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Abstract 

Background 

Idiopathic rapid eye movement sleep behavior disorder (iRBD) is a major risk factor for 

synucleinopathies, and patients often present with clinical signs and morphological brain 

changes. However, there is a heterogeneity in the presentation and progression of these 

alterations, and brain regions that are more vulnerable to neurodegeneration remain to 

be determined. 

Objectives 

To assess the feasibility of morphology-based machine learning in the identification and 

subtyping of iRBD. 

Methods 

For the classification tasks [iRBD (n=48) vs controls (n=41); iRBD vs Parkinson’s disease 

(n=29); iRBD with mild cognitive impairment (n=16) vs without mild cognitive impairment 

(n=32)], machine learning models were trained with morphometric measurements 

(thickness, surface area, volume, and deformation) extracted from T1-weighted structural 

magnetic resonance imaging. Model performance and the most discriminative brain 

regions were analyzed and identified. 

Results 

A high accuracy was reported for iRBD vs controls (79.6%, deformation of the caudal 

middle frontal gyrus and putamen, thinning of the superior frontal gyrus, and reduced 

volume of the inferior parietal cortex and insula), iRBD vs Parkinson’s disease (82%, 

smaller volume and surface area of the insula, lower thinning of the entorhinal cortex and 

lingual gyrus, and greater volume of the fusiform gyrus), and iRBD with vs without mild 

cognitive impairment (84.8%, thinning of the pars triangularis, superior temporal gyrus, 

transverse temporal cortex, larger surface area of the superior temporal gyrus, and 

deformation of isthmus of the cingulate gyrus). 

Conclusions 

Morphology-based machine learning approaches may allow for detection and subtyping 

of iRBD, potentially enabling efficient preclinical identification of synucleinopathies.  
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Introduction 

Isolated/idiopathic rapid eye movement (REM) sleep behavior disorder (iRBD) is a 

parasomnia characterized by loss of muscle atonia and abnormal motor manifestations 

during REM sleep (1). iRBD is a prodromal alpha-synucleinopathy, with most patients 

developing Parkinson’s disease (PD) or dementia with Lewy bodies (DLB) over time (2). 

iRBD patients already show clinical and brain changes that are reminiscent of overt 

synucleinopathies (3–5), including cognitive impairment and brain atrophy (1,4-7). 

However, the identification and progression of these changes vary widely in the iRBD 

population (4-7). In particular, mild cognitive impairment (MCI), present in about one third 

of iRBD patients (5,6), is associated with a higher likelihood of phenoconversion to a 

dementia- compared to a parkinsonism-first phenotype (5,6,8). 

Studies using structural magnetic resonance imaging (MRI) in iRBD reported 

extensive cortical and subcortical changes (4,5,7,9–14), which are more pronounced in 

patients with MCI (5,15). Findings have included frontal, temporal and occipital cortical 

thinning (9–11), subcortical shape contraction in the basal ganglia and hippocampus 

(10,12), and gray matter volume alterations in the prefrontal cortex, caudate, brainstem, 

cerebellum, and parahippocampal gyrus (9,13,14). Moreover, a brain volume deformation 

signature that could predict development of DLB at the individual level has been identified 

in iRBD (16). However, most of these studies have only looked at morphological changes 

one metric at a time, thereby preventing identifying sets of regions that may discriminate 

between iRBD patients and healthy individuals (controls) or between iRBD subtypes 

(presence of MCI), while taking into consideration several different morphological features 

that can be derived from every brain region.  

Machine learning have been increasingly applied to the identification and 

prognosis of neurodegenerative diseases including PD and DLB (17–20). Few studies 

have used machine learning for the identification of iRBD with polysomnogram (PSG), 

electroencephalogram (EEG), motor, and olfaction measures (21–25). To our knowledge, 

only one study has applied machine learning to diffusion tensor imaging for the 

identification of iRBD vs controls, and achieved an accuracy of 87.5% (26). However, this 

study has a small sample size and no distinction based on the cognitive profile. Given the 

ability of brain changes, mainly those associated with gray matter alterations, to identify 

MCI and predict phenoconversion in iRBD (15,16), an assessment of morphometric 

changes, along with a thorough evaluation of the discriminative power of single versus 

multiple brain region(s) in the identification and subtyping of iRBD, is of relevance. 

Moreover, machine learning has been applied to the extraction of relevant pre-clinical and 

clinical features, and can be used in inter-modality registration of different types of data 

(17,27), potentially enabling improved identification of iRBD.  
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In this study, we derived regional brain morphological measurements including 

cortical thickness, volume, surface area and tissue deformation to assess whether 

machine learning models differentiate between (a) iRBD patients and controls, (b) iRBD 

and PD patients, and (c) iRBD patients with and without MCI. We hypothesized brain 

morphology can differentiate between controls, PD patients and iRBD subtypes with high 

accuracy.
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Methods 

Participants 

iRBD patients were enrolled at the Centre for Advanced Research in Sleep Medicine of 

the Centre Intégré universitaire de santé et de services sociaux du Nord-de-l’Île-de-

Montréal – Hôpital du Sacré-Cœur de Montréal (CIUSS-NÎM-HSCM). All patients met the 

diagnostic criteria for iRBD based on the International Classification of Sleep Disorders, 

Third Edition and PSG (28,29). iRBD patients were excluded if they presented with 

parkinsonism or dementia (30,31). A history of brain injury, head trauma, stroke, 

claustrophobia, EEG abnormalities suggesting epilepsy, encephalitis, or other 

neurological disorders also led to exclusion. Controls without PD, iRBD, and MCI were 

recruited through newspaper advertisements or by word of mouth. They were subjected 

to the same exclusion criteria as iRBD patients. All participants were part of previous 

studies on neuroimaging in iRBD (9,12,15,16,32). 

PD patients were recruited from the Department of Neurology of the Montreal 

General Hospital and the Unité des troubles du mouvement André-Barbeau of the Centre 

Hospitalier de l’Université de Montréal. Inclusion criteria were: 1) a diagnosis of idiopathic 

PD as the likeliest cause (30), 2) being 45-85 years old, 3) disease duration ≤10 years, 4) 

Hoehn & Yahr stage ≤3, 5) absence of dementia or any major psychiatric disorder, 6) 

respiratory event index ≤20, and 7) absence of a history of head injury, stroke, brain tumor, 

cerebrovascular disease, and chronic obstructive pulmonary disease or abnormal EEG 

features suggesting epilepsy. These patients were part of previous studies on 

neuroimaging in PD (16,33). 

All participants were part of research protocols approved by local ethics 

committees (CIUSSS-NÎM-HSCM) and CIUSSS du Centre-Sud-de-l’Île-de-Montréal – 

Comité d’éthique de la recherche vieillissement-neuroimagerie, Montreal, Canada) and 

provided written informed consent. 

Neuropsychological assessment 

Participants underwent neurological and neuropsychological assessments including the 

Unified Parkinson's Disease Rating Scale part III (34), and, in iRBD patients only, the 

Montreal Cognitive assessment (MoCA) for cognitive screening (35). MCI was diagnosed 

with the neuropsychological assessment and a consensus between the neurologist and 

neuropsychologist based on the following criteria: 1) subjective cognitive complaints by 

the patient, the spouse or the caregiver, as measured using the Cognitive Failures 

Questionnaire (36) or as assessed during the semi-structured interview, 2) the presence 

of objective cognitive impairment, as defined by a performance score at least 1.5 SD 
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below the standardized mean on at least 2 tasks within a single cognitive domain, namely 

attention/executive functions, learning and verbal memory, or visuospatial abilities, 3) 

preserved daily life functioning, 4) no dementia, and 5) cognitive deficits not being 

explained solely by a medication or another medical condition (8,15). 

MRI 

Acquisition 

T1-weighted scans were acquired in all participants using a 3T Siemens TrioTIM scanner 

with a 12-channel head matrix coil and an MP-RAGE sequence (parameters: repetition 

time: 2.3s, echo time: 2.91ms, inversion time: 900ms, flip angle: 9°, field of view: 

256×240mm, matrix resolution: 256×240mm, voxel size: 1×1×1mm, bandwidth: 

240Hz/Px, 160 slices). 

Morphological processing 

Cortical surface processing was first conducted using FreeSurfer, version 6.0.0 (37,38). 

Processing steps included non-brain tissue removal, Talairach transformation, 

segmentation of subcortical white matter and gray matter subcortical volumetric 

structures, intensity normalization, and cortical reconstruction. Quality control was 

performed visually at a slice level and pial and white matter surface errors were corrected 

manually by a trained rater (S.R.). Cortical thickness, surface area, and volume maps 

were then parcellated into 34 cortical regions per hemisphere using the Desikan-Killiany 

atlas (39). Regional surface area and volume values were normalized by the estimated 

total intracranial volume since these measurements scale with head size. 

Deformation-based morphometry (DBM) processing was applied to the T1-

weighted images using CAT12 (http://www.neuro.uni-jena.de/cat/) to generate gray 

matter tissue deformation maps. DBM quantified volume differences by computing the 

deformations needed to perform nonlinear transformation of an individual brain to a 

template space (40). The Jacobian determinant maps were smoothed using a 12-mm 

FWHM kernel and used as a marker of local brain deformation. Maps were parcellated 

into 83 regions, namely 34 cortical and 7 subcortical regions (putamen, caudate, pallidum, 

thalamus, hippocampus, amygdala, accumbens area) for each hemisphere plus the 

brainstem, according to the Desikan-Killiany atlas (39). The deformation value of each 

region represented the mean deformation of all voxels assigned to the region. 
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Feature selection and machine learning 

We first performed feature selection to identify morphometric measurements with high 

discriminative power. To ensure no data were used both for feature selection and model 

validation, the dataset was split into a training set and a test set in a stratified manner. To 

understand whether feature selection and model performance were affected by patient 

distribution of the train-test split, splitting was performed for 25 times using a train:test 

split ratio of 9:1 (for iRBD vs controls and iRBD vs PD) or 4:1 (for iRBD with MCI vs iRBD 

without MCI), to generate 25 unique splits for obtaining the averaged model performance 

(Supplementary Figure 1). Given the number of features (68, 68, 68, and 83 for thickness, 

surface area, volume and deformation respectively), we used a random forest classifier 

(n_estimators = 10) on the training set with 5-fold cross-validation to select features based 

on relative importance averaged over 1,000 iterations.  

For the discrimination between iRBD and control, machine learning models were 

trained with 1, 2, 3, or 5 out of the 15-20 most relevant brain regions for each individual 

modality. To examine whether combining different morphometric modalities leads to 

higher model performance, we performed the same procedures after combining regional 

measurements across modalities (n=287). For iRBD vs PD patients and iRBD patients 

with MCI vs without MCI, we merged across all modalities for model training without 

examining classification performance of individual modalities. 

 We used an expanded grid-search with 5-fold cross-validation to search through 

models including: 1) logistic regression, 2) decision tree, 3) random forest, 4) k-nearest 

neighbors (KNN), 5) support vector machine (SVM), and 6) boosting models, and their 

hyperparameters. All morphometric measurements were centered to the mean and 

scaled to unit variance. All procedures were implemented using Scikit-learn, version 0.17 

(41).  

Model evaluation and statistical analysis 

To identify brain regions showing atrophy, we performed Mann-Whitney U tests followed 

by the Benjamini-Hochberg procedure for controlling false discovery for multiple 

comparisons (42). Given the imbalanced dataset, in addition to accuracy, metrics 

including recall, precision, and F1-score were used. Recall, also known as sensitivity or 

true positive rate, is defined as the number of true positives divided by the sum of true 

positives and false negatives. Precision is defined as the number of true positives divided 

by the sum of true positives and false positives. The F1-score is the harmonic mean of 

precision and recall, and accuracy indicates the ratio of number of correct predictions to 

number of all predictions. Data are shown as mean (SD). Statistical analyses were 

performed using pandas, version 0.25.3 (43) and scikit-posthocs, version 0.6.7 (44). 
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Results 

Demographics and clinical data 

Of the 59 iRBD patients recruited, 11 were excluded for parkinsonism or dementia at 

presentation or unclear clinical presentation/borderline electromyogram thresholds for 

REM sleep muscle atonia. All participants survived quality control except for one PD 

patient who had abnormal surface reconstruction in the occipital lobe, yielding 48 iRBD 

patients, 29 PD patients [mean (SD), PD duration since diagnosis: 3.8 (2.7) years; 

levodopa equivalent dosage: 536.5 (283.1) mg/daily; Hoehn & Yahr stage: 2.2 (0.8); 41% 

(12/29) with MCI; 48% (14/29) with RBD], and 41 controls (Table 1) for MRI processing. 

Sixteen (33%) iRBD patients had MCI. There were no significant differences in age and 

education between the groups. The proportion of men was higher in iRBD than PD 

patients. PD had a higher UPDRS-III total score than iRBD patients. Moreover, iRBD 

patients with MCI performed poorer than those without MCI on the MoCA.  

____________________ 

Insert Table 1 here 

____________________ 

 

Morphometric measurements 

Of the 287 morphometric features, 37 (12.9%) significantly differed between iRBD 

patients and controls, 20 (7.0%) between iRBD and PD patients, and 27 (9.4%) between 

iRBD patients with or without MCI (Supplementary Tables 1, 4 and 5). Compared to 

controls, iRBD patients had cortical thinning, reduced volume, and tissue deformation in 

several brain regions (Supplementary Table 1). Compared to PD, iRBD patients had 

mixed results for cortical thickness, but with reduced volume in PD (bilateral fusiform 

gyrus) and tissue deformation, mainly in left subcortical regions, in iRBD (Supplementary 

Table 4). Compared to patients without MCI, those with MCI had cortical thinning, larger 

surface area, and tissue deformation, mainly in posterior regions (Supplementary Table 

5).  

Feature importance and machine learning-based classification 

Although 5 brain regions that contributed to the highest overall model performance were 

reported, it should be noted that in all classification tasks, feature importance of the most 
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relevant brain regions (top 5%-10%) were often comparable (Supplementary Tables 2 

and 3) and could lead to classification performance that was only 2%-5% lower than the 

reported results. 

iRBD vs Controls 

The highest accuracy (79.6%) was obtained when measurements of all morphometric 

modalities were merged to select 5 features for model training, namely deformation of the 

left caudal middle frontal gyrus and right putamen, thinning of the left superior frontal 

gyrus, and reduced volume of the right inferior parietal cortex and insula (Table 2 and 

Figures 1a-e and 2). When using single modalities for model training, a classification 

accuracy of 79.1% was achieved with 5 features selected from DBM-based 

measurements, namely tissue deformation in the left caudal middle frontal gyrus, 

paracentral lobule, thalamus, and bilateral putamen. When training the model with 1 

feature derived from DBM or across all modalities, deformation of the left caudal middle 

frontal gyrus led to an accuracy of 71.1%.  

 Depending on the modality used, linear SVM or SVM with a radial basis function 

(RBF) was the best performing model in most, if not all, of the 25 randomly generated 

train-test splits (Table 2; n=24.95 (0.22); range=24-25). As indicated by the relative 

importance, cortical regions, including the left caudal middle frontal cortex (reduced 

volume, deformation), paracentral lobule (reduced volume, deformation), and superior 

frontal cortex (thinning), as well as the right inferior parietal cortex (reduced volume), and 

insula (reduced volume), yielded high discriminative power for the detection of iRBD 

(Table 2; Supplementary Tables 2 and 3).  

____________________ 

Insert Table 2 here 

____________________ 

____________________ 

Insert Figure 1 here 

____________________ 

____________________ 

Insert Figure 2 here 

____________________ 
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iRBD vs PD 

With morphometric measurements of 5 brain regions, including, in iRBD, a smaller 

volume and surface area of the right insula, lower thinning of the right entorhinal cortex 

and lingual gyrus, and greater volume of the right fusiform gyrus, an accuracy of 82% was 

achieved (Table 2; Figures 1f and 2). When morphometric measurements of single brain 

regions were used to train the machine learning model, smaller volume of the right insula 

in iRBD led to an accuracy of 70% (Table 2). SVM with an RBF kernel demonstrated the 

highest performance in a majority of the 25 randomly generated train-test splits (n=24.75 

(0.5); range=24-25). 

iRBD with MCI vs iRBD without MCI 

An accuracy of 84.8% was obtained from a model trained with all morphometric 

measurements of 5 brain regions, namely thinning of the left transverse temporal cortex, 

pars triangularis and superior temporal gyrus, larger surface area of the left superior 

temporal gyrus, and deformation of isthmus of the right cingulate gyrus in iRBD patients 

with MCI (Table 2; Figures 1g and 2). When using single brain regions (thinning of the left 

pars triangularis in iRBD with MCI) or 2 regions (thinning of the left pars triangularis and 

superior temporal gyrus in iRBD with MCI), a decision tree classifier of depth 1 achieved 

an accuracy of 72.8% and 73.2%, respectively (Table 2; Figures 1g and 2). When more 

brain regions were used, a linear SVM yielded the highest overall performance in most of 

the train-test splits (n=22.5 (0.71); range=22-23).  
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Discussion 

General observations 

In this study, we derived a comprehensive set of morphological regional brain 

measurements and used machine learning to identify regions that best discriminate 

between iRBD patients and controls, iRBD and PD patients, and cognitive subtypes of 

iRBD. We showed that machine learning models trained with morphometric 

measurements efficiently differentiate between iRBD and controls (accuracy=79.6%), 

iRBD and PD (accuracy=82%), and iRBD with or without MCI (accuracy=84.8%) and may 

prove useful for guiding future algorithms that discriminate patients based on structural 

MRI. 

When discriminating iRBD patients from controls with all morphometric modalities, 

an accuracy of 79.6% was achieved by models trained using deformation of the left caudal 

middle frontal gyrus and right putamen, thinning of the left superior frontal gyrus, and 

reduced volume of the right inferior parietal cortex and insula. With single modalities, an 

accuracy of 79.1% was obtained from models trained with DBM-derived data, i.e., tissue 

deformation in the left caudal middle frontal gyrus, paracentral lobule, thalamus, and 

bilateral putamen. For the other modalities, namely cortical surface-derived measures of 

thickness, surface area or volume, a lower but above-chance-level accuracy was also 

observed. This supports the importance of tissue deformation in the structural pattern of 

atrophy seen in iRBD, as well as the importance of taking into consideration the changes 

occurring in subcortical regions in iRBD (6,9,10,12-14). The model trained with greater 

volume and surface area of the right insula, thinning of the right entorhinal cortex and 

lingual gyrus, and reduced volume of the right fusiform gyrus led to an accuracy of 82% 

in the discrimination of iRBD from PD patients. Furthermore, an accuracy of 84.8% was 

obtained in the identification of iRBD patients with MCI, from a model trained with thinning 

of the left transverse temporal cortex, pars triangularis and superior temporal gyrus, larger 

surface area of the left superior temporal gyrus, and deformation of isthmus of the right 

cingulate gyrus.  

Few studies have used machine learning to identify iRBD patients with MRI, 

EEG/PSG, or clinical markers. One study used machine learning models with diffusion 

tensor imaging measures and found structural differences between 20 iRBD patients and 

20 controls, enabling identification of iRBD with an accuracy of 87.5% (26). One study 

derived features from EEG signals during sleep to train a random forest model that 

identified iRBD vs controls with an accuracy of 96%, a sensitivity of 98%, and a specificity 

of 94% (24). In another study that used PSG data, electrooculogram signals were 

acquired for deriving features relevant to micro-sleep structure, which gave rise to 
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identification of iRBD patients in PD patients through micro-sleep instability, with accuracy, 

sensitivity, and specificity over 80% (22). In a longitudinal study (23), resting EEG data 

were analyzed using a convolutional neural network and a recurrent neural network. The 

two achieved comparable results, leading to an accuracy of 80% when predicting 

conversion to PD in iRBD. One study used sensor data recorded during motor tasks and 

trained random forest classifiers to distinguish controls, iRBD and PD patients, and 

obtained a sensitivity ranging from 84.6% to 91.9%, and a specificity ranging from 88.3% 

to 90.1% (25). Another study used olfaction data (21) and reported an area under the 

curve value of ≥0.90 when classifying between iRBD and PD. While these studies 

demonstrated a high accuracy in the identification of iRBD or PD, many are based on 

motor features that appear at a later stage of neurodegeneration as in patients at risk of 

DLB. Moreover, in motor tasks and EEG/PSG, data acquisition can take up to days, 

making quality control and follow-ups challenging. In addition, previous studies have not 

attempted to subtype between iRBD patients with or without MCI, for which we have 

achieved an accuracy of 84.8%. This is essential given the large heterogeneity of 

cognitive impairment reported in iRBD patients, and the higher risk of developing DLB or 

PD with cognitive impairment in iRBD patients with MCI. Comparing with these studies, 

the present study also highlights structural brain changes that allow the identification and 

subtyping of iRBD.  

Deformation of putamen and thalamus, and thinning of caudal middle frontal and 

paracentral cortices best distinguished between iRBD patients and controls. This is in line 

with studies performed on the same cohorts using single morphometric measures  

(12,15,16). Putamen dopamine depletion underlies parkinsonism (45), while the putamen 

is structurally and functionally abnormal in iRBD (12,46–50), as observed by reduced 

dopamine reuptake imaging (5,47) and perfusion/metabolism imaging (48–50). The 

smaller volume of the insula in iRBD was also found to discriminate between iRBD and 

PD. In the present study, greater thinning of the left insula was observed in iRBD patients 

with MCI, and the presence of MCI in iRBD is a risk factor for DLB (5,6,8), which is in 

agreement with studies reporting the insula as highly associated with prodromal and 

clinical DLB (51–54). Its ability to discriminate between iRBD and PD may therefore be 

due to some iRBD patients being on a dementia-first trajectory. Also, in accordance with 

studies that used morphometric measures of the fusiform gyrus to detect PD (55,56), our 

study highlighted the volume of the fusiform gyrus as a discriminative feature.  

Compared to surface-derived cortical metrics assessing local thickness, surface 

area or volume, DBM-derived tissue deformation measurements generated higher 

discriminative power between iRBD patients and controls. This is important, as different 

morphological metrics were shown to follow different developmental trajectories (57), to 

relate to different genetic determinants (58,59), and to be affected differentially in 

neurodegenerative prodromes (15,60). Several reasons can explain the fact that DBM is 
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most discriminative. First, DBM maps included information about subcortical structures, 

which are known to be affected in iRBD (9,10). Secondly, white matter changes are an 

increasingly recognized feature of neurodegeneration in PD and DLB (61,62); although 

tissue deformation measurements were extracted from the gray matter only, it is possible 

that gray matter deformation may have been influenced by dynamics occurring in the 

underlying white matter. This is even more important as some studies have reported white 

matter abnormalities in iRBD (14,63,64). Recently, we identified in the same cohort of 

iRBD patients a DBM-derived structural signature that predicts the development of DLB 

in iRBD; interestingly, white matter tissue contraction was an important feature of this 

signature (16). Future studies should investigate the association between changes in gray 

and white matter in iRBD. 

We also found that some of the discriminative brain regions in the classification 

between iRBD patients and controls, and the identification of PD patients (e.g., the medial 

orbitofrontal cortex and pars orbitalis) are involved in olfactory processing. Morphometric 

measures of olfactory processing areas in the orbitofrontal cortex such as the olfactory 

sulcus, the gyrus rectus, and the medial orbitofrontal cortex are associated with olfactory 

sensitivity (65,66). Further, olfactory function is impaired in both PD and iRBD patients 

(3,67). We have shown in a previous study that a convolutional neural network can 

distinguish PD patients from patients with non-parkinsonian olfactory dysfunction (68). In 

the future, olfaction and other markers of motor or cognitive performance could be 

combined with morphometric measures to increase the specificity and sensitivity of  iRBD 

identification (5). 

Limitations 

From a clinical perspective, brain imaging data used in this study were collected from a 

considerable number of participants. However, they represent a relatively small sample 

size when compared with deep learning studies using multicentric data, or with studies 

applying machine learning and deep learning to iRBD detection using PSG or EEG 

features. To enable computer-aided decision-making in the identification and subtyping 

of iRBD, studies using a larger prospective-longitudinal cohort are required. In addition, it 

has been shown that the version of the preprocessing pipeline may become a 

confounding factor in the assessment of neurological disorders (69), therefore, it would 

be crucial to understand to what extent the detection of iRBD is affected by the 

preprocessing pipeline, and/or the software version used.
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Tables 
Table 1. Demographic and clinical features in participants.  

Variable iRBD 
(A)  

iRBD 
with MCI 

(B) 

iRBD 
without MCI 

(C) 

PD 
(D) 

Controls 
(E) 

p value,  
A vs. E 

p value,  
A vs. D 

p value,  
B vs. C 

Age at MRI, years 65.8 (6.4) 67.9 (4.6) 64.8 (7.0) 64.8 (8.3) 63.2 (8.2) 0.09b 0.56b 0.080b 

Men, n (%) 37 (77) 10 (63) 27 (84) 15 (50) 25 (61) 1.00c 0.014c 0.089c 

Education, years 13.3 (3.7) 11.9 (3.8) 14.0 (3.4) 14.9 (3.8) 14.6 (4.1) 0.18b 0.061b 0.058b 

RBD duration since 
symptom onset, years 

12.1 (12.2) 13.3 (13.4) 11.5 (11.7) - - - - 0.47d 

UPDRS-III, total scorea 4.3 (3.6) 5.6 (5.0) 3.7 (2.6) 20.6 (9.2) - - <0.001d 0.24d 

MoCA, total score 25.7 (2.8) 24.1 (3.3) 26.9 (1.8) - - - - 0.005d 

Values are presented as mean (SD).  

PD: Parkinson's disease, iRBD: idiopathic rapid eye movement sleep behavior disorder, MCI: mild cognitive 

impairment, UPDRS-III: Unified Parkinson's Disease Rating Scale part III, MoCA: Montreal Cognitive 

Assessment. 
aThe UPDRS-III was measured in the ‘on’ state in PD patients. 
bStudent t test. 
cChi-squared test. 
dMann-Whitney U test. 
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Table 2. Results of the best performing models, brain regions and associated morphometric measurements 

used in the differentiation between participants. 

Modality Number 
of 
features 

Recall Precision F1-
score 

Accuracy Machine 
learning 
model 

Brain region and characteristics in 
iRBD vs controls 

Cortical 
thickness 

1  0.640 
(0.173) 

0.702 
(0.182) 

0.661 
(0.153) 

0.640 
(0.155) 

Linear SVM, C 
= 1 

thinning of paracentral lobule in iRBD (lh) 

5  0.712 
(0.183) 

0.725 
(0.166) 

0.710 
(0.160) 

0.684 
(0.159) 

Linear SVM, C 
= 1 

thinning of paracentral lobule in iRBD (lh) 
thinning of medial orbital frontal cortex in iRBD 
(lh) 
thicker banks of the superior temporal sulcus in 
iRBD (lh) 
thinning of temporal pole in iRBD (lh) 
thinning of frontal pole in iRBD (rh) 

Surface 
area 

1  0.920 
(0.183) 

0.573 
(0.069) 

0.703 
(0.108) 

0.582 
(0.108) 

Linear SVM, C 
= 1 

larger surface area of isthmus of cingulate 
cortex in iRBD (lh) 

5  0.800 
(0.141) 

0.721 
(0.093) 

0.754 
(0.103) 

0.716 
(0.107) 

Linear SVM, C 
= 1 

larger surface area of isthmus of cingulate 
cortex in iRBD (lh) 
reduced surface area of rostral anterior 
cingulate cortex in iRBD (lh) 
larger surface area of precentral gyrus in iRBD 
(lh) 
reduced surface area of rostral middle frontal 
gyrus in iRBD (lh) 
larger surface area of temporal pole in iRBD (lh) 

Volume 1   0.784 
(0.152) 

0.680 
(0.150) 

0.720 
(0.124) 

0.658 
(0.157) 

SVM with RBF 
kernel, C = 1 

reduced volume of caudal middle frontal gyrus 
in iRBD (lh) 

5  0.832 
(0.160) 

0.735 
(0.126) 

0.775 
(0.121) 

0.733 
(0.140) 

SVM with RBF 
kernel, C = 1 

reduced volume of caudal middle frontal gyrus 
in iRBD (lh) 
reduced volume of paracentral lobule in iRBD 
(lh)  
reduced volume of rostral anterior cingulate 
cortex in iRBD (lh) 
larger volume of fusiform gyrus in iRBD (rh) 
reduced volume of inferior parietal cortex in 
iRBD (rh) 

Deformation 1  0.816 
(0.140) 

0.714  
(0.113) 

0.758 
(0.112) 

0.711 
(0.132) 

Linear SVM, C 
= 1 

deformation of caudal middle frontal gyrus in 
iRBD (lh) 

5  0.768 
(0.149) 

0.852 
(0.164) 

0.803 
(0.142) 

0.791 
(0.152) 

Linear SVM, C 
= 1 

deformation of caudal middle frontal gyrus in 
RBD (lh) 
deformation of paracentral lobule in iRBD (lh)  
deformation of thalamus proper in iRBD (lh) 
deformation of putamen in iRBD (lh) 
deformation of putamen in iRBD (rh) 

All 
modalities 

1  0.816 
(0.140) 

0.714  
(0.113) 

0.758 
(0.112) 

0.711 
(0.132) 

Linear SVM, C 
= 1 

deformation of caudal middle frontal gyrus in 
iRBD (lh) 

5  0.776 
(0.176) 

0.855 
(0.170) 

0.806 
(0.154) 

0.796 
(0.163) 

Linear SVM, C 
= 1 

deformation of caudal middle frontal gyrus in 
iRBD (lh) 
thinning of superior frontal gyrus in iRBD (lh) 
reduced volume of inferior parietal cortex in 
iRBD (rh) 
reduced volume of insula in iRBD (rh) 
deformation of putamen in iRBD (rh) 
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Number 
of 
features 

Recall Precision F1-
score 

Accuracy Machine 
learning 
model 

Brain region and characteristics in 
iRBD vs PD 

All modalities 1  0.848 
(0.145) 

0.724 
(0.073) 

0.776 
(0.086) 

0.700  
(0.102) 

SVM with RBF 
kernel, C = 1 

smaller volume of insula in iRBD (rh) 

All modalities 2  0.880 
(0.129) 

0.786 
(0.088) 

0.828 
(0.099) 

0.775 
(0.125) 

SVM with RBF 
kernel, C = 1 

smaller surface area of insula in iRBD (rh) 
lower thinning of entorhinal cortex in iRBD (rh) 

All modalities 3 0.896 
(0.131) 

0.801 
(0.114) 

0.842 
(0.105) 

0.790 
(0.134) 

SVM with RBF 
kernel, C = 1 

smaller surface area of insula in iRBD (rh) 
lower thinning of entorhinal cortex in iRBD (rh) 
lower thinning of lingual gyrus in iRBD (rh) 

All modalities 5 0.904 
(0.131) 

0.832 
(0.120) 

0.863 
(0.111) 

0.820 
(0.140) 

SVM with RBF 
kernel, C = 1 

smaller volume of insula in iRBD (rh) 
smaller surface area of insula in iRBD (rh)  
lower thinning of entorhinal cortex in iRBD (rh) 
lower thinning of lingual gyrus in iRBD (rh) 
greater volume of fusiform gyrus in iRBD (rh)  

 

Number 
of 
features 

Recall Precision F1-
score 

Accuracy Machine 
learning 
model 

Brain region and characteristics in 
iRBD with MCI vs without MCI 

All modalities 1  0.907 
(0.205) 

0.525  
(0.094) 

0.660 
(0.127) 

 

0.728 
(0.079) 

 

Decision tree, 
depth = 1 

greater thinning of pars triangularis in iRBD with 
MCI (lh) 

All modalities 2  0.907 
(0.181) 

0.537 
(0.092) 

0.667 
(0.104) 

0.732 
(0.075) 

Decision tree, 
depth = 1 

greater thinning of pars triangularis in iRBD with 
MCI (lh)  
greater thinning of superior temporal gyrus in 
iRBD with MCI (lh) 

All modalities 3 0.733 
(0.236) 

0.701 
(0.188) 

0.692 
(0.160) 

0.812 
(0.093) 

Linear SVM, C 
= 1 

greater thinning of pars triangularis in iRBD with 
MCI (lh) 
greater thinning of transverse temporal cortex in 
iRBD with MCI (lh) 
deformation of isthmus of cingulate gyrus in 
iRBD with MCI (rh) 

All modalities 5 0.787 
(0.190) 

0.749 
(0.171) 

0.754 
(0.147) 

0.848 
(0.087) 

Linear SVM, C 
= 1 

greater thinning of pars triangularis in iRBD with 
MCI (lh)  
greater thinning of superior temporal gyrus in 
iRBD with MCI (lh)  
larger surface area of superior temporal gyrus in 
iRBD with MCI (lh) 
greater thinning of transverse temporal cortex in 
iRBD with MCI (lh) 
deformation of isthmus of cingulate gyrus in 
iRBD with MCI (rh) 

Data are shown as mean (SD). All values reported are the average of model performance obtained from 

the test sets of the 25 randomly generated, unique train-test splits. iRBD: idiopathic rapid eye movement 

sleep behavior disorder, lh: left hemisphere, MCI: mild cognitive impairment, PD: Parkinson’s disease, RBF: 

radial basis function, SVM: support vector machine, rh: right hemisphere.  
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Figures 

 
Figure 1. Results of machine learning models with the highest overall performance as measured by recall, 

precision, F1-score, accuracy, and average of the four metrics. (a-d) Outcomes of individual morphometric 

modalities in the differentiation between iRBD patients and controls. (e-g) Outcomes when all four 

morphometric modalities were merged and used in model training, for iRBD patients vs Controls (e), iRBD 

vs PD patients (f) and iRBD patients with MCI vs without MCI (g). iRBD: idiopathic rapid eye movement 

sleep behavior disorder, PD: Parkinson's disease, MCI: mild cognitive impairment. Error bars indicate 

standard deviation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 28, 2021. ; https://doi.org/10.1101/2021.09.18.21263779doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.18.21263779
http://creativecommons.org/licenses/by-nc-nd/4.0/


 4 

 
Figure 2. Relative importance of the top 20 most relevant brain regions in the discrimination between iRBD 

vs Controls (top), iRBD vs PD patients (middle) and iRBD patients with vs without MCI (bottom). The white-

red color bar represents the relative importance of the feature in discriminating groups, with redder regions 

representing a more relevant feature. Every region from the top 20 is labeled from A-D in terms of the 

contributing structural metric (legend on the right). DBM: deformation-based morphometry, iRBD: idiopathic 

rapid eye movement sleep behavior disorder, MCI: mild cognitive impairment, PD: Parkinson’s disease. 
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Supplementary materials 
Supplementary Table 1. Morphometric measurements that differed significantly between controls and 
iRBD patients. 

Morphometric modality 
and hemisphere 

Brain region Controls iRBD P value 

Thickness, left Superior frontal gyrus 2.55 (0.08) 2.48 (0.11) 0.001 

Paracentral lobule 2.39 (0.1) 2.32 (0.13) 0.005 

Temporal pole 3.53 (0.25) 3.38 (0.22) 0.015 

Inferior temporal gyrus 2.65 (0.12) 2.59 (0.12) 0.017 

Lateral orbital frontal cortex 2.52 (0.08) 2.47 (0.11) 0.025 

Middle temporal gyrus 2.70 (0.1) 2.65 (0.11) 0.033 

Rostral middle frontal gyrus 2.27 (0.07) 2.23 (0.08) 0.034 

Caudal middle frontal gyrus 2.45 (0.09) 2.41 (0.1) 0.038 

Pars orbitalis 2.51 (0.14) 2.44 (0.16) 0.038 

Precentral gyrus 2.52 (0.09) 2.46 (0.13) 0.049 

Thickness, right Superior frontal gyrus 2.51 (0.08) 2.46 (0.10) 0.008 

Precentral gyrus 2.50 (0.10) 2.42 (0.13) 0.011 

Supramarginal gyrus 2.45 (0.08) 2.40 (0.11) 0.013 

Frontal pole 2.49 (0.18) 2.41 (0.19) 0.027 

Middle temporal gyrus 2.76 (0.11) 2.70 (0.11) 0.031 

Insula 2.83 (0.14) 2.77 (0.13) 0.034 

Inferior parietal cortex 2.39 (0.08) 2.35 (0.11) 0.045 

Inferior temporal gyrus 2.69 (0.10) 2.64 (0.11) 0.045 

Surface area, left Caudal middle frontal gyrus 0.0016 (0.0002) 0.0015 (0.0002) 0.033 

Volume, left Paracentral lobule 0.0024 (0.0003) 0.0023 (0.0003) 0.003 

Caudal middle frontal gyrus 0.0042 (0.0007) 0.0039 (0.0005) 0.007 

Precuneus cortex 0.0064 (0.0006) 0.0062 (0.0007) 0.018 

Rostral anterior cingulate 
cortex 

0.0018 (0.0003) 0.0016 (0.0003) 0.025 

Rostral middle frontal gyrus 0.0099 (0.0011) 0.0094 (0.0010) 0.025 

Middle temporal gyrus 0.0072 (0.0010) 0.0068 (0.0008) 0.042 

Volume, right Middle temporal gyrus 
 

0.0077 (0.0009) 0.0073 (0.0007) 0.008 
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Inferior parietal cortex 0.0094 (0.0010) 0.0090 (0.0011) 0.028 

Superior frontal gyrus 0.0138 (0.0014) 0.0134 (0.0012) 0.036 

Insula 0.0049 (0.0006) 0.0047 (0.0003) 0.042 

Deformation, left Putamen 0.94 (0.05) 0.91 (0.05) 0.003 

Caudal middle frontal gyrus 1.05 (0.08) 1.01 (0.05) 0.008 

Pallidum 0.94 (0.05) 0.91 (0.05) 0.017 

Rostral middle frontal gyrus 1.04 (0.04) 1.02 (0.03) 0.045 

Middle temporal gyrus 1.02 (0.04) 1.00 (0.04) 0.048 

Deformation, right Putamen 0.94 (0.05) 0.91 (0.05) 0.001 

Banks of superior temporal 
sulcus 

1.02 (0.07) 0.98 (0.08) 0.012 

Pallidum 0.94 (0.05) 0.91 (0.05) 0.035 

iRBD: idiopathic rapid eye movement sleep behavior disorder. Surface area and volume values were 

normalized using the estimated total intracranial volume. Red: Thinning, reduced surface area or volume, 

or tissue deformation value.

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 28, 2021. ; https://doi.org/10.1101/2021.09.18.21263779doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.18.21263779
http://creativecommons.org/licenses/by-nc-nd/4.0/


 1 

Supplementary Table 2. Morphometric measurements of individual modalities and their relative 

importance in the discrimination between iRBD patients and controls. 

 

Brain region 

Relative 
importance, 
thickness 

Relative 
importance, 
surface area 

Relative 
importance, 

volume 

Relative 
importance, 

DBM 

left banks superior temporal sulcus 0.022305505 0.017026148 0.01551811 0.027276656 

left caudal anterior-cingulate cortex 0.021917045 0.016603306 0.015310066 0.016725567 

left caudal middle frontal gyrus 0.020054339 0.028708748 0.037178787 0.038762824 

left cuneus cortex 0.019823904 0.017993788 0.016980122 0.018192683 

left entorhinal cortex 0.016420102 0.018692779 0.016810872 0.016864922 

left fusiform gyrus 0.015018665 0.017888389 0.016618694 0.01713665 

left inferior parietal cortex 0.016102759 0.018184875 0.018481313 0.015521528 

left inferior temporal gyrus 0.021800697 0.016497 0.016601961 0.017306056 

left isthmus of cingulate cortex 0.015078233 0.023239002 0.016779203 0.01662388 

left lateral occipital cortex 0.016487876 0.020532328 0.021397511 0.020906932 

left lateral orbital frontal cortex  0.021333901 0.016102995 0.018616616 0.016021742 

left lingual gyrus 0.018026675 0.016489782 0.017506923 0.014279324 

left medial orbital frontal cortex 0.023591497 0.017004424 0.015437216 0.014254237 

left middle temporal gyrus  0.01875776 0.026214408 0.026351726 0.019466899 

left parahippocampal gyrus 0.014762096 0.019797389 0.017922097 0.016020243 

left paracentral lobule 0.029715315 0.02530747 0.037866339 0.022335004 

left pars opercularis  0.018767494 0.01937071 0.016633876 0.019318701 

left pars orbitalis  0.019122242 0.01647103 0.021289666 0.015001414 

left pars triangularis  0.019499831 0.020506787 0.014673328 0.015989735 

left pericalcarine cortex 0.01509976 0.016820632 0.017760814 0.014877758 

left postcentral gyrus 0.018715116 0.020531452 0.016793803 0.021228537 

left posterior cingulate cortex  0.020426057 0.023479751 0.021864193 0.015351491 

left precentral gyrus 0.020623432 0.02060851 0.016201497 0.014979573 

left precuneus cortex 0.014303085 0.021871517 0.027624118 0.013554826 

left rostral anterior cingulate cortex 0.014175331 0.024245328 0.031123506 0.015931237 

left rostral middle frontal gyrus 0.016952597 0.022390423 0.021800279 0.023693571 

left superior frontal gyrus  0.035989948 0.015135126 0.018435064 0.01342881 

left superior parietal cortex  0.020336566 0.015685343 0.016868388 0.015658986 

left superior temporal gyrus  0.022095215 0.018781994 0.019603551 0.020587017 

left supramarginal gyrus 0.022327884 0.017290019 0.015025562 0.020256599 

left frontal pole  0.017658657 0.017294904 0.018096584 0.015977051 

left temporal pole  0.022407564 0.021304819 0.01932195 0.025816837 

left transverse temporal cortex  0.016772262 0.02180519 0.020804408 0.017494879 

left insula  0.015511023 0.020521458 0.017205429 0.019213839 

right banks superior temporal sulcus 0.015055823 0.025057231 0.017330523 0.030676689 

right caudal anterior-cingulate cortex 0.015282552 0.021579249 0.016936631 0.013978628 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 28, 2021. ; https://doi.org/10.1101/2021.09.18.21263779doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.18.21263779
http://creativecommons.org/licenses/by-nc-nd/4.0/


 2 

right caudal middle frontal gyrus 0.01820841 0.023111299 0.017530615 0.016577496 

right cuneus cortex 0.016235165 0.016492954 0.016100043 0.017883522 

right entorhinal cortex 0.019727779 0.016930856 0.017574395 0.015617666 

right fusiform gyrus 0.021679534 0.018988182 0.022601389 0.020638206 

right inferior parietal cortex 0.022725407 0.026378884 0.03655183 0.016140729 

right inferior temporal gyrus 0.024207126 0.019481885 0.019464448 0.021010259 

right isthmus of cingulate cortex 0.020937058 0.017228661 0.029785904 0.015409167 

right lateral occipital cortex 0.018025119 0.018985295 0.014909891 0.019491502 

right lateral orbital frontal cortex  0.017221264 0.018562944 0.01577829 0.019164018 

right lingual gyrus 0.018055113 0.018475632 0.022116586 0.01644412 

right medial orbital frontal cortex 0.021264633 0.016324542 0.015309788 0.017731828 

right middle temporal gyrus  0.017957595 0.023029289 0.029524627 0.020911868 

right parahippocampal gyrus 0.023105728 0.017321952 0.017126039 0.015367507 

right paracentral lobule 0.016499938 0.017703142 0.018555414 0.015645346 

right pars opercularis  0.015302695 0.017939473 0.021031901 0.018084282 

right pars orbitalis  0.016868545 0.016727673 0.014670288 0.014099411 

right pars triangularis  0.016711051 0.017039055 0.016175176 0.015904235 

right pericalcarine cortex 0.016757075 0.022129089 0.016912721 0.019618336 

right postcentral gyrus 0.026053099 0.017304465 0.019567556 0.01444928 

right posterior cingulate cortex  0.018465862 0.017455858 0.017160714 0.016300289 

right precentral gyrus 0.025359234 0.019209346 0.015873759 0.015074336 

right precuneus cortex 0.022266626 0.015349175 0.016591654 0.015985898 

right rostral anterior cingulate cortex  0.0151598 0.019186566 0.013570289 0.013822434 

right rostral middle frontal gyrus 0.01706589 0.017919454 0.020198454 0.017588874 

right superior frontal gyrus  0.027164167 0.021448795 0.021236983 0.017921514 

right superior parietal cortex  0.02387054 0.016644783 0.016728671 0.015802386 

right superior temporal gyrus  0.024214295 0.016057021 0.019047373 0.015705328 

right supramarginal gyrus 0.023733331 0.019294768 0.015270525 0.014208969 

right frontal pole  0.025218785 0.020662633 0.018210874 0.01658924 

right temporal pole  0.020047589 0.018626866 0.017645414 0.017588487 

right transverse temporal cortex  0.016036985 0.020289195 0.017300682 0.016989113 

right insula  0.019216359 0.027057868 0.03144684 0.01657214 

left thalamus N/A N/A N/A 0.020805303 

left caudate N/A N/A N/A 0.015308882 

left putamen N/A N/A N/A 0.029251391 

left pallidum N/A N/A N/A 0.024586336 

left accumbensarea N/A N/A N/A 0.015438647 

left hippocampus N/A N/A N/A 0.014339353 

left amygdala N/A N/A N/A 0.018576879 

right thalamus N/A N/A N/A 0.014462345 
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right caudate N/A N/A N/A 0.014384861 

right putamen N/A N/A N/A 0.035018443 

right pallidum N/A N/A N/A 0.021360997 

right accumbensarea N/A N/A N/A 0.01797545 

right hippocampus N/A N/A N/A 0.01326785 

right amygdala N/A N/A N/A 0.012812538 

brainstem N/A N/A N/A 0.015305732 

Blue indicates higher relative importance and red indicates lower relative importance. The 5 selected 

regions of each morphometric modality for the detection of iRBD, and the corresponding brain regions, are 

highlighted in red. iRBD: idiopathic rapid eye movement sleep behavior disorder. 
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Supplementary Table 3. Morphometric measurements of all modalities and their relative importance in the 

three classification tasks. 
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 1 

 
 
Modality Brain region 

Relative 
importance in 

iRBD vs controls 

Relative 
importance in 
iRBD vs PD 

Relative importance 
in iRBD with MCI vs 

without MCI 

Thickness left banks superior temporal sulcus 0.014079179 0.019549711 0.039856179 

Thickness left caudal anterior-cingulate cortex 0.013323188 0.017439446 0.030950973 

Thickness left caudal middle frontal gyrus 0.015908295 0.014067108 0.032876387 

Thickness left cuneus cortex 0.012438472 0.020779845 0.027326406 

Thickness left entorhinal cortex 0.011722899 0.020844082 0.030215824 

Thickness left fusiform gyrus 0.011117685 0.021353284 0.040265091 

Thickness left inferior parietal cortex 0.011371211 0.019143772 0.027155903 

Thickness left inferior temporal gyrus 0.017070415 0.014363645 0.031567695 

Thickness left isthmus of cingulate cortex 0.011348432 0.014659224 0.036294859 

Thickness left lateral occipital cortex 0.012300894 0.013603443 0.027268546 

Thickness left lateral orbital frontal cortex  0.016928141 0.019995745 0.030193138 

Thickness left lingual gyrus 0.011940763 0.024650088 0.023914679 

Thickness left medial orbital frontal cortex 0.017097566 0.015780046 0.022602326 

Thickness left middle temporal gyrus  0.015410157 0.014894575 0.052712822 

Thickness left parahippocampal gyrus 0.011322868 0.013668491 0.026288787 

Thickness left paracentral lobule 0.020753132 0.013227169 0.037548988 

Thickness left pars opercularis  0.015387613 0.018745183 0.031698277 

Thickness left pars orbitalis  0.015690116 0.021436755 0.039461592 

Thickness left pars triangularis  0.015793965 0.013653322 0.056895199 

Thickness left pericalcarine cortex 0.010990394 0.014033361 0.021892541 

Thickness left postcentral gyrus 0.012979236 0.015893163 0.036431948 

Thickness left posterior cingulate cortex  0.013707549 0.017613172 0.022848548 

Thickness left precentral gyrus 0.015142655 0.012640453 0.031494912 

Thickness left precuneus cortex 0.011822649 0.013012484 0.030116075 

Thickness left rostral anterior cingulate cortex  0.011416324 0.016209826 0.033126907 

Thickness left rostral middle frontal gyrus 0.014749473 0.034015919 0.024428467 

Thickness left superior frontal gyrus  0.025514954 0.022849732 0.035726972 

Thickness left superior parietal cortex  0.014691874 0.013201828 0.03084317 

Thickness left superior temporal gyrus  0.017493471 0.018006544 0.043440949 

Thickness left supramarginal gyrus 0.015530589 0.015291581 0.030474569 

Thickness left frontal pole  0.012287079 0.016768059 0.032179412 

Thickness left temporal pole  0.017097452 0.021108641 0.025326965 

Thickness left transverse temporal cortex  0.011206907 0.016753939 0.044647084 

Thickness left insula  0.012066725 0.014303357 0.043471837 

Thickness right banks superior temporal sulcus 0.011735428 0.014717026 0.033580899 

Thickness right caudal anterior-cingulate cortex 0.012268814 0.017172073 0.026779746 

Thickness right caudal middle frontal gyrus 0.014002181 0.013954758 0.027208521 

Thickness right cuneus cortex 0.012509784 0.014249984 0.035848189 
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Thickness right entorhinal cortex 0.013100886 0.023520966 0.028327844 

Thickness right fusiform gyrus 0.013564742 0.022477871 0.023139147 

Thickness right inferior parietal cortex 0.017054597 0.014196839 0.024699917 

Thickness right inferior temporal gyrus 0.018581649 0.015156914 0.04246015 

Thickness right isthmus of cingulate cortex 0.016132018 0.016527631 0.024565563 

Thickness right lateral occipital cortex 0.012407566 0.013661633 0.034691799 

Thickness right lateral orbital frontal cortex  0.011851284 0.02041409 0.022329636 

Thickness right lingual gyrus 0.014716984 0.026008193 0.023324283 

Thickness right medial orbital frontal cortex 0.015246822 0.032514829 0.021846683 

Thickness right middle temporal gyrus  0.014854105 0.018723 0.044885561 

Thickness right parahippocampal gyrus 0.017089722 0.014476989 0.027128665 

Thickness right paracentral lobule 0.012402912 0.014473022 0.042459882 

Thickness right pars opercularis  0.01337562 0.016224865 0.021944947 

Thickness right pars orbitalis  0.012329492 0.017064422 0.032894184 

Thickness right pars triangularis  0.01167223 0.023241623 0.040046996 

Thickness right pericalcarine cortex 0.01253267 0.017935254 0.028649658 

Thickness right postcentral gyrus 0.016905022 0.012458152 0.039057056 

Thickness right posterior cingulate cortex  0.014214478 0.023800418 0.023898822 

Thickness right precentral gyrus 0.01877325 0.013969073 0.033584866 

Thickness right precuneus cortex 0.016414814 0.013399446 0.02763449 

Thickness right rostral anterior cingulate cortex  0.011465599 0.013708028 0.031977432 

Thickness right rostral middle frontal gyrus 0.013567612 0.021111272 0.024116962 

Thickness right superior frontal gyrus  0.021262416 0.016994278 0.024228412 

Thickness right superior parietal cortex  0.016248348 0.014227648 0.030410239 

Thickness right superior temporal gyrus  0.01645094 0.015434882 0.034222454 

Thickness right supramarginal gyrus 0.018551794 0.017093096 0.02892838 

Thickness right frontal pole  0.018494782 0.024654214 0.035391347 

Thickness right temporal pole  0.014120754 0.01574443 0.028458481 

Thickness right transverse temporal cortex  0.011560923 0.018638003 0.038637662 

Thickness right insula  0.015555332 0.022126482 0.024140652 

Surface area left banks superior temporal sulcus 0.011804736 0.014179616 0.028269495 

Surface area left caudal anterior-cingulate cortex 0.01185018 0.01859055 0.029566776 

Surface area left caudal middle frontal gyrus 0.018512643 0.013035388 0.03350493 

Surface area left cuneus cortex 0.012769615 0.013405796 0.027502303 

Surface area left entorhinal cortex 0.012240109 0.013116294 0.023918715 

Surface area left fusiform gyrus 0.011909125 0.02103983 0.035551085 

Surface area left inferior parietal cortex 0.013189596 0.013833195 0.023196357 

Surface area left inferior temporal gyrus 0.011866603 0.016749538 0.025251852 

Surface area left isthmus of cingulate cortex 0.015958487 0.0212881 0.025904815 

Surface area left lateral occipital cortex 0.013954291 0.014115729 0.020282852 
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Surface area left lateral orbital frontal cortex  0.011776968 0.014264613 0.026393873 

Surface area left lingual gyrus 0.011346989 0.016227995 0.025677163 

Surface area left medial orbital frontal cortex 0.012088102 0.012660718 0.022317944 

Surface area left middle temporal gyrus  0.016399823 0.015984513 0.023282792 

Surface area left parahippocampal gyrus 0.013368721 0.01504468 0.026338249 

Surface area left paracentral lobule 0.01699631 0.019962389 0.033569856 

Surface area left pars opercularis  0.01306759 0.015761246 0.025735661 

Surface area left pars orbitalis  0.011664572 0.013192873 0.029988303 

Surface area left pars triangularis  0.014325188 0.019404746 0.029884263 

Surface area left pericalcarine cortex 0.011597313 0.013488359 0.031033441 

Surface area left postcentral gyrus 0.013699635 0.015344947 0.024285691 

Surface area left posterior cingulate cortex  0.015272823 0.013019238 0.025061639 

Surface area left precentral gyrus 0.01457001 0.017495095 0.026014717 

Surface area left precuneus cortex 0.014872035 0.02078623 0.031523674 

Surface area left rostral anterior cingulate cortex  0.015888193 0.014293146 0.024590174 

Surface area left rostral middle frontal gyrus 0.015299064 0.015526055 0.021310915 

Surface area left superior frontal gyrus  0.010837738 0.016967898 0.023230501 

Surface area left superior parietal cortex  0.011009514 0.014980647 0.025358578 

Surface area left superior temporal gyrus  0.012902697 0.015671332 0.0389589 

Surface area left supramarginal gyrus 0.011926347 0.017335015 0.020631152 

Surface area left frontal pole  0.012654333 0.015951619 0.023122464 

Surface area left temporal pole  0.01444723 0.01549076 0.028519145 

Surface area left transverse temporal cortex  0.014312613 0.017301175 0.029737349 

Surface area left insula  0.013577311 0.014702295 0.031563462 

Surface area right banks superior temporal sulcus 0.016863066 0.014034919 0.033839343 

Surface area right caudal anterior-cingulate cortex 0.015152306 0.013328578 0.027242533 

Surface area right caudal middle frontal gyrus 0.013912254 0.01455872 0.022370967 

Surface area right cuneus cortex 0.012085357 0.01442942 0.027223683 

Surface area right entorhinal cortex 0.011726925 0.012861287 0.031402504 

Surface area right fusiform gyrus 0.01278161 0.021168499 0.033555707 

Surface area right inferior parietal cortex 0.017478591 0.016535118 0.029827256 

Surface area right inferior temporal gyrus 0.014145474 0.020408667 0.027871193 

Surface area right isthmus of cingulate cortex 0.011884422 0.01784246 0.029194251 

Surface area right lateral occipital cortex 0.01306609 0.015053386 0.021983859 

Surface area right lateral orbital frontal cortex  0.013209152 0.012999835 0.024088024 

Surface area right lingual gyrus 0.012501777 0.014408485 0.029635258 

Surface area right medial orbital frontal cortex 0.011933068 0.016890827 0.021076271 

Surface area right middle temporal gyrus  0.015467286 0.015510372 0.027075188 

Surface area right parahippocampal gyrus 0.012023279 0.017357431 0.027573668 

Surface area right paracentral lobule 0.012697262 0.013617372 0.0319222 
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Surface area right pars opercularis  0.01212243 0.018843115 0.023587593 

Surface area right pars orbitalis  0.011539456 0.01516969 0.02398069 

Surface area right pars triangularis  0.012133721 0.013781044 0.028122856 

Surface area right pericalcarine cortex 0.013336264 0.013580531 0.023448461 

Surface area right postcentral gyrus 0.012220051 0.013761146 0.022407599 

Surface area right posterior cingulate cortex  0.01260807 0.013966887 0.028512021 

Surface area right precentral gyrus 0.012877169 0.015832302 0.027681478 

Surface area right precuneus cortex 0.011143898 0.013881345 0.035642193 

Surface area right rostral anterior cingulate cortex  0.013272521 0.015343536 0.023819673 

Surface area right rostral middle frontal gyrus 0.012167336 0.024348844 0.037412131 

Surface area right superior frontal gyrus  0.014237726 0.013254355 0.021973606 

Surface area right superior parietal cortex  0.011395526 0.014338586 0.037711232 

Surface area right superior temporal gyrus  0.011665648 0.021516198 0.023668534 

Surface area right supramarginal gyrus 0.013394192 0.013299528 0.027350884 

Surface area right frontal pole  0.014360818 0.017266401 0.029843217 

Surface area right temporal pole  0.01334236 0.013353976 0.023126946 

Surface area right transverse temporal cortex  0.01336309 0.014229008 0.023982466 

Surface area right insula  0.016258779 0.025296632 0.02487458 

Volume left banks superior temporal sulcus 0.01163617 0.014304678 0.023475361 

Volume left caudal anterior-cingulate cortex 0.010949134 0.014700795 0.036370093 

Volume left caudal middle frontal gyrus 0.024401998 0.014446482 0.031566332 

Volume left cuneus cortex 0.012598747 0.013295854 0.023791372 

Volume left entorhinal cortex 0.011697937 0.012764738 0.025155303 

Volume left fusiform gyrus 0.012193735 0.02355814 0.030813691 

Volume left inferior parietal cortex 0.013478203 0.013416898 0.023191798 

Volume left inferior temporal gyrus 0.012192352 0.018309871 0.025962536 

Volume left isthmus of cingulate cortex 0.011947355 0.017714636 0.025129355 

Volume left lateral occipital cortex 0.01522789 0.015730507 0.021918332 

Volume left lateral orbital frontal cortex  0.014266613 0.015229908 0.021579694 

Volume left lingual gyrus 0.01271458 0.019659521 0.025987493 

Volume left medial orbital frontal cortex 0.011034274 0.014329334 0.022748933 

Volume left middle temporal gyrus  0.017221981 0.016602778 0.020612203 

Volume left parahippocampal gyrus 0.012548249 0.014730191 0.025405655 

Volume left paracentral lobule 0.024778782 0.017121263 0.021159391 

Volume left pars opercularis  0.012187552 0.013854126 0.023171459 

Volume left pars orbitalis  0.015518436 0.020967369 0.020793319 

Volume left pars triangularis  0.011315228 0.018658424 0.025683489 

Volume left pericalcarine cortex 0.012920082 0.013049061 0.027496995 

Volume left postcentral gyrus 0.012876342 0.014906299 0.031058686 

Volume left posterior cingulate cortex  0.015052976 0.01418775 0.03070179 
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Volume left precentral gyrus 0.013001932 0.01404499 0.022697306 

Volume left precuneus cortex 0.019891012 0.015616971 0.022750903 

Volume left rostral anterior cingulate cortex  0.020981126 0.018706983 0.022336571 

Volume left rostral middle frontal gyrus 0.015871038 0.018796474 0.023478204 

Volume left superior frontal gyrus  0.014434799 0.01724332 0.022974848 

Volume left superior parietal cortex  0.011783881 0.013500984 0.024786328 

Volume left superior temporal gyrus  0.015408704 0.015510599 0.026953967 

Volume left supramarginal gyrus 0.011522122 0.020662282 0.024785635 

Volume left frontal pole  0.013374742 0.014815862 0.027308285 

Volume left temporal pole  0.014150304 0.018647726 0.024455756 

Volume left transverse temporal cortex  0.01374447 0.018369561 0.028298155 

Volume left insula  0.01217071 0.01472274 0.0253114 

Volume right banks superior temporal sulcus 0.013073473 0.017001092 0.024171755 

Volume right caudal anterior-cingulate cortex 0.013246974 0.014727398 0.023812067 

Volume right caudal middle frontal gyrus 0.01208595 0.013710942 0.02330445 

Volume right cuneus cortex 0.011473418 0.013178819 0.022201736 

Volume right entorhinal cortex 0.012413295 0.015339423 0.037047848 

Volume right fusiform gyrus 0.015864219 0.031892986 0.036795807 

Volume right inferior parietal cortex 0.024129616 0.017402507 0.026931811 

Volume right inferior temporal gyrus 0.014520287 0.018309896 0.023086281 

Volume right isthmus of cingulate cortex 0.01921661 0.018458416 0.028386609 

Volume right lateral occipital cortex 0.011076955 0.018065395 0.024462789 

Volume right lateral orbital frontal cortex  0.012490477 0.01674574 0.022536365 

Volume right lingual gyrus 0.015044684 0.017413527 0.027544467 

Volume right medial orbital frontal cortex 0.011896461 0.012634484 0.021296098 

Volume right middle temporal gyrus  0.020168018 0.015632793 0.021764322 

Volume right parahippocampal gyrus 0.012209865 0.019874645 0.028151478 

Volume right paracentral lobule 0.013771375 0.016760677 0.023085602 

Volume right pars opercularis  0.013960044 0.020564297 0.028574734 

Volume right pars orbitalis  0.011454239 0.014614335 0.022464252 

Volume right pars triangularis  0.011098119 0.013723619 0.022957657 

Volume right pericalcarine cortex 0.012562483 0.01596943 0.023239643 

Volume right postcentral gyrus 0.014665665 0.013871988 0.027270573 

Volume right posterior cingulate cortex  0.011608123 0.012336501 0.024783097 

Volume right precentral gyrus 0.012587535 0.013019264 0.020992576 

Volume right precuneus cortex 0.011828327 0.015049186 0.027861762 

Volume right rostral anterior cingulate cortex  0.010981158 0.015875024 0.023987197 

Volume right rostral middle frontal gyrus 0.014935121 0.025707931 0.02941208 

Volume right superior frontal gyrus  0.016122175 0.0164729 0.024702794 

Volume right superior parietal cortex  0.012020065 0.014489253 0.023803039 
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Volume right superior temporal gyrus  0.014277264 0.015745437 0.02359007 

Volume right supramarginal gyrus 0.011621179 0.012922611 0.021889786 

Volume right frontal pole  0.013687657 0.025410771 0.02934109 

Volume right temporal pole  0.012320566 0.014939848 0.023471438 

Volume right transverse temporal cortex  0.012489608 0.012981911 0.024938289 

Volume right insula  0.021323892 0.027336652 0.025125714 

Deformation left banks superior temporal sulcus 0.020139406 0.014448023 0.023410098 

Deformation left caudal anterior-cingulate cortex 0.012518083 0.014971862 0.023583531 

Deformation left caudal middle frontal gyrus 0.026359012 0.022439221 0.02198052 

Deformation left cuneus cortex 0.015035229 0.014231586 0.028490458 

Deformation left entorhinal cortex 0.01323186 0.01294874 0.027161767 

Deformation left fusiform gyrus 0.014534996 0.014234563 0.02199874 

Deformation left inferior parietal cortex 0.011808512 0.013867425 0.024679826 

Deformation left inferior temporal gyrus 0.014119562 0.016837995 0.02948465 

Deformation left isthmus of cingulate cortex 0.013517441 0.016947317 0.030175269 

Deformation left lateral occipital cortex 0.015955581 0.019697677 0.02135947 

Deformation left lateral orbital frontal cortex  0.012147063 0.016011764 0.022333903 

Deformation left lingual gyrus 0.011536185 0.017011561 0.022233982 

Deformation left medial orbital frontal cortex 0.011217434 0.024784672 0.025018164 

Deformation left middle temporal gyrus  0.016187467 0.014148576 0.028300535 

Deformation left parahippocampal gyrus 0.012369806 0.017078687 0.037010084 

Deformation left paracentral lobule 0.016176805 0.021102808 0.031619591 

Deformation left pars opercularis  0.014941853 0.013315829 0.022823418 

Deformation left pars orbitalis  0.011568726 0.015501357 0.029512368 

Deformation left pars triangularis  0.012192376 0.017883305 0.026281511 

Deformation left pericalcarine cortex 0.012191062 0.013144696 0.021064911 

Deformation left postcentral gyrus 0.017498254 0.012547789 0.026571902 

Deformation left posterior cingulate cortex  0.012396343 0.032003898 0.031165804 

Deformation left precentral gyrus 0.011497233 0.013397404 0.025165174 

Deformation left precuneus cortex 0.011212541 0.017388392 0.022359431 

Deformation left rostral anterior cingulate cortex  0.01279649 0.017073704 0.022159183 

Deformation left rostral middle frontal gyrus 0.017125414 0.01929352 0.035351476 

Deformation left superior frontal gyrus  0.010788915 0.016492326 0.028676281 

Deformation left superior parietal cortex  0.011943207 0.014287664 0.021282456 

Deformation left superior temporal gyrus  0.01602699 0.016573515 0.025785755 

Deformation left supramarginal gyrus 0.016132979 0.013050433 0.023144003 

Deformation left frontal pole  0.012682229 0.014324081 0.024920648 

Deformation left temporal pole  0.018384577 0.014301561 0.023326803 

Deformation left transverse temporal cortex  0.013562159 0.015069344 0.026169376 

Deformation left insula  0.014360485 0.016721512 0.035604736 
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Deformation right banks superior temporal sulcus 0.02246122 0.0132415 0.026333088 

Deformation right caudal anterior-cingulate cortex 0.011695458 0.012276017 0.022584054 

Deformation right caudal middle frontal gyrus 0.01259305 0.019684074 0.024045628 

Deformation right cuneus cortex 0.014762746 0.01353393 0.024798605 

Deformation right entorhinal cortex 0.012181006 0.013245076 0.026334405 

Deformation right fusiform gyrus 0.015518617 0.014724211 0.026507709 

Deformation right inferior parietal cortex 0.012860464 0.018053868 0.022338962 

Deformation right inferior temporal gyrus 0.01733522 0.0133652 0.022688264 

Deformation right isthmus of cingulate cortex 0.01241632 0.016685857 0.039285114 

Deformation right lateral occipital cortex 0.014731728 0.013113821 0.027053321 

Deformation right lateral orbital frontal cortex  0.014701487 0.013380676 0.024966149 

Deformation right lingual gyrus 0.013118936 0.017885638 0.021338641 

Deformation right medial orbital frontal cortex 0.014793091 0.015301727 0.022287184 

Deformation right middle temporal gyrus  0.017034367 0.014137359 0.025590129 

Deformation right parahippocampal gyrus 0.011936899 0.013551665 0.032585538 

Deformation right paracentral lobule 0.011903223 0.012701943 0.032846536 

Deformation right pars opercularis  0.013533817 0.013998113 0.032443056 

Deformation right pars orbitalis  0.011231039 0.02009125 0.028041412 

Deformation right pars triangularis  0.012333417 0.01750689 0.023309404 

Deformation right pericalcarine cortex 0.015503081 0.0128513 0.023601159 

Deformation right postcentral gyrus 0.011489251 0.014301173 0.02341984 

Deformation right posterior cingulate cortex  0.012926597 0.017864468 0.023355027 

Deformation right precentral gyrus 0.011740956 0.015612647 0.02123393 

Deformation right precuneus cortex 0.012794881 0.016704011 0.023945819 

Deformation right rostral anterior cingulate cortex  0.010942776 0.012748099 0.023831637 

Deformation right rostral middle frontal gyrus 0.013931446 0.02327875 0.03940495 

Deformation right superior frontal gyrus  0.01376992 0.013001065 0.024142899 

Deformation right superior parietal cortex  0.012356985 0.020700551 0.022328288 

Deformation right superior temporal gyrus  0.012290483 0.015964187 0.028270222 

Deformation right supramarginal gyrus 0.010969915 0.013459052 0.022989722 

Deformation right frontal pole  0.012854473 0.014403872 0.030211319 

Deformation right temporal pole  0.014006673 0.016264848 0.022342454 

Deformation right transverse temporal cortex  0.012921095 0.013714227 0.030880462 

Deformation right insula  0.013508908 0.015752182 0.024881475 

Deformation left thalamus 0.016088914 0.014288133 0.025419124 

Deformation left caudate 0.012198555 0.012931672 0.025281209 

Deformation left putamen 0.021505507 0.025581131 0.033742741 

Deformation left pallidum 0.018876772 0.020081253 0.039167822 

Deformation left accumbens area 0.012475014 0.0192723 0.025813701 

Deformation left hippocampus 0.011783754 0.014219076 0.02916447 
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Deformation left amygdala 0.015219171 0.012917429 0.030234155 

Deformation right thalamus 0.011626025 0.015914864 0.028790682 

Deformation right caudate 0.011884908 0.01183014 0.024841387 

Deformation right putamen 0.024620056 0.019946589 0.034625928 

Deformation right pallidum 0.016529018 0.014116426 0.034465437 

Deformation right accumbens area 0.014147189 0.015978305 0.027909382 

Deformation right hippocampus 0.011570919 0.013928616 0.030238036 

Deformation right amygdala 0.010849397 0.014988168 0.027716113 

Deformation brainstem 0.011710106 0.013054873 0.023888922 

Blue indicates higher relative importance and red indicates lower relative importance. The 5 selected 

regions in each classification, and the corresponding brain regions, are highlighted in red. iRBD: idiopathic 

rapid eye movement sleep behavior disorder. PD: Parkinson’s disease. MCI: mild cognitive impairment. 
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Supplementary Table 4. Morphometric measurements that differed significantly between PD and iRBD 

patients. 

Morphometric modality and 
hemisphere 

Brain region PD iRBD P value 

Thickness, left Lingual gyrus 1.95 (0.08) 2.00 (0.08) 0.003 

Rostral middle frontal 
gyrus 

2.29 (0.09) 2.23 (0.08) 0.005 

Superior frontal gyrus 2.55 (0.08) 2.48 (0.11) 0.009 

Pars orbitalis 2.52 (0.14) 2.44 (0.16) 0.046 

Thickness, right Medial orbital frontal cortex 2.33 (0.14) 2.24 (0.10) 0.003 

Frontal pole 2.56 (0.25) 2.41 (0.19) 0.005 

Entorhinal cortex 2.99 (0.23) 3.13 (0.19) 0.013 

Pericalcarine cortex 1.72 (0.13) 1.79 (0.12) 0.028 

Posterior cingulate cortex 2.33 (0.15) 2.26 (0.11) 0.033 

Pars triangularis 2.30 (0.12) 2.26 (0.11) 0.040 

Lingual gyrus 1.98 (0.10) 2.02 (0.08) 0.043 

Surface area, left Isthmus of cingulate cortex 0.00071 (0.0001) 0.00075 (0.0001) 0.046 

Volume, left Fusiform gyrus 0.0057 (0.0005) 0.0060 (0.0006) 0.020 

Lingual gyrus 0.0040 (0.0006) 0.0043 (0.0006) 0.025 

Volume, right Fusiform gyrus 0.0057 (0.0005) 0.0062 (0.0009) 0.002 

Frontal pole 0.0007 (0.0001) 0.0007 (0.0001) 0.04992 

Deformation, left Posterior cingulate cortex 1.00 (0.06) 0.97 (0.05) 0.007 

Pallidum 0.93 (0.06) 0.91 (0.05) 0.039 

Accumbens area 1.01 (0.04) 0.99 (0.05) 0.049 

Putamen 0.93 (0.06) 0.91 (0.05) 0.04992 

PD: Parkinson’s disease, iRBD: idiopathic rapid eye movement sleep behavior disorder. Surface area and 

volume values were normalized using the estimated total intracranial volume. Red: Thinning, reduced 

surface area or volume, or tissue deformation value. 

 

 

 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 28, 2021. ; https://doi.org/10.1101/2021.09.18.21263779doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.18.21263779
http://creativecommons.org/licenses/by-nc-nd/4.0/


 10 

Supplementary Table 5. Morphometric measurements that differed significantly between iRBD patients 

with or without MCI. 

Morphometric modality and 
hemisphere 

Brain region iRBD without 
MCI 

iRBD with 
MCI 

P value 

Thickness, left Pars triangularis 2.33 (0.11) 2.21 (0.06) 0.0002 

Pars orbitalis 2.49 (0.16) 2.35 (0.12) 0.005 

Superior temporal gyrus 2.64 (0.11) 2.53 (0.14) 0.006 

Transverse temporal cortex 2.35 (0.14) 2.23 (0.15) 0.006 

Middle temporal gyrus 2.68 (0.12) 2.60 (0.09) 0.007 

Insula 2.85 (0.13) 2.73 (0.13) 0.007 

Pars opercularis 2.45 (0.09) 2.38 (0.10) 0.022 

Banks of superior temporal sulcus    2.38 (0.08) 2.32 (0.10) 0.026 

Paracentral lobule 2.34 (0.13) 2.26 (0.12) 0.037 

Thickness, right Pars triangularis 2.29 (0.12) 2.19 (0.08) 0.007 

Middle temporal gyrus 2.73 (0.10) 2.65 (0.11) 0.010 

Paracentral lobule 2.39 (0.14) 2.32 (0.12) 0.010 

Postcentral gyrus 2.07 (0.12) 1.97 (0.12) 0.011 

Transverse temporal cortex 2.36 (0.14) 2.24 (0.18) 0.016 

Superior temporal gyrus 2.65 (0.13) 2.56 (0.14) 0.028 

Lateral occipital cortex 2.23 (0.09) 2.18 (0.08) 0.048 

Surface area, left Superior temporal gyrus 0.0026 (0.0002) 0.0028 (0.0002) 0.021 

Fusiform gyrus 0.0021 (0.0002) 0.0022 (0.0002) 0.031 

Paracentral lobule 0.0009 (0.0001) 0.0010 (0.0001) 0.041 

Surface area, right Precuneus cortex 0.0027 (0.0003) 0.0029 (0.0003) 0.031 

Paracentral lobule 0.0010 (0.0001) 0.0011 (0.0001) 0.048 

Volume, right Fusiform gyrus 0.0060 (0.0008) 0.0065 (0.0009) 0.025 

Deformation, left Pallidum 0.92 (0.05) 0.88 (0.05) 0.020 

Insula 1.00 (0.05) 1.04 (0.04) 0.031 

Deformation, right Isthmus of cingulate cortex 1.01 (0.06) 0.97 (0.05) 0.007 

Putamen 0.92 (0.05) 0.88 (0.04) 0.026 

Pallidum 0.92 (0.05) 0.89 (0.04) 0.033 
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iRBD: idiopathic rapid eye movement sleep behavior disorder. MCI: mild cognitive impairment. Surface 

area and volume values were normalized using the estimated total intracranial volume. Red: Thinning, 

reduced surface area or volume, or tissue deformation value.
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Supplementary Figure 1. A diagram demonstrating all steps of the proposed analysis, including random 

train-test split, feature and model selection, model training and testing, and evaluation of model 

performance. 
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