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Supplemental Figures
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Figure S1. RA2 DREAM Challenge timeline.
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Figure S2. Pairwise p-values between all final round predictions. This analysis was
performed for A. SC1, B. SC2, and C. SC3, and indicates that there is no statistical similarity
between any challenge submissions (FDR-adjusted p < 0.05).
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Figure S3. Reproducibility of submitted algorithms. Spearman correlation between the final
round score and the post-challenge rerun of the same method; both use the same test data; A.
SC1, B. SC2, and C. SC3.
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Figure S4. Distribution of individual and ensembeled predictions. A. The distribution of the
submitted predictions (SC1,2,3 measurements) for each team. Compared to better-ranked
predictions, the RYM model predicted greater damage for all patients. B. The distribution of the
ensembeled predictions (SC1,2,3 measurements). When ensembled, the addition of the RYM
model made the distribution of the predictions closer to that of the gold standard.
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Figure S5. Ensembled models improve performance (Spearman correlation). The analysis
described for Figure 3 was repeated using Spearman correlation as the performance metric
instead of weighted RMSE. Using this metric, we observed improved performance (Bayes < 3,
light blue) for many of the ensembled models in A. SC1, B. SC2, and C. SC3.
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Figure S6. Summarizarion of approaches and methods used by participated teams in
three subchallenges. A. Impact of segmentation on the subchallenge scores. Teams using vs.
not using segmentation methods were compared. B. Impact of segmentation algorithms on the
subchallenge scores. Participants self-built segmentation method, U-net, ResNet, RCNN,
RetinaNet, Yolo, FastCNN and without any segmentation method were compared. C. Impact of
scoring algorithm on the subchallenge scores. Participants self-built algorithm, Deep-learning,
Autoencoder and Penalized-regression were compared. D. Impact of using ensemble models
on the subchallenge scores. Teams using ensemble models (n=8) vs not using ensemble
models (n=5) were compared. We used the Kruskal-Wallis (KW) test for all the comparison. The
p value < 0.05 is considered significant.
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Figure S7. Identification and correction of gold standard outliers. A-C. Averaged
predictions from top methods were used to assign each measurement to a bin and identify
potential outliers (see supplemental methods) in the gold standard dataset for SC1, 2 and 3. D-
F. False discovery rate (FDR)-adjusted empirical p-values were calculated for each gold
standard measurement by comparing them to the rest of the bin they were assigned to. We did
not identify any potential outliers in SC1 (overall SvH), but identified several in SC2/SC3
measurements. The potential outlier measurements and the images were reviewed by an expert
and, if necessary, corrected (See Table S4).



Supplemental Tables
Table S1. Links to writeups describing the methods used for all algorithms submitted in
the final round.

Table S2. Technical questionnaire and responses from the finalist teams.

Table S3. Confirmed outlier joints flagged were reviewed and reevaluated by radiology
expert in the test set. The Patient ID (Patient_ID) and joint ID (joint) as well as the original SvH
score (score), the revised score after manual review by an expert (score_revised), and the
subchallenge the measurement was associated with.

Table S4. SvH score weights for each patient. IDs for all patients in the training set as well as
the leaderboard and final round test sets (Patient_ID), their overall SvH score (Overall_SvH),
and the assigned weight used for that patient in the weighted RMSE.



