impact of genetic variation or expression levels 

of these enzymes have failed to demonstrate pharmacogenetic associations.19,20 A study 

including 260 children demonstrated that carriers of the T allele of CYP2A6 rs835309 had 

significantly lower concentrations of dexmedetomidine (TT + TG vs. GG,  p – value  = .025).21 A 

newly developed weighted genetic risk score to predict CYP2A6 activity raises the possibility of 

better capturing the impact of variants across this gene for pharmacogenetic analysis.22 Study of 

a larger cohort may allow the identification of genetic biomarkers affecting dexmedetomidine 

PK, facilitating precision dosing based on genotype. 

We combined data from electronic health records (EHRs) and remnant specimens 

collected during usual clinical care to perform a population PK analysis, similar to two previous 

pediatric fentanyl studies, and employing a system for constructing PK analysis datasets in R.23–

26 The major goals of this study were to develop a dexmedetomidine population PK model for 

children with data obtained from EHRs and remnant specimens and quantify genetic effects that 

were selected a priori based on previous studies and known metabolic pathways. 

 

Methods 

Study Design 

This study was approved by the Vanderbilt University Medical Center (VUMC) Institutional 

Review Board and has been previously described.23 In brief, pediatric patients undergoing 

surgery for CHD are offered enrollment in this observational study. Parents provide written 

consent for their child’s participation, and informed assent is obtained when appropriate. Drug 

selection and dosing are determined by the primary clinical team; over the course of study 

enrollment, clinical leadership provided recommended protocols to guide clinicians in drug and 
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dose selection for analgesia and sedation (included in supplemental material); however, final 

regimens were always at the discretion of the treating clinicians. Remnant specimens from 

clinical testing are obtained for drug concentration measurements, which are not disclosed to the 

clinical teams. Specimens were not collected in connection with dose administration or to 

monitor PK characteristics such as trough concentration or Cmax. Enrollment with remnant 

specimen collection began in July 2012 and is ongoing. Data analyzed for this study were 

collected prior to October 2017. All study participants were admitted to the pediatric cardiac ICU 

after surgery. Enrolled participants were excluded from the analysis if their surgery was 

cancelled, if there was missing genotype data, if extracorporeal membrane oxygenation (ECMO) 

treatment was required, or if they did not survive to hospital discharge. For those with multiple 

surgeries, data from the one procedure with the highest number of measured serum drug 

concentrations were used, excluding all others. Drug concentrations were excluded if inadequate 

internal standard concentrations were detected and insufficient volume remained to repeat 

analysis, or if they were obtained before any documented dexmedetomidine dosing.     

 

Data Collection 

Demographic data (including parent-reported race) and medical history were documented at the 

time of study enrollment. Surgical and clinical data were extracted from the EHR prospectively.  

Dexmedetomidine dosing, including scheduled boluses, as-needed intermittent boluses, and 

continuous infusions after the postoperative admission to the ICU were determined from the 

EHR and the Vanderbilt Enterprise Data Warehouse. The Enterprise Data Warehouse contains 

nurse administration, nurse flowsheets, and pharmacy dispense data, enabling the computation of 

administered drug amounts over specific time periods. Study data were collected and managed 
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using REDCap electronic data capture tools, a secure, web-based application hosted at 

Vanderbilt University.27  

 

Drug Concentration Measurement 

For the purposes of drug concentration analysis, all remnant plasma specimens ≥100 μL from 

blood obtained for clinical testing of electrolyte or basic metabolic panels in study subjects were 

obtained from the Vanderbilt Clinical Chemistry Laboratory and stored at -20ºC until processing 

for drug concentration analysis in the Vanderbilt Mass Spectrometry Research Core. Specimen 

processing and mass spectrometry analysis have been previously described in detail.23 Briefly, 

acetonitrile precipitation was followed by tandem mass spectrometry using a 16-drug assay. 

Dexmedetomidine assay accuracy is 89 – 112%, and the lower and upper limits of quantification 

(LLOQ and ULOQ) are 0.005 and 5 ng/mL.   

 

Genotyping and CYP2A6 Activity Score Prediction 

Study participants provided a peripheral blood sample for genetic analysis. Genomic DNA was 

extracted through the Vanderbilt Technologies for Advanced Genomics (VANTAGE) Core 

laboratory and study participants were genotyped using either the Axiom™ Precision Medicine 

Research Array or the Precision Medicine Diversity Array according to manufacturer protocols 

at the Children’s Hospital of Philadelphia DNA core. As part of genotype data quality control, 

variants were removed if genotype call rate was <98%, if minor allele frequency was >20% 

different from 1000 Genomes phase 3 European reference populations, or for deviation from 

Hardy-Weinberg Equilibrium (p – value < 1x10-10, results shown in Supplemental Table S3). 

Individuals were removed if their genotype call rate was <98%, the genetically estimated sex 
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differed from parental-reported sex, or for relatedness (2nd degree or closer). Genotype data 

were imputed to the 1000 Genomes phase 3 reference panel. For this study, we extracted data for 

specific variants in UGT2B10 (rs2942857; rs112561475; rs61750900), UGT1A4 (rs2011425; 

rs3892221; rs6755571) and CYP2A6 (rs56113850; rs2316204; rs113288603; rs28399442; 

rs1801272; rs28399433) from the study database.  

 

Data Processing 

Data was processed using the modularized “EHRtoPKPD” system for postmarketing 

population PK studies with real-world data from EHRs.25 This system has been implemented in 

the R software28 package EHR26 which includes interactive checks for data quality to reconcile 

missing, duplicate, and other erroneous concentration or dosing information (for details, see 

https://choileena.github.io/). Output from the EHR package was further cleaned by removing: (i) 

concentration measurements more than 150 hrs (approximately 50 times dexmedetomidine half-

life) after the end of the final bolus or infusion dose, (ii) concentration measurements below the 

LLOQ if they are after the final bolus or infusion dose, except for the first such measurement, 

(iii) concentration measurements above the ULOQ, (iv) subjects whose only concentration 

measurements are below the LLOQ after applying criteria (i)-(iii), and (v) subjects with missing 

dose information indicated by increases in concentration without an accompanying dose and 

confirmed by manual chart review. 

Serum creatinine concentration was a time-varying covariate typically measured 

concurrently with dexmedetomidine concentration. If serum creatinine was not available when 

dexmedetomidine concentration was measured, we selected the serum creatinine concentration 

measured closest to the dexmedetomidine concentration data within 7 days. For each subject, 

weight varied little within the timeframe of available concentration data, so most weight data 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted November 3, 2021. ; https://doi.org/10.1101/2021.05.03.21256553doi: medRxiv preprint 

https://choileena.github.io/
https://doi.org/10.1101/2021.05.03.21256553


 

were the same as the baseline demographic measurements. When additional weight 

measurements were available, usually during infusion, weight measurements obtained at the 

same time as the dosing event were used.  Measures of albumin concentration were available 

within a 7-day window for only 48 subjects, precluding use of albumin concentration as a 

covariate. 

 

Population PK Analysis 

We performed population PK analysis of dexmedetomidine using nonlinear mixed-

effects models implemented by Monolix version 2020R129 and estimated the parameters with the 

stochastic approximation expectation-maximization (SAEM) algorithm. Observed concentrations 

below the LLOQ were considered to be censored between 0 and 0.005 ng/mL and were handled 

in the modeling using the likelihood (M3) method for interval censoring.30,31 After the model 

parameters were estimated with SAEM, the objective function value (OFV) was calculated using 

Monte Carlo importance sampling with 10,000 samples from a Student-t proposal distribution 

and degrees of freedom chosen by testing a sequence of values (ν =1, 2, 5, 10, 15). Because the 

SAEM estimation method includes stochastic variability and can sometimes fail to converge in a 

setting with sparse sampling,32 we performed 5 runs with different random seeds for each model 

and selected the run with median OFV for model comparison.  

For model selection we used a likelihood ratio test to compare differences in estimated 

OFV for nested models and corrected Bayesian Information Criteria (BICc) to compare non-

nested models; relative standard errors, parameter estimate values, magnitude of random effects 

and change in CV% were also considered. In addition, we used several graphical methods for 

model evaluation including observed vs. population and individual predictions, individual 

weighted residuals vs. predicted concentration and time, correlations between samples from the 
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conditional random effects distributions, samples from the conditional random effects 

distributions vs. covariates, and prediction corrected visual predictive checks.33,34 

All covariates were chosen a priori based on previous research and biological 

plausibility, including UGT1A4, UGT2B10, and CYP2A6 variants, age, sex, Society of Thoracic 

Surgery–European Association for Cardio-Thoracic Surgery (STAT) Congenital Heart Surgery 

Mortality score,35 cardiac bypass time, length of ICU stay, and serum creatinine. We focused on 

modeling the effects of covariates on total clearance, although the graphical checks were 

examined for possible relationships between covariates and other PK parameters. 

Model building proceeded in two stages; we first considered all covariates except 

UGT1A4, UGT2B10, and CYP2A6 to build an adequate model for dexmedetomidine PK and then 

examined the hypothesized association between the genotype variables and total clearance by 

adding these effects individually to the stage one model. For stage one we explored models with 

various structural, residual error, and inter-individual variance components and adjusted for non-

genotype covariates. Following a strategy outlined by Bonate, we began with richly 

parameterized inter-individual variability and residual error models including all random effects, 

all correlations between random effects, and combined additive and proportional residual error, 

and then simplified this structure.36
 We examined the structural model by comparing one- and 

two-compartment models without covariates. Following this we considered size and age 

maturation; these two covariates have been shown to be important factors in pediatric PK models 

with a large age range and in previous dexmedetomidine studies.
6,8,16,17,37–39

 For size, we 

employed an allometric weight model with fixed or estimated scaling parameters. For 

maturation, we considered an exponential age model, a sigmoid Hill maturation model, a body-

weight dependent exponent model, and an age-dependent exponent model.40
 Next, we 

investigated whether other non-genotype covariates improved the model with size and 
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maturation factors and refined residual and inter-individual variance structure. Each covariate 

was considered as an exponentially linear or categorical term. 

In the second stage we tested for the association between genotype and total clearance by 

including these effects in the model found in stage one. For UGT1A4 and UGT2B10, 

dichotomous models (coding individuals as having a loss-of-function variant or not) and additive 

models (counting the number of variants) were considered. For CYP2A6, enzyme activity was 

predicted using a polygenic score and included as an exponential term.22 Details of all models 

explored along with specific mathematical relationships, estimated OFV, and BICc are shown in 

Supplemental Tables S3 – S10. Graphical checks for the model selection process are shown in 

Supplemental Figures S3 – S27. 

 

Results 

Study Population and Specimens 

We collected 4,369 residual plasma specimens from 620 subjects.  After removing 89 subjects 

with unknown sample collection time, 108 subjects with no dosing information within 7 days of 

the first concentration measurement, and 14 subjects due to in hospital mortality or ECMO, the 

output of the EHR package pipeline contained 411 subjects with 2,172 dexmedetomidine 

concentration measurements. The further cleaning steps described above removed 14 subjects 

and 43 more subjects without genotype information were also removed. The study cohort flow 

diagram of data processing is shown in Figure 1, and the final study population of 354 subjects 

with 1,400 specimens is described in Table 1.  The median postnatal age was 16 months 

(interquartile range [IQR] 5 – 62), median postmenstrual age was 105 weeks (IQR 62 - 304) and 

median weight was 9.4 kg (IQR 6.0 – 18.2). The age and weight distributions are shown in 

Supplemental Figures S1 and S2 and Supplemental Table S1 shows postnatal age categories. 
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There were 262 subjects (74%) with no variants of UGT1A4, 87 (25%) with 1 variant and 5 (1%) 

with 2 variants. For UGT2B10, 186 subjects (53%) had no variants, 117 (33%) had 1 variant and 

51 (14%) had 2 or 3 variants. The CYP2A6 predicted activity score was available for 350 of the 

354 subjects (median 2.04, IQR 2.00 – 2.21). There were 2,386 dexmedetomidine dosing events 

(2,351 IV infusions and 35 bolus administrations). The median infusion rate was 0.6 mcg/kg/hr 

(IQR 0.5 – 1.0) and the median infusion duration was 2 hours (IQR 1 - 5); the median bolus dose 

was 1.0 mcg/kg (IQR 0.96 – 1.01). The top ten concomitant medications were acetaminophen 

(92.5%), cefazolin (92%), famotidine (89.1%), morphine (88.5%), furosemide (80.5%), fentanyl 

(77.9%), rocuronium (69.5%), oxycodone (59.8%), heparin (58.3%), and lorazepam (51.4%).  

Supplemental Table S2 includes all concomitant medications administered to at least 5% of 

subjects. The number of dexmedetomidine concentration measurements per subject varied from a 

minimum of 1 to a maximum of 18 with a median of 3 specimens (IQR 2 – 5). The median time 

of first dexmedetomidine measurement after dose start was 5 hours (IQR 4 – 11) and the median 

time of final dexmedetomidine measurement after dose start was 68 hours (IQR 39 – 131). 

 

Population PK Model 

 In the first stage of modeling, a two-compartment model with additive and proportional 

residual error was chosen as the base model based on BICc and graphical checks. The main PK 

parameters are total clearance (CL, L/h), volume of distribution for the central compartment (V1, 

L), inter-compartmental clearance (Q, L/h) and volume of distribution for the peripheral 

compartment (V2, L).  The results for the base and covariate models without genotype are 

presented in Table 2A.  The coefficients of variation (CV) for CL, V1, Q, and V2 in the base 

model were 201%, 161%, 146%, and 672%, respectively. 
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Including weight as covariate for all PK parameters with fixed allometric scaling 

parameters substantially improved the model fit (both OFV and BICc decreased by 406 from the 

base model, Table 2A) and plots of individual predicted vs. observed concentration, individual 

weighted residuals vs. predicted concentration and random effects vs. covariates also improved 

(Supplemental Figures S8 – S12). The CV for CL, V1, Q, and V2 were 123%, 168%, 91%, and 

857%, respectively. Using estimated allometric parameters did not improve the model fit. 

Among the four models adjusting for both weight and age maturation, the model with 

sigmoid postmenstrual age maturation had the largest improvement in BICc compared to the 

model with only weight (difference of 8.2, Table S5). This model was further simplified by 

estimating models with fixed effects for V2 or V2 and Q, no additive residual error component, 

and several correlation structures for the covariance between random effects (Table S6). The 

final model without genetic effects includes proportional residual error, fixed allometric scaling 

for all parameters and sigmoid (Hill) maturation for total clearance, random effects for all PK 

parameters and correlation only between the random effects of CL and V1 (Table 2A). No 

further improvement was seen by adding other covariates including either form of UGT1A4 or 

UGT2B10 or predicted CYP2A6 activity score (Tables 2B, 2C, and 2D) and no strong covariate 

effects were seen for V1, Q, or V2 based on graphical goodness-of-fit plots. The final covariate 

model is described as follows: 

CLi = 1   (WTi
 /70)   1/1+(TM50/PMAi)

Hill  exp(i
CL) 

V1i = 2   (WTi
 /70)  exp(i

V1) 

Qi = 3  (WTi
 /70)  exp(i

Q) 

V2i = 4  (WTi
 /70)  exp(i

V2), 

where CLi, V1i, Qi, and V2i are the individual-specific PK parameters corresponding to CL, V1, 

Q, and V2, WTi is subject weight in kilograms (kg), and PMAi is subject postmenstrual age in 
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weeks.  The i
CL, i

V1, i
Q, and i

V2 are random effects explaining inter-individual variability for 

the PK parameters which follow a normal distribution with mean zero and variance of 2
CL, 

2
V1, 

2
Q, and 2

V2, respectively. The θs are estimated model parameters. Diagnostic plots for 

the final model are shown in Figure 2. The plot of observed dexmedetomidine concentrations vs. 

population predictions reflects the relatively large inter-individual variability and potential 

misspecification for small concentration values, however no major deficiencies in the structural 

or error models are seen when comparing observed and individual predicted concentrations. No 

trends were detected in plots of individual weighted residuals vs. predicted concentration or time. 

The prediction-corrected visual predictive check showed good agreement between the observed 

and theoretical median and 90th percentiles; model misspecification is seen for the 10th percentile 

where many values are below the LLOQ and were simulated from the estimated model and 

where data are sparse (e.g., times greater than 5 days after first dose). 

The estimates of CL, V1, Q and V2 in terms of a standard weight of 70 kg are shown in 

Table 2A: CL (1) = 27.3 L/h, V1 (2) = 161 L, Q (3) = 26.0 L/h, and V2 (4) = 7903 L.  We 

estimate CL, V1, Q and V2 as 6.04 L/h, 21.6 L, 5.7 L/h, and 1061.26 L for a child at the median 

weight of 9.4 kg and median postmenstrual age of 104.6 weeks; After including covariates, the 

CV for CL was substantially reduced from 201% estimated in the base model to 123% in the 

weight only model to 103% in the final model. CV remains large for some parameters, especially 

V2 (624%) and V1 (138%), indicating that we lack the data to estimate them with precision.  

Model estimated clearance from the final model for seven age groups across a range of 

plausible weights is shown in Figure 3 (overlap between lines indicates weights that are 

plausible for multiple age groups). Weight impacts mean estimated CL for all ages while 

postmenstrual age has a large impact only for the youngest age groups. For those over 93 weeks 
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postmenstrual age, maturation is near adult level and mean estimated CL is primarily determined 

by weight.  

 

Genetic Effects on Clearance and Concentration 

UGT1A4, UGT2B10, and CYP2A6 were not significant at the α = 0.05 level.  For the 

UGT1A4 categorical gene model the estimated effect of any variants vs. no variants was -0.221 

(95% CI: -0.54 to 0.09) for a 20% decrease [exp(-0.221) ≈ 0.80] in CL on average for those with 

any UGT1A4 variants holding age and weight constant. In the UGT1A4 additive gene model, the 

estimated effect of each additional variant was -0.166 (95% CI: -0.406 to 0.073). For the 

UGT2B10 categorical model, the estimated genotype effect was -0.104 (95% CI: -0.32 to 0.11), 

indicating a 10% decrease on average. The UGT2B10 additive model estimated the effect of 

additional variants as -0.108 (95% CI: -0.241 to 0.025). For the CYP2A6 model, the estimated 

effect of a unit increase in risk score was 0.0885 (95% CI: -0.46 to 0.64). 

Although these effects are not statistically significant using the α = 0.05 threshold, we 

perform simulations to assess the hypothetical impact on total clearance and clinical dosing if the 

categorical UGT1A4 or UGT2B10 model estimates were utilized. Results are included in 

Supplemental Figures S29 – S34. Including these effects in the PK model has a negligible 

impact on dosing. 

 

Discussion 

Using remnant specimens along with dosing, clinical, and demographic information from 

an EHR system we were able to develop a dexmedetomidine population PK model for a large 
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pediatric cohort of 354 patients. We identified patient characteristics that alter the PK profile. 

This study is one of the largest pediatric dexmedetomidine population PK studies reported.  

We confirmed a structural model and covariate relationships which are in line with those 

previously reported for dexmedetomidine PK. Specifically, our model included both weight and 

age maturation effects on CL. We estimated a weight-standardized CL of 27.3 L/h (CV 103%). 

Our estimated CL is somewhat smaller (with larger CV) than those reported in other pediatric 

PK studies. For a standard weight of 70 kg, Potts et al.17 found a population CL estimate of 42.1 

L/h (CV 30.9%); including a scaling factor of 0.73 for children given infusion (vs. bolus) 

reduced the CL estimate to 30.7 L/h. Zuppa et al.9 estimated CL of 37.3 L/h (CV 48%) for 

neonates and infants age 0 – 6 months after cardiac bypass and Su et al.15 estimated CL as 39.4 

L/h (CV 28%) for children age 1 – 24 months after open heart surgery. The discrepancy between 

studies could be related to several factors including study design and study population. For 

example, our study used sparse and opportunistic sampling and included a more heterogenous 

population which included older children while the other studies used densely measured drug 

levels and were performed in a well-controlled clinical setting with a younger and more 

homogeneous population. After controlling for weight and age maturation, we found little 

evidence to support the importance of UGT1A4, UGT2B10, or CYP2A6 effects in explaining 

variability of CL between subjects. 

Using population PK models derived from EHR data and remnant specimens offers the 

possibility of more accurate prediction of individual dosing requirements in a real-life setting, 

especially in populations where large, intensive-sampling PK clinical trials are difficult to 

perform due to ethical or logistical considerations. The results from such model-informed 

precision dosing could also be integrated into EHR-embedded decision support tools; the 
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development and implementation of several of these tools has been recently described by 

Mizuno et al.41 and Vinks et al.42 

 There are several limitations related to the use of EHR and remnant specimens for our 

study. Although our data were generated using a standardized system to construct the PK data,25 

there may be some errors due to inherent limitations of EHR data, which is not primarily 

collected for research use. First, data collected for clinical purposes may be subject to errors 

related to data entry or missingness. Further, real-world dosing data are not standardized with 

large heterogeneity in the frequency, duration, and timing of administered infusion and bolus 

doses. In addition, the specimens are very sparse for some subjects and their collection is not 

timed to facilitate optimal PK estimation.  These limitations may be related to the imprecision in 

estimates for some PK parameters, notably V2. Future studies could address some of these 

limitations by incorporating prior information from previous or smaller pilot studies with more 

densely sampled data. 

Despite these limitations, our study provides further evidence for the feasibility of using 

EHR data and remnant specimens for population PK analysis. Our study findings, such as weight 

effects on CL, could be helpful to develop a model-based dosing that may be superior to the 

current fixed weight-based dosing scheme. However, this should be tested in a future study for 

its clinical utility in the pediatric population. Because dexmedetomidine is used to achieve 

specific sedation goals, it would also be of interest to incorporate the current study results into a 

joint pharmacokinetic-pharmacodynamic model using sedation outcomes also derived from the 

EHR. These models are an important step toward the ultimate goal of precision dosing.   
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Table 1.  Study Cohort 

Summary of demographic, genotype, clinical, dosing, and specimen sampling characteristics 

 

 Entire cohort 

n 354 

Postnatal Age (months) 15.7 (5.3 – 61.8) 

[0.03, 270.9] 

Postmenstrual Age (weeks) 104.6 (61.7 – 303.7)  

[39.1, 1200.0] 

Median weight (kg) 9.4 (6.0 – 18.2) 

[2.0, 138.0] 

Male sex 183 (52%) 

Race  

White 293 (83%) 

Black 40 (11%) 

American Indian or Alaska Native 2 (1%) 

Asian 6 (2%) 

Other 5 (1%) 

Unknown 8 (2%) 

Median serum creatinine (mg/dL) 0.49 (0.44 – 0.56) 

[0.24, 1.12] 

STAT score  

1 154 (43%) 

2 108 (31%) 

3 41 (12%) 

4 46 (13%) 

5 5 (1%) 

UGT1A4 variants  

0 262 (74%) 

1 87 (25%) 

2 5 (1%) 

UGT2B10 variants  

0 186 (53%) 

1 117 (33%) 

2 or 3 51 (14%) 

CYP2A6 score a 2.04 (2.00 – 2.21) 

[1.58, 2.43] 

Cardiac bypass time (hr) 1.66 (1.2 – 2.4) 

[0, 7.1] 

Length of ICU hospitalization (days)  4 (2 – 6) 

[1, 120] 

Total dosing events b 2386 
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Total IV infusion doses 2351 

Infusion duration (hr) 2.0 (1.0 – 5.1) [0.02, 125.6] 

Infusion rate (mcg/kg/hr) 0.6 (0.5 – 1.0) [0.03, 2.0] 

Total IV bolus doses 35 

Bolus dose amount (mcg/kg) 1.00 (0.96 – 1.01) [0.06, 4.21] 

Dosing events per subject 5 (3 – 8) 

[1, 37] 

Total dexmedetomidine concentration 

measurements 

1400 

Dexmedetomidine measurements below lower 

limit of quantification 

120 

Dexmedetomidine measurements per subject 3 (2 – 5) 

[1, 18] 

First dexmedetomidine measurement time 

after dose start (hr) 

5.3 (3.7 – 11.3) 

[0, 178.5] 

Final dexmedetomidine measurement time 

after dose start (hr) 

67.7 (39.3 – 130.5) 

[2.0, 659.8] 

Continuous variable summary statistics: median (interquartile range) 

[minimum, maximum]; Categorical variable summary statistics: number 

(%); aAmong n=350 subjects with available score; b A dosing event is 

defined as a bolus administration or an infusion interval with constant 

administration rate for a specific duration. 
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Table 2.  Estimates of Parameters for Population Pharmacokinetic Models 

(A) Estimates from base model and covariate models without genetic covariates. Weight is modeled with fixed allometric scaling parameters.  
 

Base Model 

(Obj = -1517.3; BICc = -1415.1) 

Weight Only Model 

(Obj = -1923.3; BICc = -1821.1) 

Weight and Maturation with simplified variance structure 

(Obj = -1915.1; BICc = -1835.0) 

Parameters 

 

Estimates (SE) 

[95% CI]a 

Parameters 

 

Estimates (SE) 

[95% CI] 

Parameters 

 

Estimates (SE) 

[95% CI] 

 

CL 

  

𝐶𝐿 = 𝜃1(𝑊𝑇 70⁄ )0.75 

 

𝐶𝐿 = 𝜃1(𝑊𝑇 70⁄ )0.75(
1

1 + (
𝑇𝑀50

𝑃𝑀𝐴
)
𝐻𝑖𝑙𝑙

) 

 

 

 6.27 (0.52) 

[5.33, 7.37] 

θ1 22.3 (1.85) 

[19.0, 26.2] 

θ1 27.3 (1.82)  

[24.0, 31.1] 

    TM50 41.9 (0.28) 

 [41.4, 42.5] 

    Hill 7.04 (0.022) 

 [6.99, 7.08] 

V1  𝑉1 = θ2(𝑊𝑇/70)  𝑉1 = θ2(𝑊𝑇/70)  

 19.5 (1.37) 

[17.0, 22.4] 

θ2 123 (11.5) 

[102, 148] 

θ2 161 (12.1) 

 [139, 187] 

Q  𝑄 = θ3(𝑊𝑇/70)0.75  𝑄 = θ3(𝑊𝑇/70)0.75  

 5.26 (0.44) 

[4.47, 6.20] 

θ3 26.6 (2.23) 

[22.6, 31.3] 

θ3 26.0 (1.90) 

 [22.5, 30.0] 

V2  𝑉2 = θ4(𝑊𝑇/70)  𝑉2 = θ4(𝑊𝑇/70)  

 763 (126) 

[555, 1048] 

θ4 6674 (1499) 

[4363, 10211] 

θ4 7903 (1408) 

 [5617, 11119] 

ωCL (%CV) 201 (12) [178, 226] ωCL (%CV) 123 (13) [100, 150] ωCL (%CV) 103 (8) [88, 120] 

ωV1 (%CV) 161 (9) [145, 179] ωV1 (%CV) 168 (22) [130, 217] ωV1 (%CV)  138 (13) [114, 166] 

ωQ (%CV) 146 (8) [132, 162] ωQ (%CV) 91 (11) [71, 115] ωQ (%CV)    82 (9) [65, 102] 

ωV2 (%CV) 672 (81) [534, 855] ωV2 (%CV) 857 (256) [494, 1595] ωV2 (%CV) 624 (157) [391, 1048] 
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Base Model 

(Obj = -1517.3; BICc = -1415.1) 

Weight Only Model 

(Obj = -1923.3; BICc = -1821.1) 

Weight and Maturation with simplified variance structure 

(Obj = -1915.1; BICc = -1835.0) 

𝜌𝐶𝐿,𝑉1 0.964 (0.003)  

[0.959, 0.97] 
𝜌𝐶𝐿,𝑉1 0.849 (0.055)  

[0.741, 0.956] 
𝜌𝐶𝐿,𝑉1 0.923 (0.027) 

 [0.871, 0.975] 

𝜌𝐶𝐿,𝑉2 -0.032 (0.043)  

[-0.116, 0.053] 

𝜌𝐶𝐿,𝑉2 -0.174 (0.101)  

[-0.372, 0.023] 

𝜌𝐶𝐿,𝑉2 0 (fixed) 

𝜌𝐶𝐿,𝑄 0.043 (0.076)  

[-0.106, 0.192] 
𝜌𝐶𝐿,𝑄 -0.509 (0.110)  

[-0.726, -0.293] 
𝜌𝐶𝐿,𝑄 0 (fixed) 

𝜌𝑉1,𝑉2 0.195 (0.044)  

[0.109, 0.28] 

𝜌𝑉1,𝑉2 0.277 (0.107)  

[0.068, 0.486] 

𝜌𝑉1,𝑉2 0 (fixed) 

𝜌𝑉1,𝑄 

 

-0.076 (0.073)  

[-0.22, 0.067] 
𝜌𝑉1,𝑄 

 

-0.410 (0.125)  

[-0.656, -0.165] 
𝜌𝑉1,𝑄 

 

0 (fixed) 

𝜌𝑉2,𝑄 0.089 (0.083)  

[-0.074, 0.252] 
𝜌𝑉2,𝑄 0.21 (0.121)  

[-0.028, 0.448] 
𝜌𝑉2,𝑄 0 (fixed) 

σadd (ng/mL) 2.22e-16 (5.65e-13) 

[0, 1.11e-12] 

σadd (ng/mL) 1.9e-08 (3.73e-07) 

[0, 7.51e-07] 

σadd (ng/mL) 0 (fixed) 

 

σprop (%CV) 50.3 (1.4)  

[47.6, 53.0] 

σprop (%CV) 50.3 (1.6)  

[47.2, 53.4] 

σprop (%CV) 50.5 (1.6)  

[47.5, 53.5] 
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(B) Estimates from categorical gene models for UGT1A4 or UGT2B10. 

 

UGT1A4 Categorical Gene Model 

(Obj = -1918.3; BICc = -1832.4) 

UGT2B10 Categorical Gene Model 

(Obj = -1913.8; BICc = -1827.9) 

Parameters 

 

Estimates (SE) 

[95% CI] 

Parameters 

 

Estimates (SE) 

[95% CI] 

𝐶𝐿 = 𝜃1(𝑊𝑇 70⁄ )0.75(
1

1 + (
𝑇𝑀50

𝑃𝑀𝐴
)
𝐻𝑖𝑙𝑙

)exp(𝜃5𝐼[𝑈𝐺𝑇1𝐴4 > 0]) 

 

𝐶𝐿 = 𝜃1(𝑊𝑇 70⁄ )0.75(
1

1 + (
𝑇𝑀50

𝑃𝑀𝐴
)
𝐻𝑖𝑙𝑙

)exp(𝜃5𝐼[𝑈𝐺𝑇2𝐵10 > 0]) 

 

 

θ1 24.0 (2.19)  

[20.1, 28.7] 

θ1 20.4 (2.07) 

[16.8, 24.9] 

TM50 42.2 (0.041) 

[42.1, 42.3] 

TM50 45.7 (0.078) 

[45.6, 45.9] 

Hill 4.17 (0.0016) 

[4.16, 4.17] 

Hill  4.96 (0.0073) 

[4.95, 4.97] 

θ5 -0.221 (0.16)  

[-0.54, 0.09] 

θ5 -0.104 (0.11) 

[-0.32, 0.11] 

𝑉1 = θ2(𝑊𝑇/70)  𝑉1 = θ2(𝑊𝑇/70)  

θ2 169 (20.4)  

[133, 213] 

θ2  178 (12.6) [155, 

204] 

𝑄 = θ3(𝑊𝑇/70)0.75  𝑄 = θ3(𝑊𝑇/70)0.75  

θ3  31.2 (2.74) 

[26.3, 37.1] 

θ3 33.2 (1.84) 

[29.8, 37.0] 

𝑉2 = θ4(𝑊𝑇/70)  𝑉2 = θ4(𝑊𝑇/70)  

θ4  14346 (2782) 

[9908, 20770] 

θ4 19655 (2804) 

[14921, 25889] 

ωCL (%CV)  113 (13)  

[90, 140] 

ωCL (%CV) 131 (13)  

[108, 158] 

ωV1 (%CV) 139 (31)  

[88, 216] 

ωV1 (%CV) 126 (12)  

[104, 152] 
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UGT1A4 Categorical Gene Model 

(Obj = -1918.3; BICc = -1832.4) 

UGT2B10 Categorical Gene Model 

(Obj = -1913.8; BICc = -1827.9) 

ωQ (%CV)   67 (7)  

[54, 81] 

ωQ (%CV) 67 (6)  

[56, 79] 

ωV2 (%CV) 640 (158)  

[404, 1067] 

ωV2 (%CV) 544 (114)  

[367, 837] 

𝜌𝐶𝐿,𝑉1 0.953 (0.043) 

[0.869, 1.0] 

𝜌𝐶𝐿,𝑉1 0.939 (0.018) 

[0.904, 0.974] 

𝜌𝐶𝐿,𝑉2 

 

0 (fixed) 𝜌𝐶𝐿,𝑉2 0 (fixed) 

𝜌𝐶𝐿,𝑄 

 

0 (fixed) 𝜌𝐶𝐿,𝑄 0 (fixed) 

𝜌𝑉1,𝑉2 

 

0 (fixed) 𝜌𝑉1,𝑉2 0 (fixed) 

𝜌𝑉1,𝑄 

 

0 (fixed) 𝜌𝑉1,𝑄 

 

0 (fixed) 

𝜌𝑉2,𝑄 

 

0 (fixed) 𝜌𝑉2,𝑄 0 (fixed) 

σadd (ng/mL) 0 (fixed) 

 

σadd (ng/mL) 0 (fixed) 

 

σprop (%CV) 50.6 (1.6)  

[47.5, 53.8] 

σprop (%CV) 50.7 (1.6) [47.6, 

53.8] 
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(C) Estimates from additive gene models for UGT1A4 or UGT2B10. 

 

UGT1A4 Additive Gene Model  

(Obj = -1917.6; BICc = -1831.7) 

UGT2B10 Additive Gene Model  

(Obj = -1917.3; BICc = -1831.4) 

Parameters 

 

Estimates (SE) 

[95% CI] 

Parameters 

 

Estimates (SE) 

[95% CI] 

𝐶𝐿 = 𝜃1(𝑊𝑇 70⁄ )0.75(
1

1 + (
𝑇𝑀50

𝑃𝑀𝐴
)
𝐻𝑖𝑙𝑙

)exp(𝜃5𝑈𝐺𝑇1𝐴4) 

 

𝐶𝐿 = 𝜃1(𝑊𝑇 70⁄ )0.75(
1

1 + (
𝑇𝑀50

𝑃𝑀𝐴
)
𝐻𝑖𝑙𝑙

)exp(𝜃5𝑈𝐺𝑇2𝐵10) 

 

 

θ1 23.8 (2.47)  

[19.5, 29.1] 

θ1 23.5 (2.43)  

[19.2, 28.7] 

TM50 47.6 (0.136)  

[47.3, 47.9] 

TM50  41.6 (0.206)  

[41.2, 42.0] 

Hill 5.55 (0.013)  

[5.53, 5.58] 

Hill 17.6 (0.052) 

[17.5, 17.7] 

θ5 -0.166 (0.12)  

[-0.406, 0.073] 

θ5 -0.108 (0.068)  

[-0.241, 0.025] 

𝑉1 = θ2(𝑊𝑇/70)  𝑉1 = θ2(𝑊𝑇/70)  

θ2 171 (16.2)  

[142, 206] 

θ2  161 (14.2)  

[136, 191] 

𝑄 = θ3(𝑊𝑇/70)0.75  𝑄 = θ3(𝑊𝑇/70)0.75  

θ3  31.6 (2.1)  

[27.7, 36.0] 

θ3 31.5 (2.2)  

[27.5, 36.0] 

𝑉2 = θ4(𝑊𝑇/70)  𝑉2 = θ4(𝑊𝑇/70)  

θ4 16576 (3229) 

[11431, 24038] 

θ4 12588 (2603) [8495, 

18654] 

ωCL (%CV)  110 (10)  

[91, 131] 

ωCL (%CV)  109 (12)  

[88, 135] 

ωV1 (%CV)  136 (18)  

[104, 177] 

ωV1 (%CV)  139 (14)  

[113, 170] 
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UGT1A4 Additive Gene Model  

(Obj = -1917.6; BICc = -1831.7) 

UGT2B10 Additive Gene Model  

(Obj = -1917.3; BICc = -1831.4) 

ωQ (%CV)  69 (7)  

[56, 84] 

ωQ (%CV)     64 (7)  

[52, 78] 

ωV2 (%CV) 548 (120)  

[364, 858] 

ωV2 (%CV)  792 (212)  

[482, 1377] 

𝜌𝐶𝐿,𝑉1 0.933 (0.03)  

[0.88, 0.99] 

𝜌𝐶𝐿,𝑉1 0.943 (0.04) 

[0.87, 1.0] 

𝜌𝐶𝐿,𝑉2 0 (fixed) 𝜌𝐶𝐿,𝑉2 

 

0 (fixed) 

𝜌𝐶𝐿,𝑄 0 (fixed) 𝜌𝐶𝐿,𝑄 

 

0 (fixed) 

𝜌𝑉1,𝑉2 0 (fixed) 𝜌𝑉1,𝑉2 

 

0 (fixed) 

𝜌𝑉1,𝑄 

 

0 (fixed) 𝜌𝑉1,𝑄 

 

0 (fixed) 

𝜌𝑉2,𝑄 

 

0 (fixed) 𝜌𝑉2,𝑄 0 (fixed) 

σadd (ng/mL) 0 (fixed) 

 

σadd (ng/mL) 0 (fixed) 

 

σprop (%CV) 50.4 (1.6)  

[47.4, 53.5] 

σprop (%CV) 50.6 (1.6)  

[47.5, 53.7] 
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(D) Estimates from models using weight and maturation with simplified variance structure in CYP2A6 PRS subset. 
 

Without CYP2A6 Score  

(Obj = -1889.2; BICc = -1809.3) 

With CYP2A6 Score  

(Obj = -1889.9; BICc = -1804.2) 

Parameters 

 

Estimates (SE) 

[95% CI] 

Parameters 

 

Estimates (SE) 

[95% CI] 

𝐶𝐿 = 𝜃1(𝑊𝑇 70⁄ )0.75(
1

1 + (
𝑇𝑀50

𝑃𝑀𝐴
)
𝐻𝑖𝑙𝑙

) 

 

𝐶𝐿 = 𝜃1(𝑊𝑇 70⁄ )0.75(
1

1 + (
𝑇𝑀50

𝑃𝑀𝐴
)
𝐻𝑖𝑙𝑙

)exp(𝜃5(𝐶𝑌2𝐴6𝑠𝑐𝑜𝑟𝑒)) 

 

 

θ1 30.5 (2.16)  

[26.5, 35.0] 

θ1 24.8 (14.7)  

[9.42, 65.2] 

TM50 41.5 (0.046)  

[41.4, 41.6] 

TM50 42.6 (0.098)  

[42.4, 42.8] 

Hill 4.52 (0.011)  

[4.50, 4.54] 

Hill 7.45 (0.015)  

[7.42, 7.48] 

  θ5 0.0885 (0.28)  

[-0.46, 0.64] 

𝑉1 = θ2(𝑊𝑇/70)  𝑉1 = θ2(𝑊𝑇/70)  

θ2 157 (16.1)  

[128, 191] 

θ2 152 (12.1) [130, 

178] 

𝑄 = θ3(𝑊𝑇/70)0.75  𝑄 = θ3(𝑊𝑇/70)0.75  

θ3  24.8 (1.99)  

[21.2, 29.0] 

θ3 24.5 (1.78) 

[21.2, 28.2] 

𝑉2 = θ4(𝑊𝑇/70)  𝑉2 = θ4(𝑊𝑇/70)  

θ4  5720 (1129)  

[3925, 8335] 

θ4  5756 (1017) 

[4102, 8077] 

ωCL (%CV) 103 (10)  

[86, 124] 

ωCL (%CV) 100 (8)  

[86, 116] 

ωV1 (%CV) 129 (20) 

[95, 173] 

ωV1 (%CV) 138 (15) 

 [111, 171] 
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Without CYP2A6 Score  

(Obj = -1889.2; BICc = -1809.3) 

With CYP2A6 Score  

(Obj = -1889.9; BICc = -1804.2) 

ωQ (%CV)  87 (10)  

[69, 109] 

ωQ (%CV) 86 (9)  

[69, 106] 

ωV2 (%CV)  514 (118)  

[334, 825] 

ωV2 (%CV) 549 (133)  

[349, 906] 

𝜌𝐶𝐿,𝑉1 0.945 (0.03)  

[0.88, 1.0] 
𝜌𝐶𝐿,𝑉1 0.942 (0.02) 

[0.91, 0.98] 

𝜌𝐶𝐿,𝑉2 

 

0 (fixed) 𝜌𝐶𝐿,𝑉2 0 (fixed) 

𝜌𝐶𝐿,𝑄 

 

0 (fixed) 𝜌𝐶𝐿,𝑄 0 (fixed) 

𝜌𝑉1,𝑉2 

 

0 (fixed) 𝜌𝑉1,𝑉2 0 (fixed) 

𝜌𝑉1,𝑄 

 

0 (fixed) 𝜌𝑉1,𝑄 

 

0 (fixed) 

𝜌𝑉2,𝑄 

 

0 (fixed) 𝜌𝑉2,𝑄 

 

0 (fixed) 

σadd (ng/mL) 0 (fixed) σadd (ng/mL) 0 (fixed) 

σprop (%CV) 50.8 (1.6) 

[47.6, 54.0] 

σprop (%CV) 50.7 (1.6) 

[47.7, 53.8] 

Abbreviations: a 95% Asymptotic confidence intervals (CIs); SE, standard error; Obj, objective function value; BICc, corrected Bayesian information criteria; CL, total clearance 

(L/hr); Q, intercompartmental clearance (L/hr); V1, volume of distribution for the central compartment (L); V2, volume of distribution for the peripheral compartment (L); TM50 

postmenstrual age at which clearance is 50% of adult value; Hill, maturation factor slope coefficient; CV, coefficient of variation; WT, body weight in kg; PMA, postmenstrual 

age in weeks; ωCL, ωV1, ωQ, ωV2, the standard deviation for i
CL

 ,i
V1, i

Q, and i
V2, respectively; For the standard deviation of random effects, ω, coefficient of variation was 

calculated as CV% = 100 × √(𝑒𝑥𝑝(𝜔2) − 1); ρ are correlation terms between random effects; prop and  add are proportional and additive residual error terms. 
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Figure 1. Study Cohort Flow Diagram in Data Processing with Exclusion Criteria 
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Figure 2. Diagnostic plots for the final population PK model 

(A) Observed dexmedetomidine concentrations vs. population predicted and (B) individual 

predicted concentrations. Filled circles indicate observed values, “x”s indicate simulated values 

based on the estimated model for observations below the lower limit of quantification (0.005 

ng/mL), blue lines are loess smoothers, and the solid black lines represent the line of identity 

 

 
 

(C) Individual weighted residuals vs. predicted concentrations and (D) time. Blue lines are loess 

smoothers, and the black horizontal lines at zero represent no trend 

 
 

 

 

(E) Correlation between random effects. Blue lines are least-squares fits 
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(F) Random effects vs. continuous and (G) categorical covariates. Blue lines are loess smoothers 
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(H) Prediction-corrected visual predictive check with 10th, 50th and 90th percentile of observed 

values (solid lines) and theoretical values (dashed lines) along with 90% prediction interval for 

theoretical percentiles (shaded region). Filled circles indicate observed values, “x”s indicate 

simulated values based on the estimated model for observations below the lower limit of 

quantification of 0.005 ng/mL (represented by a horizontal gray line); time was binned using the 

least-squares criteria. 
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Figure 3. Predicted clearance by weight for selected ages from the final weight and age 

maturation model 

Plausible weight ranges for each age group are: 41 weeks (2.7 to 5.1 kg), 45 weeks (3.3 to 6.1 

kg), 53 weeks (4.5 to 8.0 kg), 69 weeks (6.3 to 10.8 kg), 93 weeks (8.1 to 13.4 kg), 117 weeks 

(9.3 to 14.9 kg), 183 weeks (11.2 to 18.1 kg). Overlapping lines between different age categories 

represent weights that are plausible for multiple age groups. 
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