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ABSTRACT 

Current design of serological tests employs conservative immunoassay approaches and is 

often focused on convenience, speed of manufacturing, and affordability. Limitations of such 

serological tests include semi-quantitative measurements, lack of standardization, potential 

cross-reactivity, and inability to distinguish between antibody subclasses. As a result of cross-

reactivity, diagnostic specificity of serological antibody tests may not be sufficiently high to 

enable screening of the general asymptomatic populations for the acquired immunity against 

low-prevalence infectious diseases, such as COVID-19. Likewise, lack of a single standard 

for assay calibration limits inter-laboratory and international standardization of serological 

tests. In this study, we hypothesize that combination of immunoaffinity enrichments with 

targeted mass spectrometry measurements would enable rational design of serology 

diagnostics of infectious diseases, such as COVID-19. The same instrumental platform 

allows for sensitive and specific measurements of viral protein antigens, as wells as anti-viral 

antibodies circulating in human serum. Our proof-of-concept immunoprecipitation - parallel 

reaction monitoring (IP-PRM) assays quantified NCAP_SARS2 protein with a limit of 

detection of 313 pg/mL in serum. In addition, a multiplex IP-selected reaction monitoring 

(IP-SRM) assay facilitated differential quantification of anti-SARS-CoV-2 antibody isotypes 

and subclasses in patient sera. Simultaneous evaluation of numerous antigen-antibody 

subclass combinations revealed a receptor-binding domain (RBD)-IgG1 as a combination 

with the highest diagnostic specificity and sensitivity. Anti-RBD IgG1, IgG3, IgM and IgA1 

subclasses, but not IgG2, IgG4 and IgA2, were found elevated in COVID-19-positive sera. 

Synthetic heavy isotope-labeled peptide internal standards as calibrators revealed elevated 

anti-RBD IgG1 in positive (510-6700 ng/mL; 0.02-0.22% of total serum IgG1) versus 

negative sera (60 [interquartile range 41-81] ng/mL). Likewise, anti-RBD IgM was elevated 

in positive (190-510 ng/mL; 0.06-0.16% of total serum IgM) versus negative sera (76 [31-

108] ng/mL). Further validation of immunoprecipitation-targeted proteomics assays as a 

platform for serological assays will facilitate standardization and improvement of the existing 

serological tests, enable rational design of novel tests, and offer tools for comprehensive 

investigation of antibody isotype and subclass cooperation in immunity response. 
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INTRODUCTION 

Conventional diagnostics of viral infections, such as COVID-19, relies on detection of viral 

genomes by the polymerase chain reaction (PCR) or the reverse transcription polymerase 

chain reaction (RT-PCR). Limitations of RNA measurements by RT-PCR include RNA 

degradation in biological fluids
1
, relatively high false negative rates

2
, and lack of prognostic 

information
3
. Alternative assays for diagnosis and prognosis of viral infections include 

serological assays which rely on detection of protein antigens or anti-viral antibodies in 

biological fluids or blood serum. The most common serological assays measure anti-viral 

immunoglobulins in blood and enable detection of past and chronic infections, provide 

prognostic information, and evaluate patient immune status.
4,5

 There is also an increasing 

number of serological assays measuring circulating viral proteins, to enable screening of 

donor blood for chronic infections or differential diagnosis of related viruses
6
. Recently, 

combined serological test for simultaneous detection of circulating protein antigens and anti-

viral antibodies were developed to complement RT-PCR diagnostics, or facilitate earlier 

detection of viral infections.
7-9

 

Enzyme linked immunosorbent assay (ELISA) and lateral flow immunoassay (LFA), the 

most common tools for serology diagnostics, present highly sensitivity, robust and convenient 

analytical assays to measure viral proteins and anti-viral immunoglobulins in clinical 

samples
10,11

. Immunoassay limitations, however, include non-specific binding, insufficient 

diagnostics specificity, lack of high-quality international reference standards, challenges with 

multiplexing, and antibody cross-reactivity to the highly homologous proteins of related 

strains
12

. Differential measurement of the full set of immunoglobulin isotypes (total IgG, total 

IgA, IgM, IgE, IgD) and subclasses (IgG1, IgG2, IgG3, IgG4, IgA1 and IgA2) by indirect 

ELISA requires eleven individual measurements for each patient sample and is not routinely 

performed. As a result, common serological tests do not evaluate the isotype- and subclass-

specific humoral immune response which could provide additional diagnostic and prognostic 

information. It has been well established that the identity and circulating levels of 

immunoglobulin isotypes and subclasses depend on numerous factors, such as time after 

exposure (early response IgM), antigen identity (peptides or polysaccharides), route of 

infection (respiratory, urinary, or topical), cell-mediated immunity (class switching induced 

by either type 1 or 2 helper T cells), subclass stability (reduced half-life of IgG3), and 

different effector functions (cytotoxicity or phagocytosis)
13,14

. 

Mass spectrometry (MS) with its near-absolute analytical selectivity and multiplexing 

capabilities presents an alternative approach for serology diagnostics. MS has recently been 

used for identification and quantification of SARS-CoV-2 proteins in biological and clinical 

samples
15-18

. Without extensive fractionation, however, MS assays presented relatively poor 

analytical sensitivity and resulted in low diagnostic sensitivity. 

In this work, we hypothesized that combination of immunoaffinity enrichments and mass 

spectrometry measurements could resolve common limitations of immunoassays and mass 

spectrometry assays. We suggested that combined immunoprecipitation-selected reaction 

monitoring (IP-SRM) or immunoprecipitation-parallel reaction monitoring (IP-PRM) assays 

could facilitate sensitive and selective quantification of SARS-CoV-2 protein antigens and 

anti-SARS-CoV-2 antibodies in patient samples. Proposed assays (Figure 1) may provide a 
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single platform for: (i) quantification of SARS-CoV-2 proteins in patient samples, to 

complement RT-PCR diagnostics and develop prognostic tests; (ii) differential quantification 

of SARS-CoV-2 emerging mutants; (iii) differential quantification of anti-SARS-CoV-2 

antibody isotypes (IgG, IgA, IgM) and subclasses (IgG1-4, IgA1-2); (iv) rational design of 

serological diagnostics through selection of antigen-antibody subclass combinations with the 

highest diagnostic specificity and sensitivity; and (v) standardisation of SARS-CoV-2 protein 

and antibody assays via stable, pure, and affordable synthetic peptide internal standards. 

RESULTS 

Development of IP-PRM assays for quantification of SARS-CoV-2 proteins 

To develop PRM assays for SARS-CoV-2 proteins, we obtained recombinant proteins, 

identified tryptic peptides by shotgun mass spectrometry
21

, prioritized the most intense 

peptides based on the label-free quantification with MaxQuant, and selected the most intense 

transitions with Skyline. In addition, we re-searched several publically available SARS-CoV-

2 proteomic datasets
22,23

, confirmed the choice of proteotypic peptides, and applied label-free 

iBAQ quantification to determine relative abundances of SARS-CoV-2 proteins: 

NCAP_SARS2 (nucleoprotein; 55% of the viral proteome), VME1_SARS2 (membrane 

protein; 18%), AP3A_SARS2 (ORF3a protein; 9%), SPIKE_SARS2 (spike glycoprotein; 

8%), ORF9B_SARS2 (ORF9b protein; 7%), NS7A_SARS2 (ORF7a protein; 1.2%), 

NS6_SARS2 (ORF6 protein; 0.7%), NS8_SARS2 (ORF8 protein; 0.4%), and other proteins 
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Figure 1. Design of immunoaffinity-mass spectrometry assays for serological diagnostics. (A) 

Identification of proteotypic peptides by shotgun LC-MS/MS and development of quantitative 

targeted proteomics assays. Recombinant SPIKE_SARS2 and NCAP_SARS2 proteins, or human 

antibodies, are digested by trypsin, tryptic peptides are analyzed by liquid chromatography-shotgun 

mass spectrometry (LC-MS/MS), the best proteotypic peptides are identified and synthesized as heavy 

isotope-labeled internal standards, and SRM transitions with the highest signal-to-noise ratio are 

selected. (B) Setup of IP-SRM or IP-PRM assays for quantification of SPIKE_SARS2 and 

NCAP_SARS2 proteins. (C) Setup of IP-SRM assays for quantification of anti-SARS-CoV-2 

immunoglobulin individual subclasses (IgG1, IgG2, IgG3, IgG4, IgA1, IgA2, and IgM). 
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(~0.4%). A combined database of SARS-CoV-2 proteins, tryptic peptides, and MS 

fragmentation spectra facilitated rapid development of the targeted proteomics assays. Best 

proteotypic peptides (Figure 1B) were synthesized as heavy isotope-labeled peptides and 

used as internal standards for development of PRM assays and quantification of 

SPIKE_SARS2 and NCAP_SARS2. Selection of AYNVTQAFGR (NCAP_SARS2) and 

FLPFQQFGR (SPIKE_SARS2) as the best proteotypic peptides confirmed previous studies
22

. 

To develop IP assays, we tested three different anti-NCAP_SARS2 and two anti- 

SPIKE_SARS2 antibodies, and evaluated assay performance with the corresponding 

recombinant proteins spiked into human serum (Figure 2). As a result, our IP-SRM assays 

detected 1.25 ng/mL of SPIKE_SARS2 (238 amol on column) and 313 pg/mL of 

NCAP_SARS2 (170 amol on column) in serum (Figure 3). These levels were comparable to 

a recent study which identified AYNVTQAFGR as the best proteotypic peptide of 

NCAP_SARS2, and reported LOD of 200 amol on column for quantification of 

NCAP_SARS2 protein in nasopharyngeal swab samples
23

. A recent study reported that the 

median levels of NCAP_SARS2 protein in capillary blood were 3,896 pg/mL for pre- 

symptomatic and 1,931 pg/mL for symptomatic patients
24

, well above the limit of detection 

of our IP-PRM assay. 

Quantification of viral proteins in serum by ELISA 

To develop an in-house ELISA, we tested the performance of three anti-SPIKE_SARS2 and 

four anti-NCAP_SARS2 antibodies. We first evaluated all combinations of these antibodies 
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Figure 2. Development of IP-PRM assays for quantification of SPIKE_SARS2 and 

NCAP_SARS2 proteins. Selection of proteotypic peptides and PRM transitions for quantification of 

SPIKE_SARS2 (A) and NCAP_SARS2 (B) proteins. (C) SPIKE_SARS2 immunoprecipitation-PRM 

assays developed with anti-SPIKE_SARS2 chimeric monoclonal antibody CmAb (D001), rabbit 

monoclonal RmAb (R007) and rabbit polyclonal antibody RpAb (T62). (D) NCAP_SARS2 

immunoprecipitation-PRM assays developed with anti-NCAP_SARS2 mouse monoclonal antibody 

MmAb (MM05), rabbit monoclonal antibodies RmAb (R001) and RmAb (R019), and rabbit 

polyclonal antibody RpAb (T62). 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 26, 2021. ; https://doi.org/10.1101/2021.10.25.21265408doi: medRxiv preprint 

https://doi.org/10.1101/2021.10.25.21265408
http://creativecommons.org/licenses/by-nc-nd/4.0/


5 
 

to capture (200 ng/well) and detect (20 ng/well; biotinylated in-house) corresponding proteins 

(Figure 4). Antibody pairs which provided the highest signal intensity (OD at 450 nm) for the 

recombinant SPIKE_SARS2 (monomeric S1+S2 ECD) and NCAP_SARS2 diluted in the 

sample buffer were then re-evaluated with proteins spiked into human serum. The best pairs 

of antibodies included: (i) a capture mouse/human chimeric monoclonal antibody (CmAb 

D001) and a detection rabbit polyclonal antibody (RpAb T62) to measure SPIKE_SARS2 

with LoQ of 63 pg/mL (66 amol/well) in human serum, and (ii) a capture rabbit polyclonal 

antibody (RpAb T62) and a detection mouse monoclonal antibody (MmAb MM05) to 

measure NCAP_SARS2 with LoQ of 31 pg/mL (47 amol/well) in human serum (Figure 4). 

Some commercial ELISA kits (for example, Sino Biological) would have comparable 

sensitivity (7.8 pg/mL for SPIKE_SARS2 RBD corresponding to 40 pg/mL for S1+S2 ECD).  

Development of IP-SRM assays for the differential quantification of anti-SARS-CoV-2 

immunoglobulins 

Our approach for the differential quantification of human immunoglobulin isotypes (IgG, 

IgM, and IgA) and subclasses (IgG1, IgG2, IgG3, IgG4, IgA1 and IgA2) relied on 

measurements of the unique proteotypic peptides within the constant heavy chains 

(Supplemental Figure S1). To select unique proteotypic peptides for each isotype and 

subclass, we searched our previous proteomic datasets
25

, Peptide Atlas data
26

 and literature 

data
27,28

. Selected proteotypic peptides represented all immunoglobulin allotypes
14

. Absence 

of high-frequency polymorphic missense variants was confirmed with the GnomAD database 

v2.1.1
29

 (Table S4). The search of NextProt database
30

 ensured absence of glycosylation sites 

or other post-translational modifications within the sequences of proteotypic peptides. Finally, 

nine synthetic heavy isotope-labeled peptides were used for SRM assay development (Table 

S4).  SRM assays for quantification of IGHG1 and IGHM in serum revealed LoQs of 0.3 

fmol on column for IGHG1 peptide (corresponding to 14 ng/mL of IgG1) and 1 fmol on 

column for IGHM peptide (corresponding to 62 ng/mL of IgM) (Figure 5 and Table S7). 

Quantification of COVID-19-specific immunoglobulins by IP-SRM 

COVID-19-specific immunoglobulins (IgG1, IgG2, IgG3, IgG4, IgM, IgA1, and IgA2) were 

quantified with NCAP_SARS2 and SPIKE_SARS2 S1+S2 ECD, S1 and RBD proteins in 7 

negative and 3 positive sera (Table S8). 
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Figure 3. Quantification of recombinant NCAP_SARS2 protein spiked into human serum. 

Immunoprecipitation-PRM assay with a rabbit polyclonal antibody RpAb T62 revealed a linear 

response (A) and a limit of detection of 313 pg/mL (S/N>3) in serum, or 170 amol on column (B). A 

recent study reported that the median levels of NCAP_SARS2 protein in capillary blood were 

3,896 pg/mL for pre-symptomatic and 1,931 pg/mL for symptomatic patients
24

, and well above the 

limit of detection of our IP-PRM assay. 
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Quantification of COVID-19-specific immunoglobulins by ELISA 

We developed an in-house indirect ELISA and measured relative abundance of SARS-CoV-2-

specific IgG and IgGAM immunoglobulins captured by NCAP_SARS2 and SPIKE_SARS2 

S1+S2 ECD, S1 and RBD proteins. Both IgG or IgGAM assays were sensitive and specific 

enough to differentiate between 7 negative and 3 positive sera (Figures 6B and S2). 

Selection of antigen-antibody combinations with the highest diagnostic performance 

We evaluated numerous antigen - immunoglobulin subclass combinations by IP-SRM and 

indirect ELISA (Figure 6). Simultaneous evaluation of 36 combinations was a definite 

advantage of a multiplex IP-SRM assay, and allowed identifying 10 combinations which 

satisfied two essential criteria: statistically-significant difference (MWU P-value<0.05) and 

no overlap between groups (100% diagnostic specificity at 100% diagnostic sensitivity). 

Additional ranking by the ratio of medians facilitated selection of combinations with the 

highest signal-to-noise ratio. RBD/IgG1 and S1/IgG1 were identified as top combinations. 

Indirect ELISA with anti-IgG and anti-IgGAM detection antibodies confirmed the best 

performance of RBD/IgG and S1/IgG combinations (Figure 6B and Tables S9), which was 

in agreement with the previous studies
31

. It should be noted that S1+S2 ECD antigen revealed 

poor diagnostic performance (Figure 6C, D) due to the high background in negative samples.  

In addition to the rapid evaluation of numerous combinations, we revealed that IP-SRM assay 

provided a 2.3-fold wider dynamic range in comparison to ELISA. An IP step of our assay 

provides a dynamic range of detection ~2-3 orders of magnitude, similar to typical affinity 

interactions
32

. 

Figure 4. Development of in-house ELISA for measurement of SPIKE_SARS2 and 

NCAP_SARS2 proteins in human serum. Numerous combinations of capture and detection anti-

SPIKE_SARS2 (A) and anti-NCAP_SARS2 (B) antibodies were evaluated. The best pairs of 

antibodies included a capture mouse/human chimeric monoclonal antibody (CmAb D001) and a 

detection rabbit polyclonal antibody (RpAb T62) to measure SPIKE_SARS2 with LoQ of 63 pg/mL 

in serum (C), and a capture rabbit polyclonal antibody (RpAb T62) and a detection mouse monoclonal 

antibody (MmAb MM05) to measure NCAP_SARS2 with LoQ of 31 pg/mL in serum (D). 
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In ELISA, this dynamic range could be further reduced by equilibration parameters and non-

specific interactions of the anti-IgG or anti-IgGAM secondary detection antibodies. Unlike 

immunoassays, SRM measurements (dynamic range of 5-6 orders) allow for the direct 

quantification of immunoglobulin heavy chains with no cross-reactivity (lower background) 

and independent of the secondary antibody (no signal loss due to dissociation), thus providing 

a wider dynamic range. A wider dynamic range of serological diagnostics by IP-SRM could 

facilitate earlier detection of the triggered immune response and more accurate measurements 

of its temporal dynamics. 

COVID-19-specific versus total immunoglobulin profiles 

Total immunoglobulins (IgG1, IgG2, IgG3, IgG4, IgM, IgA1 and IgA2) were quantified by 

SRM in 7 negative and 3 positive sera. Median concentrations of total IgG1 and IgM in 

serum, 2.8 and 0.24 mg/mL, respectively (Figure 7) were in agreement with the previously 

reported ranges for IgG1 (2.8 - 8.2 mg/mL) and IgM  (0.2~2.3 mg/mL)
33-35

. Anti-RBD IgG1, 

IgG3, IgM and IgA1 subclasses, but not IgG2, IgG4 and IgA2, were found elevated in 

positive convalescent sera (Figure 7 and Tables S8). Anti-RBD IgG1 was elevated in 
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Figure 5. Representative SRM assays for quantification of IGHG1_HUMAN (A) and 

IGHM_HUMAN (B) in human serum. Unique tryptic peptides of a CH1 region of heavy constant 

gamma 1 and a CH2 region of heavy constant mu represented total IgG1 and IgM, respectively. 

Calibration curves corresponded to dilution series of heavy isotope labeled peptide internal standards 

spiked into digest of human serum and revealed limits of detection of 0.3 and 1 fmol on column for 

IgG1 and IgM, respectively. 
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positive (510-6700 ng/mL; 0.02-0.22% of total serum IgG1) versus negative sera (60 

[interquartile range, IQR, 41-81] ng/mL). Anti-RBD IgG1 levels measured by our IP-SRM 

well correlated (R
2
=0.98) with IgG levels independently measured by SARS-CoV-2 IgG 

seroconversion ELISA (Innovative Research). Anti-RBD IgM was elevated in positive (190-

510 ng/mL; 0.06-0.16% of total serum IgM) versus negative sera (76 [IQR 31-108] ng/mL). 

Anti-RBD IgG3 was elevated in positive (29-220 ng/mL; 0.004-0.049% of total IgG3) versus 

negative sera (22 [IQR 13-26] ng/mL). Some positive serum samples revealed anti-RBD 

IgA1 (35-260 ng/mL; 0.003-0.028% of total IgA1). 

DISCUSSION 

Infectious disease diagnostics has been revolutionized with the advent of PCR and RT-PCR. 

Further developments of infectious disease diagnostics are increasingly utilizing protein 

antigen and antibody measurements to aid nucleic acids tests and provide additional 

diagnostic and prognostic information. Hepatitis B testing is one of the prominent examples 
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Figure 6. Rational design of SARS-CoV-2 serological tests. Roadmaps for evaluation of numerous 

antigen-immunoglobulin isotype/subclass combinations and selection of pairs which provided 100% 

diagnostic specificity at 100% diagnostic sensitivity based on measurements by IP-SRM (A) and 

indirect ELISA (B). For the COVID-19 positive versus negative serum samples, RBD/IgG1 and 

S1/IgG1 combinations measured by IP-SRM provided the highest median fold differences and 

dynamic range (e.g. higher true-positive signal and lower background). Evaluated immunoglobulin 

subclasses and isotypes included IgG1, IgG2, IgG3, IgG4, IgM, IgA1, IgA2, total IgG, and total IgA 

for IP-SRM and, IgG and IgGAM for indirect ELISA. Evaluated antigens included recombinant 

NCAP_SARS2 (N) and recombinant SPIKE_SARS2 receptor-binding domain sequence (RBD), S1 

subunit sequence (S1), and an extracellular domain sequence (S1+S2). Representative 

antigen/immunoglobulin isotype combinations with excellent (RBD/IgG1, S1/IgG1) and poor 

(S1+S2/IgM) diagnostic performance of serology assays based on measurements by IP-SRM (C) and 

indirect ELISA (D). 
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and utilizes serum measurements of viral DNA by PCR and immunoassay measurements of a 

viral surface antigen protein, two IgG antibodies against surface and core antigens, and IgM 

antibody against a core antigen protein
9
. Different combinations of positive and negative 

results provide detailed interpretation of Hepatitis B infection status (acute, chronic, immune 

due to vaccination, immune due to previous infection, susceptible to infection, resolved 

infection). 

Standard serological assays to measure anti-pathogen antibodies in blood serum or plasma 

have been unchanged for decades. The design of serological assays was determined by 

conservative immunoassay approaches and was often focused on convenience, speed of 

manufacturing, and affordability. Limitations of such assays included semi-quantitative 

measurements due to the lack of “gold” standards, potential cross-reactivity, and inability to 

distinguish between antibody subclasses. Since reference samples with the standardized 

amounts of anti-pathogen antibodies or recombinant monoclonal antibodies are typically not 

available at the early stages of the novel pathogen epidemics, different laboratories calibrate 

serology tests with different convalescent serum samples obtained from the recovered 

patients. Lack of a single reference standard for assay calibration limits inter-laboratory and 

international standardization of serological tests, and is a recognized limitation. As a result of 

cross-reactivity, diagnostic specificity of serological antibody tests may not be sufficiently 
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Figure 7. Measurement of total IgG1 and IgM by SRM, and specific anti-RBD IgG1 and IgM by 

IP-SRM. Serum samples were obtained from COVID-19 negative patients (collected before 

December 2019) and COVID-19 positive patients (confirmed by RT-PCR). Median levels of total 

IgG1 and IgM, as measured by SRM in serum samples, were 2.8 and 0.24 mg/mL, respectively. Anti-

RBD IgG1 levels were elevated in positive convalescent serum (510-6,700 ng/mL; 0.02-0.22% of 

total serum IgG1) versus negative serum (60 ng/mL; interquartile range 41-81 ng/mL). Anti-RBD 

IgG1 levels measured by our IP-SRM well correlated (R
2
=0.98) with IgG levels independently 

measured by SARS-CoV-2 IgG seroconversion ELISA (Innovative Research). Anti-RBD IgM levels 

were elevated in positive (190-510 ng/mL; 0.06-0.16% of total serum IgM) versus negative serum (76 

ng/mL; interquartile range 31-108). Non-specific binding levels of IgG1 (median 56 ng/mL) and IgM 

(median 63 ng/mL), as measured with PBS buffer instead of RBD antigen, were subtracted. 
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high to enable screening of the general asymptomatic populations for the acquired immunity 

against low-prevalence infectious diseases, such as COVID-19. For instance, 95% diagnostic 

specificity of COVID-19 serological tests
36,37

 and 0.3% prevalence in early 2020 in Canada 

would account for 5% positive predictive value. Interestingly, 90% positive predictive value 

at such low prevalence could only be achieved with a superior test with 99.97% diagnostic 

specificity. 

PCR and RT-PCR are undoubtedly the techniques with unprecedented analytical 

sensitivity. Sensitivity of protein assays, however, could be leveraged by the presence of 

numerous analyte copies (for example, ~1,000 copies of NCAP_SARS2 protein per virion
38

), 

longer elimination half-life of proteins (for instance, circulating SARS-CoV proteins were 

detectable in serum on day 25 after infection onset, while serum RNA was undetectable on 

day 20
39

), and the higher stability during sample preparation. The most abundant SARS-CoV-

2 proteins were recently evaluated as diagnostic and prognostic biomarkers
24

, but evaluation 

of accessory proteins is still pending, mostly due to the lack of high-quality antibodies and 

immunoassays. Mass spectrometry has previously been used for identification and 

quantification of viral proteins in clinical samples
15-17

, and will facilitates evaluation of 

SARS-CoV-2 accessory proteins as biomarkers. Since rational development of protein 

biomarkers involves numerous stages of verification and validation, mass spectrometry 

assays, due to their rapid design and execution, are particularly useful at the early phases of 

biomarker development
40-43

. Without extensive fractionation, however, mass spectrometry 

assays present relatively poor analytical sensitivity, resulting in low diagnostic sensitivity. 

In this study, we hypothesized that combination of immunoaffinity enrichments with mass 

spectrometry quantification provides a single instrumental platform for sensitive and specific 

serological testing for pathogen antigen proteins and anti-pathogen antibodies. 

Immunoaffinity-mass spectrometry platform enables rational design of serological 

diagnostics of infectious diseases, provides assay standardization, resolves certain limitations 

of standard PCR and immunoassay techniques, and facilitates independent evaluation of 

cross-reactivity of serological immunoassays
44

. Proposed IP-SRM assays combine 

advantages of two worlds: immunoassays with high analytical sensitivity, and SRM assays 

with their near-absolute analytical specificity44-49. We previously demonstrated that SRM and 

PRM targeted proteomic assays provided robust tools for quantification of proteins in human 

cell lines
50,51

, primary cells
52-54

, tissues
55

, various biological fluids
46,56-61

, and serum
44,62

. 

Additional immunoprecipitation provides up to a 1,000-fold gain in sensitivity, reaching 100 

pg/mL levels in complex biological and clinical samples
44

. All steps of IP and sample 

preparation are implemented on 96-well plates and provide sufficient throughput and 

reproducibility
25,48

. High reproducibility (coefficient of variation, CV<10%) and throughput 

(~100 samples per day) of IP-SRM assays enable reliable quantification of proteins in clinical 

samples. 

We have previously developed IP-SRM for novel proteins
44,47,48,55

 and demonstrated limits 

of quantification as low as 100 pg/mL in serum
44

. Such sensitivity is sufficient to quantify 

viral antigens and antiviral antibodies in serum. For example, patients with chronic hepatitis 

B presented serum surface antigen levels of 40,000 ng/mL
63

, while SARS-CoV nucleocapsid 

protein was detected at 100-3,200 pg/mL in serum of infected patients
64

. Our proof-of-

concept IP-PRM assays measured NCAP_SARS2 protein with a limit of detection of 313 
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pg/mL in serum. Likewise, antiviral IgG immunoglobulins in serum present a range of 1-100 

µg/mL
24,65

, and a recent semi-quantitative SARS-CoV-2 IgG serological test has a clinical 

cutoff of 0.77 μg/mL
66

. Our IP-SRM measurements with synthetic peptide internal standards 

as calibrators revealed elevated anti-RBD IgG1 (510-6,700 ng/mL), IgG3 (29-220 ng/mL), 

IgM (190-510 ng/mL), and IgA1 (up to 260 ng/mL in some samples), but not IgG2, IgG4 or 

IgA2 immunoglobulins. Our multiplex IP-SRM assay facilitated simultaneous evaluation of 

36 antigen-antibody subclass combinations, and revealed RBD-IgG1 as a combination with 

the highest diagnostic specificity and sensitivity. These data were in agreement with our in-

house indirect ELISA which confirmed RBD/IgG as the top combination.  

It should be mentioned that differential quantification of a full set of immunoglobulin 

isotypes (IgG, IgA, IgM, IgE, IgD) and subclasses (IgG1, IgG2, IgG3, IgG4, IgA1 and IgA2) 

by indirect ELISA would required subclass-specific secondary antibodies and nine 

independent measurements for each patient sample. As a result, common serological tests do 

not evaluate the isotype- and subclass-specific humoral immune response. The identity and 

circulating levels of immunoglobulin isotypes and subclasses, however, vary due to time after 

exposure (early response IgM antibodies), antigen identity (IgG1 and IgG3 for peptide 

antigens and IgG2 for polysaccharides), route of infection (respiratory, urinary, or topical), 

cell-mediated immunity (IgM class switching to either IgG1/IgG3 or IgG2/IgG4 induced by 

type 1 or type 2 helper T cells, respectively), subclass stability (reduced half-life of IgG3 due 

to a longer hinge region and faster proteolysis), affinity (lower-affinity antibodies are not 

detected), and different effector functions (antibody-dependent cell-mediated cytotoxicity of 

IgG1>IgG3, antibody-dependent cell-mediated phagocytosis of IgG1, IgG2 and IgG3, or 

complement-mediated cytotoxicity of IgG1 and IgG3)
13,14

. Differential quantification of a full 

set of immunoglobulin isotypes and subclasses may provide additional prognostic 

information on disease severity and complement existing serological tests. 

In future, our IP-targeted proteomics assays could be utilized widely to improve 

serological testing for numerous infectious diseases, such as HIV, hepatitis and influenza
67

, 

and evaluate quality and efficiency of vaccines
68

. With its nearly absolute analytical 

selectivity, mass spectrometry assays could serve as independent tools to evaluate diagnostic 

specificity of the existing serological tests, and select combinations of antigens and antibody 

subclasses which provide the highest diagnostic specificity. Increased diagnostic specificity 

(low false-positive rates) and standardization of serology diagnostics will enable evidence-

based screening of broader populations for the acquired immunity, thus having a tremendous 

impact on management of infectious diseases. IP-SRM assays targeting novel antigens or 

mutated epitopes can be developed and implemented within weeks and are justified as tools 

for the rapid response to the emerging pandemics. Investigation of mutated neutralizing 

epitopes for their ability to bind antibodies will support development of vaccines effective 

against the emerging mutants. Further developments of serological diagnostics by IP-targeted 

proteomics assays could facilitate selection of antibodies with a desired subclass, affinity
69-71

, 

neutralization potential, mutation binding, and eventually provide approches for selection and 

sequencing of antibodies with the desired characteristics directly from the patient’s blood, 

thus paving the way for rapid development of the next-generation therapeutic antibodies. 
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EXPERIMENTAL SECTION 

Chemicals, reagents and clinical samples. Dithiothreitol, iodoacetamide, trifluoracetic acid 

(TFA) and L-methionine were obtained from Thermo Fisher Scientific (Burlington, ON, 

Canada). Mass spectrometry-grade acetonitrile (ACN) and water were purchased from Fisher 

Scientific (Fair Lawn, NJ). Formic acid (FA) was obtained from Sigma-Aldrich (Oakville, 

ON). Synthetic stable isotope-labeled peptides SpikeTides_L and SpikeTide_TQL were 

provided by JPT Peptide Technologies GmbH (Germany). Recombinant SARS-CoV-2 

antigens were obtained from Sino Biological (Beijing, China) and included spike 

glycoprotein extracellular domain (S1+S2 ECD; identical to Val16-Pro1213 of 

SPIKE_SARS2 (P0DTC2) with a polyhistidine tag at the C-term; 134.3 kDa; #40589-

V08B1), the S1 subunit of spike glycoprotein (S1; Val16-Arg685; His-tagged, 76.5 kDa; 

#40591-V08H), the receptor binding domain of the spike glycoprotein (RBD; Arg319-

Phe541; His-tagged, 26.54 kDa; #40592-V08H), and nucleoprotein (N; identical to Met1-

Ala419 of NCAP_SARS2 (P0DTC9); His-tagged; 47.08 kDa; #40588-V08B). Anti- 

SPIKE_SARS2 antibodies from Sino Biological Inc included spike RBD chimeric 

monoclonal antibody CmAb (#40150-D001), spike S1 rabbit monoclonal RmAb R007 

(#40150-R007) and spike RBD rabbit polyclonal antibody RpAb (#40592-T62). Anti-

nucleoprotein antibodies from Sino Biological Inc included rabbit polyclonal antibody RpAb 

(# 40588-T62), rabbit monoclonal antibodies RmAb R001 (#40143-R001) and RmAb R019 

(#40143-R019), and mouse monoclonal antibodies MmAb (#40143-MM05). Secondary 

antibodies from Invitrogen included horseradish peroxidase-conjugated polyclonal goat-anti-

human IgG Fcγ (#A18817) and goat-anti-human IgG/IgM/IgA H+L (#A18847). A detailed 

list of antibodies is presented in Table S1. Seven SARS-CoV-2 negative (collected before 

November 2019; #ISERS2ML) and three SARS-CoV-2 positive (diagnosed by RT-PCR; 

#ISERSCOV2P100UL) single donor human serum samples (Table S2) were obtained from 

Innovative Research (Novi, MI, USA). The study was approved by the University of Alberta 

(ethics approval #Pro00104098). 

Immunoprecipitation (IP) and reversed IP. Four anti-NCAP_SARS2 and three anti-

SPIKE_SARS2 antibodies were used for immunoprecipitation of recombinant 

NCAP_SARS2 and SPIKE_SARS2 (monomeric S1+S2 ECD; 134.3 kDa; #40589-V08B1) 

proteins spiked into human serum, respectively. Antibodies were diluted in phosphate-

buffered saline (PBS, pH 7.4), coated onto a high-binding 96-well microplates (Greiner Bio-

One) at 500 ng/well in 100 μl, and incubated overnight at RT. After washing 3 times with 

200 μl wash buffer (0.1% Tween 20 in PBS), the plate was blocked for 1 h with 200 μl of 

blocking buffer (2% bovine serum albumin in wash buffer). The washing step was repeated. 

Human serum (50 μl) with spiked-in recombinant proteins was diluted to 100 μl with dilution 

buffer (0.1% BSA in wash buffer, 0.2 μm filtered) and added to the plates. Following 2 h 

incubation with continuous shaking, the plate was washed 3 times with wash buffer and 3 

times with 50 mM NaHCO3. To measure anti-SARS-CoV-2 antibodies, four recombinant 

proteins (S1+S2 ECD, S1, RBD, and N) were coated overnight (500 ng per well). Positive 

and negative human serum samples (4 μl) were diluted 25-fold with dilution buffer, incubated 

(100 μl per well) for 2 h at RT, and were washed 3 times with wash buffer and 3 times with 

50 mM NaHCO3. 

Proteomic Sample Preparation. Enriched proteins or antibodies were reduced with 10 mM 

dithiothreitol at 70℃ for 15 min, and disulfide bonds were alkylated with 20 mM 

iodoacetamide at room temperature (RT) in the dark for 45 min. Heavy isotope-labeled 

SpikeTides_TQL (100 fmol per digest; Table S3) were used for quantification of 

recombinant proteins, and were spiked into each sample before digestion (0.25 ng trypsin per 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 26, 2021. ; https://doi.org/10.1101/2021.10.25.21265408doi: medRxiv preprint 

https://doi.org/10.1101/2021.10.25.21265408
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 
 

well). SpikeTides_L peptides (Table S4) were used for quantification of antibody subclasses 

and isotypes, and were spiked after digestion (100 fmol per digest). Proteins were digested 

overnight at 37 ℃ using dimethylated SOLu-trypsin (Sigma-Aldrich; 1:20 trypsin:protein). 

Digestion was stopped with TFA (1%), and 1 μL of 0.4 M L-methionine was added to 

prevent methionine oxidation during sample storage. OMIX C18 tips (10 μL; Agilent 

Technologies) were used for desalting and microextraction of tryptic peptides, which were 

then eluted with 3 μl of 65% ACN and diluted with 36 μl of 0.1% FA. Each digest was 

analyzed in duplicates (10 μl injections). 

Liquid Chromatography and Shotgun Mass Spectrometry Analysis. The best proteotypic 

peptides for S1+S2 ECD and N recombinant proteins were identified by shotgun mass 

spectrometry using Orbitrap Elite™ Hybrid Ion Trap-Orbitrap mass spectrometer (Thermo 

Scientific) coupled to EASY-nLC II (Thermo Scientific). Peptides were separated at 300 

nL/min with a 2-hour gradient: 5% B for 5 min, 5-35% B for 95 min, 35-65% B for 10 min, 

65-100% B for 1 min and 100% B for 9 min. MS1 scans (400-1250 m/z) were performed at 

60 K resolution in the profile mode, followed by top 20 ion trap centroid MS/MS, acquired at 

33% normalized collision energy. FTMS ion count was set to 1×10
6
 with an injection time of 

200 ms, while MS/MS scans were set to 9,000 counts and 100 ms injection time. MS/MS 

acquisition settings included 500 minimum signal threshold, 2.0 m/z isolation width, 10 ms 

activation time, and 60 s dynamic exclusion. Monoisotopic precursor selection was enabled, 

+1 and unknown charge states were rejected. Instrument parameters included 230°C capillary 

temperature and 2.0 kV spray voltage. 

Selection of Proteotypic Peptides and Development of Targeted SRM and PRM Assays. The 

top 2 peptides with the highest MS1 intensities were selected for S1+S2 ECD and N 

recombinant proteins. To facilitate absolute quantification by PRM assay using Q-Exactive, 

heavy isotope labelled SpikeTides_TQL peptides were used as internal standards. To select 

the best proteotypic peptides for quantification of human antibodies, we used our previous 

shotgun mass spectrometry data. Previous literature and the Peptide Atlas, protein BLAST, 

neXtProt and gnomAD databases were used to confirm specificity of proteotypic peptides for 

the differential quantification of antibody isotypes (IgG, IgM, and IgA) and subclasses (IgG1, 

IgG2, IgG3, IgG4, IgA1, and IgA2), and to exclude peptides with posttranslational 

modifications, allotype variants  and high-frequency single aminoacid variants. Heavy 

isotope-labeled SpikeTides_L peptides were obtained and used as internal standards for SRM 

assay development (Table S4). Heavy and light peptide pairs (10 transitions per peptide; 5 

ms scan time) were initially monitored with an unscheduled SRM assay. Following deletion 

of low-intensity and high-interference transitions, 3 transitions for each precursor ion were 

scheduled within 150 s intervals (Tables S5 and S6). 

Liquid chromatography and SRM/PRM parameters. Q-Exactive coupled to EASY-nLC 

1000 (Thermo Scientific) was used for PRM assays. Acclaim PepMap 100 nanoViper C18 

column (Thermo Scientific, 100 µm ID×2 cm, 5 μm, 100 Å) was used as a pre-column for 

sample loading, while the EASY-Spray C18 column (Thermo Scientific, 75 μm ID×15 cm, 3 

μm, 5 μm) was used as an analytical column. An 18-min gradient (400 nL/min) started with 0% 

buffer B and ramped to 50% buffer B over 15 min, followed by an increase to 100% buffer B 

within 1 min, and continued for 2 min. PRM scans were performed at 17.5 K resolution with 

27% normalized collision energy. AGC (Automatic Gain Control) target value was set to 

3×10
6
 with a maximum injection time of 100 ms and an isolation width of 2.0 m/z. The 

quadrupole ion-trap mass spectrometer (AB SCIEX QTRAP 5500) coupled to EASY-nLC II 

via a NanoSpray III ion source (AB SCIEX) was used for SRM assays. The tryptic peptides 

were loaded at 5 μL/min onto a C18 trap column (Thermo Scientific, 100 µm ID×2 cm, 5 μm, 
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120 Å). Peptides were separated with PicoFrit columns (New Objective, 15 cm×75 μm ID, 8 

μm tip, PepMap C18, 3 μm, 100 Å) and 18 min gradients (300 nL/min). The gradient started 

with 15% buffer B and ramped to 65% buffer B over 15 min, followed by an increase to 100% 

buffer B within 1 min, and continued for 2 min. QTRAP 5500 parameters were: 2300 V 

ionspray; 75 °C source temperature; 2.0 arbitrary units for gas 1 (N2), 0 arbitrary units for gas 

2; 25 arbitrary units for curtain gas (N2); and 100 V declustering potential. BSA (200 fmol) 

was analyzed every 6 runs to assess nanoLC-MS performance. 

Mass spectrometry data analysis. Raw files of SRM and PRM experiments were analyzed 

using Skyline Targeted Proteomics Environment v20.1.0.76 (MacCoss Lab). Peak boundaries 

were adjusted manually, and the integrated areas of all transitions for each peptide were 

extracted. Light-to-heavy peak area ratios were used for accurate relative or absolute 

quantification of endogenous peptides. Shotgun MS data were search using MaxQuant 

software (v1.6.3.4) and a custom Fasta database with 29 SARS-CoV-2 proteins (NCBI 

Reference Sequences) and some human proteins (60 entries in total). Search parameters 

included: trypsin enzyme specificity, 2 missed cleavages, 7 aa minimum peptide length, top 8 

MS/MS peaks per 100 Da, 20 ppm MS1 and 0.5 Da MS/MS tolerance. Variable 

modifications included methionine oxidation, N-terminal acetylation and deamidation (N). 

False-discovery rate (FDR) was set to 1% at both protein and peptide levels. The mass 

spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via 

PRIDE
19

 with the dataset identifier PXD028560. Raw SRM and PRM data have been 

deposited to Peptide Atlas with the identifier PASS01699 

(www.peptideatlas.org/PASS/PASS01699). 

ELISA. Immunoassays were developed as previously described
20

. Four proteins (S1+S2 ECD, 

S1, RBD, and N) were coated onto the plate overnight (300 ng in 100 μl PBS per well). The 

plate was washed 6 times with 250 μl wash buffer (0.1% Tween 20 in PBS), followed by 1 h 

blocking with 250 μl of blocking buffer (6% BSA in wash buffer). After washing, 3 positive 

and 7 negative human serum samples was diluted 15,000-fold with a dilution buffer (0.1% 

BSA in wash buffer). Samples (100 μl per well) were incubated for 2 h at RT with continuous 

shaking. HRP-conjugated secondary antibodies (goat-anti-human IgG and goat-anti-human 

IgG/IgM/IgA; 20 ng in 100 μl per well diluted in 0.5% BSA in wash buffer) were incubated 

for 1 h. Following final washing, 100 μl of tetramethylbenzidine (TMB) solution was added 

to each well. After 10 min incubation, the reaction was stopped with 50 μl of 2 M HCL. 

Absorbance at 450 nm was measured using FilterMax F5 multi-mode microplate reader 

(Molecular Devices) with 450NMBW80 absorbance filter. To measure recombinant S1 

SPIKE_SARS2 and NCAP_SARS2 proteins spiked into human serum, four anti-

NCAP_SARS2 and three anti-SPIKE_SARS2 antibodies (300 ng per well) were coated onto 

the plate. To generate standard curves, recombinant antigens (62.5 to 10,000 pg/ml) were 

spiked into human serum. Seven different anti-SARS2 antibodies were biotinylated in-house 

and used as secondary antibodies (40 ng in 100 μl per well). Following 1 h incubation, 

streptavidin-conjugated horseradish peroxidase (1:1000) was added and incubated for 20 min. 

Reaction was stopped with 50 μl of 2 M HCL,  and absorbance at 450 nm was measured. 
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