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Abstract 
To develop machine learning methods to quantify joint damage in patients with rheumatoid 

arthritis (RA), we developed the RA2 DREAM Challenge, a crowdsourced competition that 

utilized existing radiographic images and “gold-standard” scores on 674 sets of films from 562 

patients. Training and leaderboard sets were provided to participants to develop methods to 

quantify joint space narrowing and erosions. In the final round, participants submitted 

containerized codes on a test set; algorithms were evaluated using weighted root mean square 

error (RMSE). In the leaderboard round, there were 173 submissions from 26 teams in 7 

countries. Of the 13 submissions in the final round, four top-performing teams were identified. 

Robustness of results was assessed using Bayes factor and validated using an independent set 

of radiographs. The top-performing algorithms, which consisted of different styles of deep 

learning models, provided accurate and robust quantification of joint damage in RA. Ultimately, 

these methods lay the groundwork to accelerate research and help clinicians to optimize 

treatments to minimize joint damage.  

  

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 26, 2021. ; https://doi.org/10.1101/2021.10.25.21265495doi: medRxiv preprint 

https://doi.org/10.1101/2021.10.25.21265495
http://creativecommons.org/licenses/by-nc/4.0/


Introduction 

Rheumatoid arthritis (RA) is a chronic inflammatory disease that affects ~0.5-1.0% of 

populations worldwide, and more than 1.3 million people in the USA.1 The hallmark of RA is 

inflammation in the synovial lining of joints, leading to joint space narrowing, erosions in 

subchondral bone, and joint deformity.2 Joint damage in chronic RA is usually assessed over 

time through radiographs of the hands/wrists and feet, as these small joints are typically 

affected and have features that allow for differentiation from other forms of arthritis such as 

osteoarthritis. Quantitation of damage through imaging plays an important role in therapeutic 

decisions in individual patients, such as escalating therapy in patients with evidence of 

worsening erosions or joint space narrowing.  

 RA patients do not always develop joint damage, which reflects variability in the 

pathogenesis of the disease, clinical risk factors, and environmental exposures. In addition, 

some patients with minimal symptoms can slowly develop progressive radiographic damage 

over time, which may not be recognized by clinicians who see patients several times a year. 

Determining whether a patient is accruing joint damage and assessing the rate of progression 

are major challenges in treating patients with RA. While there are many advanced imaging 

techniques capable of quantifying RA damage (e.g. small coil MRI, ultrasound), these 

techniques are either expensive, unavailable to many patients, or operator dependent 

(subjective and dependent on the skill of the person acquiring the images). Thus, the most 

common approach to quantify RA-related bone and joint damage used in research studies and 

by many clinicians is radiographic images of hands/wrists and feet. The modified Sharp/van der 

Heijde (SvH) visual inspection scoring method is currently the gold standard for quantifying joint 

damage in RA.3 This method is validated for use in research studies, but cannot easily be 

applied to clinical practice, as the scoring is time-consuming, labor-intensive, and requires 

specialized training of readers. Thus, an automated way to quickly, accurately, and reproducibly 

assess the degree of joint damage would be highly valuable in clinical settings and would 

facilitate much larger research studies on factors associated with radiographic progress by 

enabling use of real-world data. One of the barriers to developing such methods is the lack of 

large sets of images with validated SvH scores for algorithm training and validation .  
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Figure 1. An overview of RA2 DREAM challenge. A. A representative radiograph of a RA 
patient showing normal joints (blue circled), joints with erosions (gray circled), and joint space 
narrowing (red circled). B. SvH score distribution of datasets used in the challenge and the post-
challenge validation. Images with known SvH scores from CLEAR and TETRAD formed the 
training, leaderboard and final scoring round datasets. A subset of images from the TEAR trial 
was used for post-challenge method validation. C. A total of 367 sets of radiographic images 
and expert-curated SvH scores was provided to participants to train algorithms. Leaderboard 
data (n=119) and final scoring data (n=188) were used for performance evaluation in the 
leaderboard and final scoring rounds. 
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Algorithms based on deep learning have attained human-level or even better 

performance at image classification in recent Imagenet competitions.4,5 Neural networks or deep 

learning approaches have been applied to the diagnosis of pulmonary tuberculosis or 

pneumonia from chest radiographs.6 RA-related joint erosion and narrowing scoring represent a 

unique challenge due to the numerous joints involved (e.g. proximal interphalangeal, 

metacarpophalangeal, and many joints in the wrist) and the complex anatomy (e.g. overlapping 

carpal bones) (Figure 1A). Given advances in image analysis and machine learning, an 

increasing number of studies are trying to address the issue of automated scoring of 

radiographic images in RA.7–9 However, to date, no independently benchmarked, accessible 

and automated methods to quantify RA-associated joint damage in the hands/wrists and feet 

are in common use.  

 Here, we organized a crowdsourced, benchmarking effort to invite the worldwide 

community to develop robust methods for quantifying damage from RA radiographs. The RA2 

DREAM Challenge, a community-based, collaborative competition engaged a diverse 

community of biologists, computer scientists, and physicians from all over the world. In this 

challenge, we provided radiographs generated from two NIH-funded studies with gold standard 

SvH scores, the Consortium for the Longitudinal Evaluation of African-Americans with 

Rheumatoid Arthritis (CLEAR)10 and the Treatment Efficacy and Toxicity in Rheumatoid Arthritis 

Database and Repository (TETRAD).11 Teams that participated in the RA2 DREAM Challenge 

were provided with access to high-resolution radiographic images of hands/wrists and feet. In 

the training set, accompanying SvH scores were also given, and teams developed 

computational methods to automatically and accurately score the overall RA-related damage, 

the degree of joint space narrowing, and the degree of erosions (Subchallenges 1, 2, and 3, 

respectively) (Figure S1). In the leaderboard phase, they were given a second independent set 

of films but scores were withheld; teams were given iterative feedback on the performance of 

their models. In the test phase, participants were given a third set of radiographic images (Table 
1) and submitted two times but only one final model to be judged in the competition. 12  

 There were a total of 13 final valid submissions, each of which was evaluated against 

manually curated scores using a patient-weighted root mean square error (RMSE) metric. We 

included a baseline model for comparison (see Methods). A robustness analysis was performed 

to compare the performance against the baseline model and top performers. The algorithms of 

four teams were identified as top performers for the three subchallenges. Top-performing 

algorithms and others were then validated using an additional independent set of images with 

known SvH scores from the Treatment of Early Aggressive Rheumatoid Arthritis (TEAR) trial.12 
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As we show, these methods acheived performance that is comparable to human scorers. This 

supports automated scoring of RA radiographs as a feasible and promising approach that may 

be used both in research and clinical medicine in the near future.  

 

 
Table 1. Demographic characteristics of patients in training, leaderboard, and final 
scoring sets. Rheumatoid Factor and anti-CCP (anticyclic citrullinated peptide) antibody are 
two autoantibodies found in most RA patients. IQR, Interquartile range. SD, Standard deviation.  
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Results 
The top-performing teams for overall damage (SC1), JSN (SC2), and erosion scores (SC3) 
The top-performing algorithms were determined based on their weighted RMSE. The stability or 

robustness of the models was evaluated by bootstrap analysis. Bayes’ factor was used to 

determine if subsequently ranked teams were tied with the top performing team (Bayes factor 

<= 3); no ties were observed (Figure 2). Top performing teams across all subchallenges had 

better performance than the baseline model. Team Shirin, Hongyang Li/Yuanfang Guan, 

csabaibio and Team Gold Therapy’s developed the top-performing models to predict overall 

damage (Figure 2A), joint space narrowing (Figure 2B), and erosion (Figure 2C). Results were 

further confirmed by calculating pairwise p-values (Figure S2 A-C). Detailed writeups of 

individual methods are supplied in the Supplemental Methods and Table S1. 

 

The top-performing teams results are rigorous and reproducible 
Submitted algorithms may depend on random initialization24 or contain other stochastic 

components. To assess the reproducibility and stability of each method, we re-ran each 

algorithm on the final scoring round dataset. We found that all the top performing teams (and 

indeed, most of the algorithms) produced identical (Spearman = 1) or nearly identical 

(Spearman > 0.99) predictions between the final scoring round results and the rerun scores 

(Figure S3). Thus, all submitted models were highly reproducible with stable predictions.  

 We then evaluated generalizability of methods to other datasets using an independent, 

post-challenge validation dataset from the TEAR Trial. The coefficient of variation for SvH 

overall, JSN, and erosion between two readers in the TEAR Trial were 0.74 (p=0.15), 0.62 

(p=0.18) and 0.73 (p=0.03). The TEAR study contained slightly lower quality radiographs than 

those from the CLEAR and TETRAD studies, suggesting that the post-challenge validation task 

was likely more difficult than the final round. We calculated the weighted-RMSE and compared 

the algorithms’ performances in to the final scoring round (Figure 2).We also computed a 

concordance index between the final scoring round scores and the post-challenge validation 

dataset scores. A concordance index of 1 indicates perfectly concordant rankings, while a 

concordance index of 0 indicates perfectly discordant (i.e. opposite) ranking. The concordance 

indices were 0.714 for SC1, 0.78 for SC2, and 0.824 for SC3. This demonstrates that the 

methods predicted consistently between the final scoring dataset and the post-challenge 

validation dataset, suggesting that these algorithms can be readily applied to new, independent 

radiographs.   
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Figure 2. Evaluation and validation of challenge results. (A, B, C, left) The performance of 
each team in SC1, SC2, SC3. All predictions were bootstrapped to generate a distribution of 
scores and to calculate Bayes factors between the top performing model (red) and all other 
models. Any prediction with a Bayes factor of 3 or less was considered “tied” with the top model; 
no predictions were tied for top place in any of the three subchallenges. The baseline model 
provided by the organizers was used for reference (yellow). (A, B, C, right) The models were 
run on an independent, post-challenge validation dataset of 50 image sets and scored against 
two sets of gold standard measurements from the validation dataset, using the SC1, SC2, and 
SC3 metrics, respectively (A, B, C); the dotplots show the weighted RMSE performance in the 
final scoring round (x-axis) for each model compared to the mean weighted RMSE between two 
sets of gold standard validation measurements from the post-challenge validation set (y-axis). 
Algorithms below the dashed blue line performed better in the final scoring round, while those 
above the blue line performed better on the validation dataset. 
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 There were some inconsistencies between top-performing algorithms in the final scoring 

dataset compared to the post-challenge validation dataset. Team NAD in SC1 and Zbigniew 

Wojna in SC2 showed better performance than others in the post-challenge validation, which 

may be due to better performance in certain scenarios. For example, the NAD and Zbigniew 

Wojna models may perform better than others in images with different types of artifacts, images 

of different resolution/quality, or datasets with differences in which joints had more damage (e.g. 

wrists vs PIP joints). This also suggests that combinations of algorithms may be more robust 

than any individual model alone.  

 

Ensemble models are better than each individual team’s model  
As described in the Methods, we generated ensembled predictions from the models submitted 

in the final scoring round. We ensembled the top two performers, then added subsequently 

ranked teams over all models (Figure 3). We then performed the same bootstrapping analysis 

to assess robustness of the ensemble models and calculated Bayes factor compared to the top 

performing team. 

 

Figure 3. Ensembled models improve performance (weighted RMSE). A series of simple 
ensemble models were created by combining the top two models, the top three, and so on until 
all models were combined. For each ensemble model, the predictions were averaged (mean) 
and scored with the SC1, SC2, or SC3 metrics. A bootstrap/Bayes factor analysis was used to 
determine differences in performance between the top-performing (individual) model and the 
ensemble models. We labeled ensemble models in blue/purple when the absolute score was 
“better” than the top model, and orange/red when the absolute score was “worse” than the top 
model. The purple or red indicates models that have a Bayes < 3 compared to the top model 
and were thus considered tied, while the blue or orange indicates Bayes > 3 and therefore 
models that are substantially better or worse, respectively than the top-performing model alone. 
A. For SC1, all ensemble models perform equivalently (Bayes < 3, re/purple) or worse than the 
top model alone (Bayes > 3, orange). B. For SC2, the first 5 ensemble models perform better 
than the top model alone (Bayes > 3, blue). C. For SC3, the majority of the ensemble models 
are better than the top model alone (Bayes > 3, blue).  
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For SC1, the ensembled models were not substantially better than the top-performing 

method; that is, no ensembled models had a bootstrapped lower weighted RMSE with a Bayes 

factor > 3 relative to the top-peforming model (Figure 3A). Interestingly, including predictions 

from team RYM substantially improved performance, even though it was not one of the top-

ranked models in SC1. After evaluating the distribution of the predictions (Figure S4A), we 

determined that the ensemble model that included the top-performing algorithm and the 

predictions from RYM (and the 7 algorithms ranked between them) systematically predicted 

greater damage for all patients. When combined with the better-performing models, this 

systematic alteration brought the distribution of the predictions closer to that of the gold 

standard (Figure S4B).  

For SC2 and SC3, we observed that averaging the predictions from several of the top-

ranked models (up to 6 and 10, respectively) increased the predictive power of the algorithms 

substantially (Bayes factor > 3). We also evaluated the ensemble predictions using an 

unweighted metric (Spearman correlation, Figure S5). Ensembling several top models yielded 

similar improvements in performance in all three subchallenges. 

 
Impact of case-by-case technical decisions on team performance 

To gain insights into the submitted methods and to aid future algorithm development, we 

systematically summarized the top-performing teams’ methods by conducting a post-challenge 

survey and evaluating the submitted method write-ups (Table 2). We received responses from 

11 of the 13 teams who submitted algorithms in the final scoring round. Among these 11, two 

teams did not apply image segmentation before scoring the joint damage. In general, teams 

who applied image segmentation achieved better performance for all three subchallenges 

(Figure S6A), though the difference between using and not using segmentation is not 

statistically significant (KW test p-value > 0.1). For the methods that did perform segmentation, 

no specific algorithm or publicly available segmentation models were associated with method 

performance (Figure S6B).  

 Nine of the 11 teams applied deep learning-based approaches. The average scores 

among algorithms that used deep learning were more favorable than those not using deep 

learning methods, but this difference failed to reach statistical significance (KW test p-value > 

0.1) (Figure S6C). We did however find that applying ensemble approaches improved team 

performances in SC2 and SC3 (KW test p-value=0.06; Figure S6D).  
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Table 2. Summary of machine learning methods used by the final-round teams. NA*: the 
team did not apply segmentation. NA**: the team did not apply any prebuilt model. NA***: the 
team did not use ensemble model. See Table S2 for more details. 
 
Discussion 

In the RA2 DREAM Challenge, we leveraged the international community of computer science 

and engineering experts to develop methods to automatically score overall RA severity, joint 

space narrowing, and erosions on radiographic images of the hands/wrists and feet. There is 

complexity and variability inherent in the joint images on RA radiographs. For example, many 

joints of the wrist are overlapping on images, and are not aligned in the same plane as the 

radiation beam, leading to subjective interpretation. This likely explains our finding that scoring 

of the MCP and PIP joints in the hands and the joints of the forefoot were more accurately 

scored than those in the wrist.  

 In addition, we found that scores for joint space narrowing were more accurate than 

those for erosions. After our challenge was closed, we identified outlier participant-produced 

scores compared to expert-curated SvH scores by comparing joint space narrowing and erosion 

scores of individual joints on the same radiograph (see Supplemental Methods and Figure S7 

and Table S3). We found 201 outliers of 7,896 individual joint narrowing scores (2.5%) and 462 

outliers of 8,272 (5.6%) individual joint erosion scores. One of our investigators (MBF, a board 

certified musculoskeletal radiologist) re-scored the confirmed outliers. He made corrections to 

the SvH scores of 97 (1.23%) of joint space narrowing scores and 192 (2.32%) of erosion 

scores in the final scoring dataset. This low number of “corrections” needed in the expert 

curated scores show that there were few “mistakes” made by the trained scorers. In the analysis 
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of TEAR validation data the coefficients of variation between the two expert readers were 0.74, 

0.62 and 0.73, for overall, joint space narrowing, and erosion, showing more variability in the 

erosion scores than in the joint space narrowing scores. This also suggests that joint space 

narrowing is easier to assess than erosion and that the overall score is largely determined by 

the least predictive component. Difficulties in scoring of erosions may be due in part to the 

difficulty in visualizing the bony cortex precisely in all joints on a given radiographic image. 

Future challenges may help to overcome this difficulty by developing automated optimization of 

images through digital manipulation of brightness, contrast, and allowing for targeted high-

resolution magnification. 

 The vast majority of the RA2 Challenge participants used deep learning-based methods, 

reflecting the general trend of deep learning application in image analysis. This adoption rate is 

likely due to the availability of freely accessible pre-trained models (such as DenseNet,25 

ResNet,26 and U-Net27), which were used by all of the top-performing teams, as well as the 

flexible and extendable architecture of these methods. The flexibility of these methods may lead 

to the dependence of the final performance on other technical decisions beyond using a deep 

learning framework. Importantly, building ensemble models substantially improves the predictive 

performance and is likely to be included in highly successful future approaches to analysis of 

radiographic images.  

Our results provide optimism for future automated scoring, but larger-scale follow-up 

studies are needed. In order for algorithms to become truly robust, many thousands of images 

should be used for training and models should be continuously benchmarked on new data. The 

successful implementation of algorithmic scoring could make millions of stored images without 

JSN and erosion scores available for research on factors associated with radiographic damage 

in RA. While the compilation of the CLEAR, TETRAD, and TEAR images is a valuable first step, 

future directions should include digitally acquired annotated images from large-scale 

observational studies, clinical trials, and EHR datasets. Significantly expanding our capability to 

study joint damage at a significantly lower cost and with greater reproducibility creates new 

possibilities for understanding the pathogenesis of RA and the development of new treatments 

to prevent joint damage. 

Lessons learned in this DREAM Challenge may contribute to quantification of 

radiographic damage in other types of arthritis in which erosions have different characteristics 

than RA. This might include such as pencil-in-cup deformities in psoriatic arthritis or “punched-

out” erosions with overhanging edges in gout. In addition, automated approaches may ultimately 
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help clinicians make therapeutic decisions, such as changing treatment regimens to avoid 

additional joint damage.  

This RA2 DREAM Challenge showed that international collaboration and award-

incentivized crowd-sourcing can lead to robust and reproducible algorithms to score 

radiographic damage in RA. Furthermore, it exemplifies how community-based team science 

may engage both domain experts and machine learning and artificial intellegence experts in the 

future.  

 

Methods 
Challenge data 

Two NIH-funded clinical studies, CLEAR10 and TETRAD11, led by investigators at the University 

of Alabama at Birmingham (UAB), provided radiographic images and standard SvH scores for 

the RA2 DREAM Challenge.  

 We used a total of 674 sets of images from 562 patients with corresponding SvH scores. 

There were 455 sets of images/SvH scores from 408 CLEAR participants and 209 sets from 

154 TETRAD participants (Figure 1A). A total of 47 CLEAR and 55 TETRAD participants had 

sets of images at two different time points, typically about 1 year apart. Each set comprised four 

images: one of each foot and one of each hand/wrist, in a postero-anterior direction. SvH 

scores13 were previously generated by experienced readers trained in this method, as has been 

reported.10, 11 The SvH scoring system assesses 15 areas from each hand/wrist and 6 areas 

from each foot to assess JSN; and 16 joint areas from each hand/wrist and two sides of 6 joints 

from each foot to evaluate erosions. Each area is assigned a score from 0 to 4 for narrowing 

and 0 to 5 for erosion, leading to a total score of 448 (the overall total narrowing score is 168, 

and the overall erosion score is 280).  

 Importantly, we included a substantial number of joints without RA-associated joint 

damage, which was important for training algorithms to recognize joints with no JSN or 

erosions. Approximately ~34% of the films from CLEAR participants were scored 014 because 

many had early RA and not all patient develop damage. There were fewer TETRAD participants 

with no damage because that study focused on the treatment to refractory RA, leading to more 

damage. In addition TETRAD participants had longer disease duration, on average, than 

CLEAR participants.  
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Challenge Procedures 
Each of the three subchallenges were evaluated separately using the expert-curated SvH 

overall (SC1), JSN (SC2), and erosion (SC3) scores as the gold standard. In the training round, 

participanting teams were provided with a set of images and accompanying SvH scores for 

each joint to develop their algorithms. In the leaderboard round, only images were provided, and 

teams refined their algorithms through sequential submissions and scoring feedback after 

assessments by the RA2 DREAM Challenge organizers. In the final scoring round, only images 

were provided and one final containerized submission was submitted for evaluation and 

performance ranking of teams. Each of the sets (training, leaderboard, and final scoring) were 

independent of each other, with no sets of images used in more than one round. 

 The socio-demographic and clinical characteristics of the participants whose radiographs 

were used are shown in Table 1. The distributions of SvH scores from the three studies utilized 

in this challenge (CLEAR, TETRAD, TEAR) are shown in Figure 1B. In the leaderboard round, 

each team was required to submit a containerized version of their method for evaluation and 

received weighted RMSE scores as feedback. Public leaderboards were updated immediately 

after the performance of each algorithm was assessed. In the leaderboard round, each team 

was allowed up to three submissions per week over 9 weeks, totalling 27 potential submissions 

(Figure S1). This allowed teams to iteratively evaluate the performance of their algorithms and 

modify accordingly. In the final round, teams were allowed to submit up to two containerized 

models (with the last submission considered to be a team’s final submission) and were required 

to include a written description of their final method. Each submission was evaluated to assess 

performance and to rank each model according to how well it performed relatively to the expert-

curated scores (Figure S1 and 1C).  

 All teams submitted their models via the Synapse collaborative science platform in the 

form of containerized code (a Docker container). The containers were required to follow a 

prescribed format to enable automated execution in the University of Alabama at Birmingham 

(UAB) Cheaha supercomputer. Additionally, the models were required to run without a network 

connection and had to define an ENTRYPOINT to run the algorithm. Participants were allowed 

to train their models locally and submit a trained model or explore the training data locally and 

submit an untrained model to be trained at run-time. Models submitted to Synapse were 

automatically transferred to the UAB Cheaha supercomputer using the CWL Synapse Workflow 

Hook, converted to Singularity containers, and executed on the challenge data to produce 

prediction files (Figure 1C).  
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Challenge Evaluation  
For each model, the DREAM Challenge organizing team produced the overall (SC1), JSN 

(SC2), and erosion (SC3) SvH scores. We assessed the performance of each team’s model by 

comparing the scores derived from their methods (yi in the equation below) to the ground truth 

SvH scores (si in the equation below) using a patient-weighted root mean square error (RMSE). 

First, we assigned a weight (wi in the equation below) to each patient according to their log 

transformed overall SvH score. Specifically, weight 1, 2, 2.14, 3.86, 8, 16, 32 and 64 were 

assigned to an overall SvH scores or score ranges of 0, 1, 2-3, 4-7, 8-20, 21-55, 56-148, and 

>148, respectively (Table S4). We used the weights to generate equal-weighted sets of data 

into the training (n=367, radiographic images and scores), leaderboard (n=119, radiographic 

images only), and final scoring (n=188, radiographic images only) datasets. We then calculated 

a patient-weighted RMSE using the RMSE of log-transformed team scores and expert-curated 

SvH scores, multiplied by the patient weights (wi), and then calculated the average RMSE 

across the entire cohort: 

𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑	𝑅𝑀𝑆𝐸 = .
∑ 𝑤!(𝑙𝑜𝑔(𝑦!) − 𝑙𝑜𝑔	(𝑠!))"#
!$%

∑ 𝑤!#
!$%

	 

Baseline model  
A baseline model (https://www.synapse.org/#!Synapse:syn21570587) was developed by the 

RA2 DREAM Challenge organizers for comparison to the models submitted by the participants. 

We created the baseline model by training a 10-layer deep learning model without segmentation 

of the images to classify the damage (0-4 for narrowing and 0-5 for erosion). The JSN and 

erosion scores were summed to generate SC1 scores. The layer architecture followed the 

example described in Chapter 5 of Deep Learning with Python.15  

 

Robustness analysis and tied methods assessment 
The robustness of each submitted algorithm (and the baseline model) was determined using 

Bayes factor analysis. This analysis identifies which methods that are better than, tied with, or 

worse than a reference method (e.g. the top-performing submission, or a baseline submission) 

considering the performance on random sampling of the data. In both the final scoring and post-

challenge validation rounds (see following section), we performed this analysis using the top-

performing model (to identify ties), as well as the baseline model (to identify which models 

performed ‘better’ than the baseline). Briefly, we applied bootstrapped sampling16 to create 1000 

subsets from the original data set. In each subset, we reran the two models for comparison to 

obtain scores for SC1/SC2/SC3. We then used these scores to calculate Bayes factors for each 
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subchallenge using the “computeBayesFactor” function of R package “challengescoring” 

(https://github.com/sage-bionetworks/challengescoring). Smaller Bayes factors indicate more 

similar performance. As has been done with previous challenges, Bayes factor greater than 3 

was considered significantly different.17–22 False discovery rate (FDR) corrected pairwise 

Student’s t-test p-values for each team relative to the top-scoring team in each subchallenge 

were also calculated as a secondary comparison of performance.  

In addition, we interrogated the stability of predictions when different random 

computational initialization was applied on the same dataset. The re-run was executed after 

announcing the final round results and did not impact the team ranking. We independently re-

ran each model submitted in the final scoring round once and computed the Spearman 

correlation between the final scoring round and post-challenge validation round scores.  

 

Post-challenge Validation  
To validate the performance of all algorithms, we selected 50 independent, high quality image 

sets with accompanying SvH scores from the TEAR Trial.12 In the TEAR Trial, there were two 

sets of SvH scores for each set of images, each generated by one of two independent readers. 

We ran all containerized models submitted on the 50 independent sets of quantile-normalized 

images and evaluated their performance compared to the mean SvH measurements from each 

of the two readers. We also computed the Spearman correlation between the final scoring and 

post-challenge validation dataset to assess the reproducibility of the top-performing algorithms. 

The concordance index between the final scoring and post-challenge validation rounds was 

calculated using the concordance_index function in the Python “lifelines” library.  
 

Post-challenge survey  
To summarize the array of approaches used in the RA2 DREAM Challenge, we sent a post-

challenge survey to all participating teams (see questions in Supplemental Methods and Table 
S2) and analyzed the results of the survey by grouping teams’ scores based on their responses 

to each question. We then applied the Kruskal-Wallis (KW) test 23 among the groups to evaluate 

whether the different methodological choices were significantly associated with performance. 

 

Ensemble modeling  
As with previous DREAM Challenges, we explored the ‘wisdom of the crowds’ phenomenon by 

performing ensembling experiments with the models submitted for the final scoring round.17–22 

We generated multiple ensembled predictions by calculating the mean prediction for each joint 
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across multiple algorithms. This produced ensemble predictions that, for each subchallenge, 

aggregated the top performer alone, the top two, the top three, and so on. We then scored 

these ensemble predictions using the previously described Bayes factor robustness analysis. 

 

Data and code availability 

The use of the Challenge data (images and SvH scores) was approved by the UAB Institutional 

Review Board for Human Use. The scoring code Docker container is available from the 

Synapse Docker repository (docker.synapse.org/syn20545112/scoring_harness:latest). Method 

write-ups and Docker containers for all submitted methods are available from the Challenge 

workspace (www.doi.org/10.7303/syn20545111). Please refer to Synapse documentation 

(https://help.synapse.org/docs/Synapse-Docker-Registry.2011037752.html) for guidance on 

downloading Docker containers from the Synapse Docker Registry. 
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