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Summary: The measurement of maternal antibodies in dried blood spots collected for newborn 

screening offers a statewide source of SARS-CoV-2 seroprevalence data independent of case 

testing limitations. We analyzed 72,117 Massachusetts spots collected November 2019 – 

December 2020 and estimated longitudinal trends.  

 

Abstract 

Background. Estimating the cumulative incidence of SARS-CoV-2 is essential for setting public 

health policies. We leveraged de-identified Massachusetts newborn screening specimens to 

generate an accessible, retrospective source of maternal antibodies for estimating statewide 

SARS-CoV-2 seroprevalence in a non-test-seeking population. 

Methods. We analyzed 72,117 newborn dried blood spots collected from November 2019 

through December 2020, representing 337 towns and cities across Massachusetts. 

Seroprevalence was estimated for the general Massachusetts population after correcting for 

imperfect test specificity and nonrepresentative sampling using Bayesian multilevel regression 

and poststratification. 

Results. Statewide seroprevalence was estimated to be 0.03% (90% credible interval (CI) [0.00, 

0.11]) in November 2019 and rose to 1.47% (90% CI [1.00, 2.13]) by May 2020, following 

sustained SARS-CoV-2 transmission in the spring. Seroprevalence plateaued from May 

onwards, reaching 2.15% (90% CI [1.56, 2.98]) in December 2020. Seroprevalence varied 

substantially by community and was particularly associated with community percent non-

Hispanic Black (β = 0.024, 90% CI [0.004, 0.044]); i.e., a 10% increase in community percent 

non-Hispanic Black was associated with a 27% higher odds of seropositivity. Seroprevalence 

estimates had good concordance with reported case counts and wastewater surveillance for 

most of 2020, prior to the resurgence of transmission in winter. 

Conclusions. Cumulative incidence of SARS-CoV-2 protective antibody in Massachusetts was 

low as of December 2020, indicating that a substantial fraction of the population was still 

susceptible. Maternal seroprevalence data from newborn screening can inform longitudinal 

trends and identify cities and towns at highest risk, particularly in settings where widespread 

diagnostic testing is unavailable. 
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Introduction 

Disease surveillance networks operate at multiple levels of government and healthcare, yet 

monitoring for outbreaks of new diseases remains a challenge. There are few material sources 

of information with limited cohort bias available to address questions about the frequency and 

distribution of a new infectious agent within populations. Newborn screening (NBS) programs 

are one of those resources. A successful public health service, NBS programs collect infant 

dried blood spot specimens at centralized clinical laboratories where they are tested for markers 

of an ever-expanding panel of treatable, largely genetic, disorders and referred to appropriate 

providers when necessary. Such programs comprise high-throughput laboratory testing with 

community outreach, operate under state authority, and maintain secure electronic and 

specimen records. Importantly, these infant blood specimens collected for NBS contain 

maternal IgG antibodies that cross the placenta and that reflect maternal exposure to infectious 

agents. The use of NBS to measure the seroprevalence of an emerging infectious disease was 

pioneered in the late 1980s for HIV [1] and taken up by a majority of states for several years [2].  

This framework offers advantages for monitoring SARS-CoV-2 infection in the absence of 

symptomatic disease, particularly as diagnostic testing was limited in the initial stages of the 

pandemic, leading to uncertainty about the true burden and spread of infection. Many critical 

questions about SARS-CoV-2 infection incidence and spread are important to answer to inform 

public health responses to the pandemic: What proportion of our population has been exposed? 

How is exposure geographically distributed? Are the rates of exposure increasing in some 

populations faster than in others? What are the characteristics of those who become infected? 

Using data generated from NBS specimens, we report findings that address these questions 

from a retrospective, de-identified, and systematic survey of SARS-CoV-2 seroprevalence in 

childbearing women in Massachusetts. 

 

Methods 

Study population. Women who were residents of Massachusetts, gave birth in Massachusetts 

and whose infants’ dried blood spot (DBS) specimens had completed routine newborn 

screening met study surveillance inclusion criteria with the DBS specimens serving as 

surrogates for the women. A control group was pre-defined to be those DBS arriving at the 

newborn screening program in March of 2019 and the study group was defined as those DBS 
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arriving from November 4, 2019 through December 31, 2020. The following exclusion criteria 

were applied: only one DBS specimen per infant and only one DBS specimen from each 

multiples’ birth was included. All specimens of infants >30 days of age at time of specimen, all 

DBS of infants transfused within 48 hours, all specimens determined to be “unsatisfactory” 

quality for NBS, and all specimens from mothers who opted out of providing data for research 

were excluded. 

The Institutional Review Boards of the Massachusetts Department of Public Health and the 

UMass Chan Medical School approved waivers of consent for the de-identified public health 

surveillance.  

Antibody testing optimization. Human monoclonal IgG antibody cross reactive to SARS-CoV-2 

was prepared from CR3022 variable genes expressed from plasmids, as described previously 

for other SARS-CoV-2 antibodies [3]. The receptor binding domain (RBD) of the Spike protein 

used as ELISA Ag was expressed using HEK-293F cells and prepared as follows: a plasmid 

containing His-tagged RBD was transiently transfected in HEK-293F cells using PEI. The 

expressed protein was extracted and purified with Ni-NTA resin and stored at -80C until use. 

IgG antibodies specific to the RBD protein were detected in eluates from DBSs residual to the 

Massachusetts newborn screening program, by an adaptation of a previously described ELISA 

designed for serum [4]. Details of the protocol used can be found in the Supplementary 

Methods. 

Cutoff determination. To determine positive and negative interpretations, we used a plate-

specific cutoff calculation using standard deviations (SD) above the mean of the replicates’ 

average IgG concentration in a two-step process. In the first step, the mean and two SD were 

calculated for each plate. In the second step, any specimens with a concentration greater than 

or equal to two standard deviations above the plate mean from the first step were excluded from 

the calculation of the second mean and standard deviation (mean and SD of presumed negative 

samples). For Laboratory 1 (384-well assays), any specimen with a µg/mL result that was 5.3 

SD above the second cycle mean was interpreted as positive. For laboratories 2 and 3 (96 well 

assays), any specimen with a µg/mL result that was 3.3 SD above the second cycle mean was 

interpreted as positive. 

Inhibition assay. The inhibition assay was performed in the same manner as the standard IgG 

antibody analysis, with the following exceptions. Concentrated RBD diluted in dilution buffer was 
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pre-mixed with DBS eluates so that the final dilution of the DBS eluates was identical to that 

used in the standard assay (1:4), and the final dilution of RBD was 1 µg/ml. This mixture was 

incubated for 30 minutes at RT, and 100 µl of the inhibited mixture was added to ELISA wells in 

duplicate. Uninhibited wells were also tested in duplicate, replacing the concentrated RBD with 

diluent alone. Percent inhibition was expressed as 100 * (average OD of inhibited wells) / 

(average OD of uninhibited wells).  

Data processing. Each of three testing laboratories determined that test results met Quality 

Control (QC) requirements. Testing laboratories reported replicate OD and IgG concentration 

results for all well locations from specified plates to investigators at the New England Newborn 

Screening Program (NENSP). Transient linkages between plated specimens, test results, and 

demographic data were created and available to only two investigators at the NENSP (AMC and 

JEH) for application of inclusion and exclusion criteria followed by calculations for results 

interpretation in the restricted study database. Data extracted by a query of the restricted 

database yielded a de-identified set of coded specimens with the limited data variables reported 

in this paper. All transient linkages to any identifiers will be irretrievably destroyed upon 

acceptance for publication. 

Population-wide statistical model. We used dynamic (i.e., time-varying) Bayesian multilevel 

regression and poststratification (MRP) models to adjust seroprevalence estimates for non-

representative sampling by age, sex, and Massachusetts community of residence (i.e., n=351 

cities or towns) and for imperfect test specificity [5-9]. The core approach of MRP is to estimate 

the outcome variable conditional on sociodemographic characteristics using a non-

representative data set, and then project these estimates onto a representative population of 

interest [5, 7-11]. MRP models additionally enable estimation of longitudinal seroprevalence 

trends at granular geographic levels, such as the communities that we consider here. Estimating 

these models consists of two steps: first, we fit a time-varying Bayesian multilevel logistic 

regression model to predict serostatus conditional on age category and community; these 

covariates are modeled using random effects [10]. We used two types of time-varying functions: 

we primarily assessed estimates from a model grouping data by month, but for comparison, we 

also fit a generalized additive model using thin-plate splines which modeled time continuously 

[8]. Then, we post-stratified the seroprevalence estimates over time using census data to 

individual communities and to the statewide population. In the monthly model, we also 

accounted for imperfect test specificity by allowing for measurement error when collecting data 
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from true seronegatives [9]. Additional details for the models used can be found in the 

Supplementary Methods. 

To identify community-level factors associated with seropositivity, we also fit a time-invariant 

logistic regression model pooling data from the last four months (i.e., September through 

December of 2020, corresponding to the height of seropositivity). We included fixed effects for 

multiple demographic factors acquired from the 2015-2019 5-year American Census Survey 

(Supplementary Table 2) [12] and random effects for age category and community. Details for 

all model fitting parameters can be found in the Supplementary Methods. Code used to fit the 

models will be made available on Github at the following URL: 

https://github.com/gradlab/covid19-newborn-seroprevalence  

Other data sources. We acquired deidentified active case surveillance incidence data from the 

Massachusetts Department of Public Health’s MAVEN, an integrated, web-based disease 

surveillance and case management system [13]. We also acquired data from wastewater 

surveillance generated by the Massachusetts Water Resource Authority (MWRA) and Biobot 

Analytics [14]. Because seroprevalence estimates are a proxy for cumulative incidence up until 

a given time, we took the cumulative sum of the MAVEN incidence or MWRA wastewater 

surveillance data, respectively. To account for the delay from exposure to SARS-CoV-2 to 

antibody generation, we lagged the seroprevalence model by 3 weeks when overlaying 

longitudinal trends [15]. 

 

Results 

Neonatal specimens representing all Massachusetts women who gave birth and met study 

criteria are shown in Table 1. The 72,117 women who gave birth from November 2019 through 

December 2020 resided in 337 towns and cities across Massachusetts. The 1,817 presumed 

seronegative (March 2019) specimens were also from across the state (324 towns and cities). 

We first measured seropositive rates from a population of anonymized newborn DBS in a 

subset of residual DBS from a period believed to significantly pre-date the COVID-19 outbreak 

(March 2019). Each of the three testing labs received punches from the same 288 specimens 

punched across 4 plates. Figure 1 shows the individual [IgG] results of the anonymized 

presumed seronegative specimens, the positive controls, and diluent controls by plate and by 
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testing laboratory. The low positive controls showed IgG concentrations significantly above the 

mean of the tested specimens and all above the values for the tested specimens. 

Among the 1,817 presumed seronegative specimens from March 2019, 7 (0.39%) were 

seropositive for SARS-CoV-2. Among the 72,117 study specimens, 1,261 (1.75% statewide) 

were seropositive; 45 seropositives were from November and December 2019. We investigated 

the likelihood that these early seropositive values were false positives using an inhibition assay. 

For comparison, of the 29 seropositive specimens from July 2020, the average inhibition was 

57% (confidence interval [48, 66]; minimum 22%). Of the available 45 specimens from 

November and December 2019, the average inhibition was 1.45% (confidence interval [1.34, 

1.56]), confirming that most seropositives from 2019 were false positives. Only 3 of the 45 

specimens showed notable inhibition (18%, 27%, and 36%). 

We projected the NBS seroprevalence results statewide and to Massachusetts cities and towns 

using multilevel regression and poststratification (MRP) and additionally accounted for imperfect 

test specificity. MRP enables estimation of seroprevalence at granular geographic levels and 

addresses non-representative sampling, which is a challenge for the NBS cohort since there are 

sampling biases by sex, age group, and geography relative to the overall Massachusetts 

population (Supplementary Figures 1 and 2). Statewide monthly seroprevalence in early 

November 2019 was estimated to be 0.03% with a 90% credible interval (CI) of 0.00% to 0.11% 

and remained low until May 2020 (Figure 2). In May 2020, seroprevalence rose to 1.47% (90% 

CI [1.00, 2.13]) following sustained SARS-CoV-2 transmission in the spring, and plateaued at 

approximately 2% from July onwards, reflecting decreased transmission in the summer months 

due to lockdowns, mask wearing, and other factors [16, 17]. The estimate for seroprevalence for 

December 2020 was 2.15% (90% CI [1.56, 2.98]). Statewide trends estimated from the 

continuous-time MRP model showed similar qualitative results (Supplementary Figure 3). 

We next estimated longitudinal seroprevalence trends in Massachusetts cities and towns to 

identify geographic heterogeneities in SARS-CoV-2 infection risk. Overall seropositivity varied 

considerably across the state (Figure 3, Supplementary Figure 4), but cities with high 

seroprevalence showed similar qualitative trajectories to each other and to overall statewide 

trends (i.e., increases from April to May 2020 followed by plateaus) (Figure 3). The widths of the 

credible intervals also varied, reflecting uncertainty due to smaller sample sizes for some cities, 

such as Chelsea, compared to larger cities, such as Boston. The estimate for seroprevalence in 

Boston was 0.05% (90% CI [0.00, 0.17]) in November 2019 and rose to 3.56% (90% CI [2.49, 
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4.93]) at the end of 2020, which is slightly higher than the estimate for the state. Modeling time 

continuously yielded similar qualitative trends (Supplementary Figure 5). 

We compared the seroprevalence estimates to active case surveillance data collected by the 

Massachusetts Department of Public Health and wastewater surveillance conducted by the 

Massachusetts Water Resource Authority (MWRA) and Biobot [13, 14]. Relative to these data – 

which capture infected individuals shedding virus – seroprevalence levels are a lagging indicator 

of infection trends because of the delay from infection to antibody production. To account for 

this, we overlaid the statewide seroprevalence estimates with the MAVEN and MWRA data 

using a three-week lag (Figure 4). We observed good qualitative concordance between 

seroprevalence levels and MAVEN cumulative incidence trajectories from 2019 into 2020 but a 

divergence between the curves at the end of 2020: seropositivity in the heel stick cohort did not 

rise as sharply as cases did during the winter resurgence in transmission (Figure 4a). This 

discrepancy held true for trends in selected cities and towns (Figure 4b), as well as comparing 

seroprevalence levels with cumulative SARS-CoV-2 RNA copies per mL from the wastewater 

surveillance data (Figure 4c), indicating a deviation between the DBS data and multiple other 

sources of SARS-CoV-2 surveillance towards the end of the sampling timeline.   

Finally, we sought to understand community-level factors associated with increased 

seropositivity by fitting a multivariate model that included 14 sociodemographic variables on 

serosurvey data from the last four months. These variables spanned population size and 

density, race and ethnicity, housing, education, and socioeconomic status (Supplementary 

Table 2). We calculated 90% credible intervals – representing the most plausible range of 

values – for the 14 estimated coefficients of association between each variable and 

seropositivity. The percent of the community that was non-Hispanic Black was the only variable 

with a 90% credible interval that excluded 0 (Table 1); the mean of the posterior distribution for 

this variable was 0.024, indicating that a 10% increase in the percent of a community that was 

non-Hispanic Black was associated with 27% higher odds of seropositivity, adjusting for all other 

included variables. The association of percent non-Hispanic Black and percent Hispanic or 

Latino with increased seropositivity was driven in part by several cities and towns, including 

Brockton, Springfield, Everett, Chelsea, Lynn, and Lawrence (Figure 4). We also calculated the 

probability of a coefficient being greater or less than zero for the 14 coefficients: percent non-

Hispanic Black and percent without insurance coverage had a 90% or higher probability of being 

greater than 0, whereas average household size, median age, and population density had a 

90% or higher probability of being less than 0. These results suggest several additional 
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sociodemographic variables that warrant further study to characterize their association with 

seropositivity (Supplementary Figure 6). 

 

Discussion 

Understanding the cumulative incidence of SARS-CoV-2 is essential for setting public health 

policies and guiding vaccine rollouts, but the cumulative incidence for states and their cities and 

towns is still largely unknown because of a lack of representative serosurveys and inadequate 

case testing. In Massachusetts, we leveraged the knowledge base and repository of our NBS 

program for the generation of a readily accessible, retrospective, and de-identifiable source of 

maternal antibodies that can inform SARS-CoV-2 seroprevalence estimates. The strengths of 

this approach are multifaceted: the study cohort is free of biases arising from test-seeking 

behaviors, test availability, and symptom presence, since child-bearing women were included in 

the study because they had given birth, not because they were thought to have been exposed 

to SARS-CoV-2 [18]. Additionally, the specimens and demographic data are routinely stored 

and retrospectively available for public health purposes. The key idea of our study is that by 

using DBS as the primary data source, we can estimate longitudinal trends in seroprevalence in 

childbearing women and then project these results to the population at large using statistical 

methods.  

We analyzed data from 72,117 DBS collected across Massachusetts from November 2019 

through 2020 and estimated seroprevalence using multilevel regression and poststratification 

(MRP), which is a Bayesian statistical method used for generalizing survey results and has 

been increasingly applied to epidemiological studies of SARS-CoV-2 [6, 8, 9, 19]. We found that 

longitudinal trends statewide and for selected cities and towns were qualitatively similar, with a 

rise in seropositivity in April 2020 followed by a plateau. The estimated seroprevalence levels 

had good concordance with cumulative incidence estimated by MAVEN case [13] and MWRA 

wastewater surveillance data [14], until the observed resurgence of transmission toward the end 

of 2020. While sampling into 2021 will be necessary to fully understand the extent to which 

these data sources diverge, one key contributing factor could be changing risk profiles and 

behaviors of pregnant women over the course of the pandemic. We also found evidence that 

out of all the sociodemographic variables we investigated, community percent non-Hispanic 

Black was most associated with increased seroprevalence levels, in line with other 
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epidemiological studies [20-23]. These results underscore the importance of continuing equity 

and outreach initiatives for minority communities that were most affected by the initial epidemic 

wave of SARS-CoV-2. 

Our findings are subject to at least several limitations and biases. As noted, selection bias could 

arise because fundamental risk differences between pregnant women and the general 

population are not accounted for in our statistical model. The direction and causes of this 

potential bias vary: pregnant women could have less exposure to SARS-CoV-2 due to 

behavioral choices, depending on sociodemographic characteristics, but increased biological 

susceptibility to infection due to immune weakening. Nonetheless, estimates from cohorts with 

clear selection biases, such as blood donors or healthy volunteers, can still meaningfully inform 

seroprevalence estimates in the general population [18, 24-26]. Second, misclassification bias 

can occur due to imperfect test sensitivity and specificity. We have estimated specificity using a 

pre-pandemic sample of DBS and have incorporated it into the statistical model; however, we 

do not have an estimate for sensitivity. Accounting for imperfect test sensitivity would be 

expected to shift the seroprevalence estimates higher and widen the credible intervals 

(Supplementary Figure 7), due in part to the uncertainty involved in measuring sensitivity itself. 

By assessing the distribution of maternal antibodies to SARS-CoV-2 statewide and over time, 

our study provides a strategy for the systematic evaluation and estimation of population-wide 

cumulative incidence of SARS-CoV-2. Prospective use of NBS-based cumulative incidence 

estimates of exposure for ongoing policy development would require the more typical same-day 

turnaround time of clinically-based NBS programs. Our approach – leveraging an easily stored 

and often readily available data source – may be most useful for informing cumulative incidence 

estimates in areas where widespread infection testing is still unavailable or remains heavily 

biased [18]. 
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* Includes 73 punched specimens were not linkable to newborn database. 
** List is progressive, and specimens are only counted in each category once. 
*** E.g., collected from patient’s parent or sibling, collected from patient to monitor treatment  
**** Unsatisfactory includes conventional QC issues: poor soak, scratched/abraded, improperly dried, 
layered/clotted, contaminated/diluted, QNS, no blood, no demographics 

 
 
Table 1. Characteristics of NBS DBS specimens included in the survey.  
  

 Nov 2019 – 
Dec 2020 

March 2019 
(presumed  
seronegative) 

Totals  

TOTAL Specimens punched 93,660 2,372 96,105* 
Types of Specimens not meeting inclusion criteria**:     
1. Specimens not collected for typical NBS purposes*** 3,126 76 3,202 
2. Specimens declared unsatisfactory for any NBS 

assay**** 
2,304 79 2,383 

3. Specimens from infants transfused within 48 hr of 
collection 

98 3 101 

4. Specimens collected from non neonate (>=30 days 
of age) 

2,685 56 2,741 

5. Specimens from all but first neonate from a Multiples 
birth 

1,967 57 2,024 

6. Specimens of neonates whose mother is not MA 
resident 

2,521 56 2,577 

7. Specimens that are “repeat” NBS specimens 8,116 219 8,335 
8. Research exclusion requested by parent 0 0 0 

Total specimens not meeting inclusion criteria 20,817 
(22%)  

546  
(23%) 

21,363 
(22%) 

    
Punched specimens meeting inclusion criteria 72,843 1,826 74,669 

Specimens not meeting technical quality data 726 
(0.99%) 

9 
(0.49%) 

735 
(0.98%) 

    
Specimens linked to quality-controlled results 72,117 1,817 73,934 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 30, 2021. ; https://doi.org/10.1101/2021.10.29.21265678doi: medRxiv preprint 

https://doi.org/10.1101/2021.10.29.21265678
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Demographic variable Mean SD 5% 95% P(X > 0) P(X < 0) 

Percent non-Hispanic Black*† 0.0238 0.0119 0.00405 0.0436 0.97 0.03 

Percent Asian -0.00417 0.0167 -0.0318 0.0233 0.4 0.6 

Average household size† -0.613 0.451 -1.34 0.14 0.08 0.92 

Percent living in a house with 
greater than 1 occupant per room 

0.246 0.217 -0.119 0.585 0.87 0.13 

Percent born in a foreign country 0.00932 0.0169 -0.0175 0.037 0.71 0.29 

Percent Hispanic or Latino 0.0111 0.00926 -0.00413 0.0261 0.89 0.11 

Percent with a high school or 
higher diploma 

-0.0173 0.0246 -0.0567 0.024 0.23 0.77 

Percent male 0.0301 0.042 -0.041 0.0947 0.76 0.24 

Median age† -0.0292 0.0223 -0.0653 0.00879 0.1 0.9 

Median income -8.60E-06 1.50E-05 -3.37E-05 1.63E-05 0.28 0.72 

Population density† -3.85E-05 2.57E-05 -7.89E-05 4.18E-06 0.07 0.93 

Percent under poverty threshold -0.0298 0.0332 -0.0831 0.0256 0.19 0.81 

Total population 2.26E-07 6.57E-07 -7.68E-07 1.36E-06 0.63 0.37 

Percent without insurance 
coverage† 

0.122 0.0761 -0.00151 0.245 0.95 0.05 

 

Table 2. Posterior distribution summaries for the community-level multivariate association of 
demographic characteristics with seroprevalence. † indicates either P(X > 0) or P(X < 0) is 90% 
or higher and * indicates that the 90% credible interval excludes 0. 
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Figure 1. [IgG] results of 288 anonymized specimens obtained in March 2019 tested by each of 

the three labs across four plates. Blue dots are residual NBS DBS specimens, red dots are 

positive controls, and black dots are diluent controls. 
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Figure 2. Statewide longitudinal seroprevalence trend from November 2019 to December 2020 

estimated using the monthly MRP model adjusting for test specificity. The mean seroprevalence 

estimates are indicated by the blue dots with the error bars depicting 90% credible intervals; 

pink dots represent unadjusted weekly seroprevalence estimates. 
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Figure 3. Longitudinal seroprevalence trends in cities and towns from November 2019 to 

December 2020 estimated using the monthly MRP model adjusting for test specificity. The eight 

cities and towns with the highest lower 90% credible interval in December 2020 and at least 20 

heel stick samples collected are shown. The mean seroprevalence estimates are indicated by 

the blue dots with the error bars depicting the 90% credible intervals; pink dots represent 

unadjusted monthly seroprevalence estimates. 
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Figure 4. Comparison of MRP seroprevalence estimates with SARS-CoV-2 surveillance data 

from reported cases and wastewater testing. a) Statewide longitudinal seroprevalence trend 

estimated from newborn screening samples (blue) overlaid with cumulative incidence from 

MAVEN epidemiological surveillance data (orange). b) Seroprevalence trends for six cities and 

towns (blue) overlaid with MAVEN cumulative incidence (orange). c) Seroprevalence trend for 

the northern MWRA region (blue) versus cumulative RNA copies per mL from wastewater 

SARS-CoV-2 testing for the same region (pink). In all subpanels, the blue error bars depict the 

90% credible interval for seroprevalence, and seroprevalence data are shifted backwards by 

three weeks to match the timing of surveillance data. 
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Figure 5. Comparison of percent non-Hispanic Black (left) and percent Hispanic or Latino (right) 

with estimated seroprevalence by community. Dots indicate mean of the posterior 

seroprevalence distribution and shaded regions indicate 90% credible intervals. Communities 

with a lower 90% credible interval above 3% seropositivity are labelled. 
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Supplementary Information 

Supplementary Methods 

Antibody testing optimization (continued). Both 96-well (96w) and 384-well (384w) microtiter 

plate formats were utilized. 3.2mm (d) punches of DBSs were placed into 96-well polyproplylene 

v-bottom microtiter plates, eluted with 150 µL dilution buffer (1% BSA, 0.05% Tween-20, 140 

mM NaCl, 50 mM Tris (pH 8.0)), and incubated ON at 4°C. Final DBS eluates were prepared by 

transferring the entire eluate from the DBS-containing wells, into clean v-bottom polypropylene 

microtiter plates. These plates were sealed using Linbro Acetate Sealer from MP 

Biomedicals,CAT #77-400-05, transported to one of three testing sites, kept at 4°C, and used 

within 3 days. Flat-bottom polystyrene ELISA plates (Thermo #439454 for 96w; #464718 for 

384w) were coated with 100 µl (50 µl for 384w) SARS-CoV-2-RBD (1 µg/ml in CBB buffer; 

Millipore Sigma (C3041100CAP)) for 30 minutes at RT, and washed X3 in wash buffer (% 

Tween-20, 400 mM NaCl, 50 mM Tris (pH 8.0)). Wells were then blocked with 250 µl (100 uL for 

384w) blocking buffer (1% BSA, 140 mM NaCl, 50 mM Tris (pH 8.0)), for 30 minutes at RT, and 

washed X3. DBS eluates were diluted 1:4 in dilution buffer, and 100µl (50µL for 384w) was 

added to wells of the washed, coated, and blocked plates, incubated 30 minutes at 37°C, and 

washed X5. To each well 100 µL (50 µL for 384w) HRP-conjugated human IgG-specific 

detection antibody (Bethyl Laboratory (A80-104P)) diluted 1:25,000 in dilution buffer was added. 

Plates were incubated 30 minutes at RT and washed X5. 100 µL (50 µL for 384w) substrate (1-

Step™ Ultra TMB-ELISA Substrate Solution; Thermo Fisher (34029)) was added to each well 

and incubated 3 minutes at RT, then stopped with 100 µL (50 µL for 384w) 1M H2SO4. Plates 

were read at 450nm (and background at 570nm subtracted). On each plate, a standard curve of 

2-fold serial dilutions of purified CR3022 antibody was performed in duplicate, as well as eluates 

of DBSs made from blood of adults known to be positive for low concentration of COVID 

antibody, as controls. 

Laboratory data harmonization and cutoff determination. To harmonize data among the three 

testing laboratories, optical densities (OD) of DBS eluates were converted into µg/ml of CR3022 

monoclonal IgG antibody by comparing activity to the standard curve.  Specifically, a 5-

parameter logistic curve function, 𝑦 = 𝑑 +
ିௗ

ଵାቀ
ೣ


ቁ
್
൨
, was fit using the curve_fit method of SciPy, 

a scientific programming package for Python, with x=µg/ml and y=OD [1]. This fit curve was 

then used to convert OD on a per-sample basis to µg/mL. Converted µg/mL values were then 
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averaged by replicates to obtain a sample µg/mL value. To ensure correct normalization across 

laboratory and plate, the serial dilution and curve-fitting procedure were performed on every 

plate. 

Between and within laboratories, we observed interplate variability in the reported ODs and 

concentrations and concentrations attributable to the then single-source low positive control.  

We investigated a variety of harmonization protocols and determined that a per-plate two cycle 

cutoff calculation represented data from the three laboratories best. We knew there to be no 

bias in the distribution of samples from geographic residence locations to each laboratory and, 

as expected, Supplementary Table 1 shows that the yields of seropositive values from each 

laboratory are generally proportional to the number of specimens tested by that laboratory. 

 

Population-wide statistical model (continued). The formula for the MRP logistic regression 

model is given by: 

 

where 𝜃 is the seroprevalence in the jth strata, 𝛼 is the intercept, α୲୭୵୬[] is the city or town 

random effect for the jth strata, 𝛼[] is the age random effect for the jth strata, and g(t) is a 

time-varying function. For the time-varying function, we primarily used estimates from a model 

grouping data by month:  

 

where t is the month, βଵ and βଶ are the coefficients for the overall linear and quadratic month 

trends respectively, and α୫୭୬୲୦[௧] is a month random effect for month t. We then extend the 

model with the effect of test characteristics [2]:  
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where 𝜃
∗ is the test characteristic adjusted seroprevalence for the jth strata, γ is the specificity 

of the test, δ is the sensitivity of the test, 𝑦 is the observed number of seropositives in the jth 

strata, 𝑛 is the number of DBS tested in the jth strata, 𝑦ஓ is the observed number of 

seronegatives in the pre-pandemic DBS sample, and 𝑛ஓ is the total number of DBS tested in the 

pre-pandemic sample. We assume test sensitivity is fixed at 1 for all analyses, though we have 

conducted a sensitivity analysis (Supplementary Figure 7) to understand how lowered test 

sensitivity could affect our results.  

We also assessed how different time-varying functions could affect our estimates. To model 

time continuously, we used a Bayesian generalized additive model with thin-plate splines as in 

Pouwels et al. [3]. We specified factor smooth interactions, which allow spline parameters to 

vary by community but with a shared smoothing parameter. This model did not adjust for test 

characteristics. 

 

Model fitting and code. The generalized additive model was fit using the stan_gamm function 

from Rstanarm version 2.19.2 run with 500 iterations, 8 cores, a basis dimension of 5, the 

smoothing basis set to factor smooth interactions, and otherwise default settings, including 

priors. The monthly model was fit using custom Stan code run via Rstan version 2.21.2, 

sampling for 1000 iterations using 4 chains on 4 cores and otherwise default settings. Model fit 

was assessed using trace plots and the Rhat metric. Posterior distribution estimates were 

summarized using mean and 90% credible intervals. 
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  Positives Tested 
Pos. per lab of 
that lab's tests 

Tested per lab 
of total tested 

Positives per lab of 
total positives 

Lab A  760 45,132 1.68% 62.58% 60.26% 
Lab B  299 16,714 1.79% 23.17% 23.71% 
Lab C  202 10,271 1.96% 14.24% 16.02% 
Total   1,261 72,117 1.75% 100.00% 100.00% 

 

Supplementary Table 1. Proportions of specimens tested and the distribution of positive results 

from the three laboratories. 
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Demographic variable 2015-2019 5-year ACS variables and formulae  

Total population B01003_001 

Population density (people per 

square mile)  

B01003_001 / (ALAND† / 2.59 * 106) 

Average household size B25010_001 

Percent non-Hispanic Black 100 * B02001_003 / B01003_001 

Percent Hispanic or Latino 100 * B03001_003 / B01003_001 

Percent Asian 100 * B02018_001 / B01003_001 

Median income B06011_001 

Median age B01002_001 

Percent male 100 * B01001_002 / B01003_001 

Percent with a high school or 

higher diploma 

100 * (B15003_017 + B15003_018 + … + B15003_024 

B15003_025) / B15003_001 

Percent without insurance 

coverage 

100 * (B27010_017 + B27010_033 + B27010_050 + 

B27010_066) / B01003_001 

Percent under poverty threshold 100 * B06012_002 / B01003_001  

Percent born in a foreign country 100 * B05002_013 / B01003_001 

Percent living in a house with 

greater than 1 occupants per 

room 

100 * (B25014_005 + B25014_006 + B25014_007 + 

B25014_011 + B25014_012 + B25014_013) / 

B01003_001 

 

Supplementary Table 2. Variables included in the community-level Bayesian multivariate 

association of demographic characteristics with seroprevalence. †ALAND is the land area in 

meters squared for each city or town acquired from the US Census Bureau 2018 Cartographic 

Boundary File at the level of county subdivisions. 
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Supplementary Figure 1. Sampling biases by age in the newborn heel stick data set (blue) 

compared to census population estimates (red). 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 30, 2021. ; https://doi.org/10.1101/2021.10.29.21265678doi: medRxiv preprint 

https://doi.org/10.1101/2021.10.29.21265678
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Supplementary Figure 2. Sampling biases by community (i.e. Massachusetts cities or towns) 

in the newborn heel stick data set (blue) compared to census population estimates (red). 
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Supplementary Figure 3. Statewide longitudinal seroprevalence trend from November 2019 to 

December 2020 estimated using the continuous-time MRP model; test specificity is not adjusted 

for in this model. The mean seroprevalence estimate is indicated by the blue line with the 

surrounding shaded region depicting the 90% credible interval; pink dots represent unadjusted 

weekly seroprevalence estimates. 
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Supplementary Figure 4. Geographic distribution of seroprevalence by Massachusetts cities 

and towns statewide (a) and in the Greater Boston area (b). Mean seroprevalence estimated 

using the monthly MRP model is plotted for December 2020. Cities or towns with less than 5 

heel stick samples collected in December 2020 are excluded (NA values). 
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Supplementary Figure 5. Longitudinal seroprevalence trends estimated through the 

continuous-time MRP model in the same cities and towns as in Figure 2; test specificity is not 

adjusted for in this model. The mean seroprevalence estimate is indicated by the blue line with 

the surrounding shaded region depicting the 90% credible interval; pink dots represent 

unadjusted monthly seroprevalence estimates. 
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Supplementary Figure 6. Comparison of a) average household size, b) median age, c) 

population density, and d) percent uninsured with estimated seroprevalence by community. 

Dots indicate the mean of the posterior seroprevalence distribution and shaded regions indicate 

90% credible intervals. Communities with a lower 90% credible interval above 3% seropositivity 

are labelled. 
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Supplementary Figure 7. Lowering assumed test sensitivity shifts statewide seroprevalence 

estimates higher and widens the associated credible intervals.  
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