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ABSTRACT 
Bicuspid aortic valve (BAV), the most common congenital heart disease, is prone to develop 
significant valvular dysfunction and aortic wall abnormalities. Growing evidence has suggested 
that abnormal BAV hemodynamics could contribute to the disease progression. In order to 
investigate the BAV hemodynamic, we performed 3D patient-specific fluid-structure interaction 
(FSI) simulations of BAV with fully coupled flow dynamics and valve motions throughout the 
cardiac cycle. The results showed that the flow during systole can be characterized by a systolic 
jet and two counter-rotating recirculation vortices. At peak systole, the jet was usually eccentric, 
with asymmetric recirculation vortices, and helical flow motion in the ascending aorta. The flow 
structure at peak systole was quantified using the vorticity, flow reversal ratio and helicity index 
at four locations from the aortic root to the ascending aorta. The systolic jet was evaluated using 
the metrics including the peak velocity, normalized flow displacement, and jet angle. It was 
found that both the peak velocity and normalized flow displacement (rather than jet angle) of the 
systolic jet showed a strong correlation with the vorticity and helicity index of the flow in the 
ascending aorta, which suggests that these two metrics can be used for noninvasive evaluation of 
abnormal flow patterns in BAV patients. 

Keywords:  
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1. INTRODUCTION 

Bicuspid aortic valve (BAV) is considered the most common congenital heart disease, 
occurring in 0.5–2% of the population (1-3), where the aortic valve (AV) has only two rather 
than the normal three leaflets. Compared with a tricuspid AV (TAV), BAV patients are more 
prone to harbor not only significant valvular dysfunction such as aortic stenosis (AS) and aortic 
insufficiency (AI), but also aortic wall abnormalities such as the ascending aortic dilation 
(aortopathy) and aneurysms (2). While the exact cause of diseases associated with BAV remains 
unclear, as both genetic factors and biomechanical factors can play a role, growing evidence has 
shown that the abnormal hemodynamics of BAV could contribute to disease progression (4-7). 
For example, recent studies have found that BAV aortopathy is different from genetic aortopathy 
found in Marfan patients (8). Both in vivo data analysis (5, 9) and numerical modeling of BAV 
(10-13) have reported a more eccentric systolic jet compared to TAV. This asymmetry in the 
flow was found to associate with an elevated regional wall shear stress and the development of 
BAV aortopathy (6). In addition, while normal helical flow could facilitate blood flow transport 
and protect against atherosclerosis (14, 15), the more intense helical flows identified in BAV 
patients were linked to the development of aortic aneurysms (16-18). 

Computational modeling has provided an engineering approach for detailed interrogation 
of hemodynamic factors related to BAV. However, most of the computational BAV models have 
been significantly limited by their inability to simultaneously solve the soft tissue mechanics and 
the fluid dynamics, as many of them only considered the blood flow without the consideration of 
the valve deformation (11-13, 19). While fluid-structure interaction (FSI) models were 
developed in recently studies, many of them were still limited to idealized leaflet geometries (20-
22) or simplified 2D setup (23, 24). With these challenges in mind, the objectives of this study 
are to: 1) develop and validate comprehensive FSI models of patient-specific BAVs, 2) analyze 
the BAV hemodynamics in the aortic root and the ascending aorta over the cardiac cycle, and 3) 
quantify the flow patterns at peak systole, and investigate their relation with multiple jet metrics. 
Following our previous structural analysis of patient specific BAVs (25), we created five patient-
specific FSI models of BAV patients from multi-slice computed tomography (MSCT) images, 
which included the BAV (with raphe and calcifications), the aortic root, the ascending aorta, 
proximal left ventricle (LV) and the surrounding myocardium. The FSI simulations were 
performed to simulate the valve movement and the blood flow over the entire cardiac cycle. 
Flow patterns were quantified using the magnitude of vorticity, flow reversal ratio and helicity 
index at different distal locations from the sinus level to the ascending aorta. The systolic jet was 
evaluated with multiple jet metrics including the peak velocity, normalized flow displacement 
and jet angle. The correlations between the parameters that quantified the flow patterns in the 
ascending aorta and the multiple jet metrics were investigated. 
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2. METHODS 

2.1 Patient clinical data       

Clinical data from five BAV patients between the age of 57 and 82 were collected 
retrospectively from Emory University Hospital (Atlanta, GA) with institutional Review Broad 
(IRB) approval (Table 1). Following the BAV classification system by Sievers and Schmidtke 
(26) (Figure 2a), two patients had type 0 BAV (without raphe) and three patients had type 1 
BAV (with one raphe). All BAV patients had severe AS with moderate to severe calcifications. 
The MSCT images were acquired using a SIEMENS SOMATOM Definition Flash CT scanner 
with an in-plane spatial resolution between 0.62 × 0.62 - 0.93 × 0.93 mm, and a slice thickness of 
1.0 mm. 

Table 1. Patient information: BAV type, peak transvalvular diastolic and systolic pressures. 
Type 0 and type 1 refers to a BAV with no raphe, and one raphe, respectively. L, R, and N refers 
to the left, right, and non-coronary leaflets, respectively. A-P refers to a BAV where the 
orientation of the leaflet free edge is anterior-posterior, LAT refers to a BAV where the 
orientation of the leaflet free edge is lateral. L-R refers to a BAV where the left and right 
coronary leaflets are fused, while R-N refers to a BAV where the right and non-coronary leaflets 
are fused. A schematic of different types of BAV can be found in Figure 2a. 

Patient 
ID 

Type of 
BAV 

Transvalvular diastolic pressure 
gradient (mmHg) 

Transvalvular systolic pressure 
gradient (mmHg) 

A 0 A-P 57 90 

B 0 LAT 60 106 

C 1 R-N 54 65 

D 1 L-R 77 95 

E 1 L-R 78 71 
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2.2 Patient-specific model reconstruction 

 

Figure 1. A representative view of the image segmentation in 3D Slicer, the right top panel 
shows the reconstructed geometry, and the other three panels show the MSCT images in axial, 
sagittal and coronal views, respectively. The geometry in green represents aortic valve leaflet 
tissues, the translucent geometry in yellow represents the LV and aorta. 

The patient-specific geometries were segmented from the MSCT images using Amira-
Avizo (Thermo Fisher Scientific, MA) and 3D Slicer (www.slicer.org) softwares (Figure 1). The 
computational FE meshes were generated using HyperMesh (Altair Engineering, Inc., MI) 
software (27, 28). The initial state was chosen at mid-systole, where the BAV leaflets are 
partially open and assumed to be stress-free (29). As shown in Figure 2b, the reconstructed BAV 
comprised the non-fused leaflet, fused leaflet, the calcification, and the raphe. The complete 
patient-specific models, as shown in Figure 2c, included the BAV (with raphe and calcification), 
the aortic root, the ascending aorta, proximal LV, and the myocardium surrounding the aortic 
root, aortic–mitral curtain, MV and proximal LV/LA endocardial walls.  

3D solid elements (eight-node hexahedral C3D8R/C3D8I elements, six-node wedge 
C3D6 elements, and four-node tetrahedral C3D4 elements) were used to discretize the BAV 
leaflets, raphe, calcification, aortic root, ascending aorta and myocardium. Three layer of 
elements were used across the BAV leaflet thickness, with a uniform total thickness of  0.75 mm, 
which is typical for human AV leaflets (30). Two layers of elements were used across the aorta 
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thickness, with a uniform total thickness of 2�mm. After a mesh convergence study, average 
mesh sizes for the BAV/raphe, calcification and other components were 0.25 mm, 0.25 mm and 
1 mm, respectively. The BAV and calcification shared the same nodes on the tissue-calcification 
boundary, similarly to the BAV and the aortic root along the leaflet-root attachment curve (ATC). 
This avoided contact-related and kinematic constraints-related issues during the simulations and 
ensured full-interface displacement continuity. 

 

   

  

Figure 2. (a) Schematic of normal TAV, type 0 and type 1 BAV. Red line represents the raphe. 
(b) BAV models that include aortic leaflets, raphe and calcification. (c) Complete patient-
specific models (for a representative patient) that include the BAV, aortic root, ascending aorta, 
proximal left ventricle (LV), and the myocardium. (d) Time-dependent pressure waveforms (for 
a representative patient) at the LV inlet (LVP) and the aortic outlet (AP). 
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2.3 FSI modeling of left heart dynamics 

A fully coupled FSI numerical approach (31) that combines smoothed particle 
hydrodynamics (SPH) for the blood flow and nonlinear FE analysis for the heart valve 
mechanics was implemented into ABAQUS/Explicit (Dassault Systèmes Simulia Corp., 
Providence, RI, USA) for this study. With the coupling between SPH and FE handled by the 
node-to-surface contact algorithm, the 3D FSI model was able to simulate the coupled valve 
nonlinear soft tissue dynamics and the intraventricular hemodynamics in a patient-specific left 
heart model throughout the whole cardiac cycle. In brief, the continuum medium of blood was 
discretized as a set of particles distributed over the computational domain without a spatial mesh. 
The equations of motion and properties of the particles are determined from the continuum 
equations of fluid dynamics by a kernel interpolation technique (32). In this study, we set a 
reference density of ρ = 1056 kgm−3 and a viscosity of μ = 0.0035 Pa · s for blood properties. 
SPH particles were initially uniformly distributed in the domain with a spatial resolution of 0.8 
mm (33), which led to approximately 1 million one-node (PC3D) elements. The solid domain 
was reconstructed and discretized using solid elements as described in Section 2.2, and two 
different constitutive models were used to model the mechanical response of various cardiac 
tissues. The mechanical response of the ascending aorta, aortic root sinuses, BAV leaflets, raphe 
and myocardium was modeled with a modified version of the anisotropic hyperelastic Holzapfel-
Gasser-Ogden material model (MHGO) (34, 35), in which the cardiac tissues were assumed to be 
composed of a matrix material with two families of embedded fibers, each consisting of a 
preferred direction. In addition, the mechanical response of the intervalvular fibrosa was 
modeled with the isotropic hyperelastic Ogden material model (36). Both constitutive models 
were implemented into ABAQUS/Explicit with a user sub-routine VUANISOHYPER (37, 38). 
More details of the modeling of soft tissue materials can be found in the Appendix. The 
calcification was assumed to be homogeneous, isotropic and linear elastic with a Young's 
modulus of 12.6�MPa and a Poisson's ratio of 0.3 (39).  

To simulate the left heart dynamics, time-dependent patient-specific pressure boundary 
waves (Figure 2d) were applied at the LV inlet and the aortic outlet (31, 40, 41) (Figure 2c), 
where the mean systolic and diastolic aortic pressures matched the patient data (Table 1). The 
ascending aorta and myocardium were constrained at their distal ends allowing only rotational 
degrees of freedom. The initial state was chosen at mid-systole where the leaflets were partially 
open and assumed stress-free. The patient-specific cardiac cycle duration was calculated using 
the patient’s heart rate. Two cardiac cycles were simulated and the results from the second cycle 
were analyzed. 
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2.4 Quantitative analysis of flow field 

Three parameters are introduced to analyze the flow field obtained from the FSI 
simulations quantitively. Firstly, to quantify the flow rotational motion, the vorticity � of the 3D 

velocity field is calculated using the curl of the velocity field 

� � � � ����, 

where ���� represents the 3D velocity vector field. The magnitude of vorticity represents the local 
strength of rotational motion, and the direction of vorticity represents the orientation of the local 
rotation axis. Secondly, the strength of the reverse flow across a cross-sectional plane S can be 
quantified using the flow reversal ratio, defined as 

Flow reversal ratio �
|����|

����
�

| � ��������
·�	 ��|

� ����
�

·�	 �� 
, 

where �
��  � � ����� · �� �� represents the total flow rate, ����  � � �������� · �� �� represents the 

reverse flow rate, with ������� · ��  � 0, and �� is the normal vector of plane S. Lastly, to quantify 

the helical flow motion in the ascending aorta, the local helicity index (42) is calculated as 

Helicity index �
 � ���� · �

� � �����|�|
, -1< helicity index <1. 

The local helicity index (between -1 and 1) describes the alignment between the velocity 
direction and the rotation axis orientation. The helicity index is 1 (or -1) when the flow is purely 
helicoidal where the direction of the velocity vector matches that of the vorticity vector, and the 
helicity index is 0 when the flow is purely axial (along the centerline axis of aorta) or purely 
circumferential (within the cross-sectional plane). The positive and negative signs of the helicity 
index indicate the right-handed and left-handed helical motion, respectively.  

2.5 Flow metrics of the systolic jet 

Three flow metrics were used to characterize the systolic jet. The first one is the peak 
velocity, which typically occurs at the central core region of the jet. The other two metrics are 
the normalized flow displacement d# and the jet angle θ, which are defined on the cross-sectional 
plane S immediately downstream of the BAV (Figure 3). The normalized flow displacement 

d # �  d/R   (10) describes the eccentricity of the jet. The distance �  is between point &� 

(geometric center of the plane), and point &� (location of mean jet velocity through the plane) 

calculated as 
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&�,� �
� ��|�����|�

� |�����|�

, ( �  ), *, +, 

where ,� is the location of the corresponding velocity vector ����� . To obtain the normalized flow 
displacement d # , the displacement d is normalized with the nominal lumen radius R . The 

normalized flow displacement d # is between 0 and 1, with a higher value of d # indicates a more 
eccentric jet. Lastly, the jet angle θ describes the orientation of the jet, which is defined as the 
angle between the mean jet velocity direction and the normal direction of the plane S. A higher 
value of θ indicates more deviation in the jet direction from the centerline axis of the aorta. 

   

Figure 3. Schematic of the flow displacement d and the jet angle θ. Vector �� is the normal 

vector of cross-sectional plane S, and vector �- is the mean jet velocity. The flow displacement d 

is the distance between the geometric center of the slice (&� ) and the location of mean jet 

velocity through plane S (&�). The jet angle θ is between the normal vector �� direction and the 

mean jet velocity �- direction. Gray dotted line represents the centerline axis of aorta. 

 

3. RESULTS 

3.1 Model validation 

To validate the simulations quantitatively, both the deformed geometries of BAV leaflets 
and the hemodynamic parameters were compared with the available clinical data. The leaflet 
location from FSI simulations were extracted at mid-diastole, and compared with the ground 
truth leaflet geometries segmented directly from the MSCT images. As shown in Figure 4, the 
deformed BAV geometries obtained from simulations agreed well with the ground-truth 
geometries, with the mean point-to-mesh error distance  less than 1.1 mm for all patients. In 
addition, as shown in Table 2, the peak systolic velocity obtained from simulations agreed well 
with the patient’s echo measurement (considered as the ground truth). Moreover, while the 
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clinical data did not report the quantitative value of the AI regurgitant volume, the AI severity 
predicted from the simulations agreed with that in the clinical report. These validations 
demonstrated that the coupled SPH-FE FSI models were able to accurately simulate the patient-
specific BAV pathological dynamics. 

 

Figure 4. Point-to-mesh distance error between the deformed geometries of the BAV obtained 
from FSI simulations and the ground truth geometries reconstructed from MSCT images at mid-
diastole. Calcifications were not included for comparison. The mean distance errors and the 
standard deviation (SD) were 0.66 ± 0.63 mm, 0.69 ± 0.64 mm, 0.67 ± 0.59 mm, 1.07 ± 0.92 mm, 
and 0.64 ± 0.60 mm for patients A, B, C, D, and E, respectively. 

 

Table 2. Validation of the peak velocity between the FSI simulations and the clinical data 

 
Patient ID A B C D E 

Peak systolic velocity (m/s) 
FSI simulation 5.24 5.79 3.94 4.26 3.64 

Clinical report 5.20 5.25 4.00 4.73 4.20 
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3.2 Overall BAV hemodynamics 
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Figure 5: Streamlines of the flow field (side view) obtained from the FSI models for the five 
BAV patients at four time points: (a) early systole, (b) peak systole, (c) late systole and (d) mid-
diastole over the cardiac cycle. The four time points are labeled on the aortic pressure (AP) curve.  

Figure 5 presents the streamlines across the BAV and within the ascending aorta for the 
five BAV patients at four time points over the cardiac cycle. During systole, the flow 
downstream of the BAV can be characterized with two structures: the high velocity systolic jet 
across the BAV, and the recirculation flow where recirculation vortices locate. At early systole 
(Figure 5a), the peak velocity of the jet was 1.0-1.5 m/s. The streamlines of the forward flow 
within the ascending aorta were nearly parallel, and the two counter-rotating recirculation 
vortices had similar sizes. At peak systole (Figure 5b), the peak velocity of the jet increased 
significantly to 3.6-5.8 m/s. The systolic jet was typically eccentric, where the center of the jet 
deviated from the center of the aortic root, and the orientation of the jet deviated from the 
centerline axis of the ascending aorta. The two recirculation vortices expanded into the ascending 
aorta and became highly asymmetric. Moreover, the helical flow structure was observed in the 
ascending aorta. Among the five BAV patients, patient B showed the strongest helical flow 
structure. At late systole (Figure 5c), the peak velocity of the jet reduced to around 1 m/s, the 
recirculation vortices shrank back into the sinus, and the helical flow in the ascending aorta 
became much weaker. During diastole, the flow was in general weak as the BAV closed (Figure 
5d). Due to the mild AI, weak retrograde flow was observed across the BAV. The velocity in the 
ascending aorta was typically less than 0.1 m/s, and the velocity of the regurgitant jet 
downstream of the BAV was typically less than 0.5 m/s. 
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Figure 6: Flow velocity contour plots showing the maximum velocity within the aortic root over 
the entire cardiac cycle, overlapped with the BAV leaflet geometries at peak systole. The 
velocity values are in units of mm/s. The regions where the maximum velocity is less than 0.1 
m/s through the entire cardiac cycle are colored in black, indicating potential flow stasis region. 

To investigate the flow in sinus region, the maximum velocity throughout the entire 
cardiac cycle was extracted at each location of the flow domain. As shown in Figure 6, outside of 
the systolic jet region, the maximum velocity in the recirculation flow region was significantly 
slower (less than 0.3 m/s). The flow on the aortic side the BAV was much slower than that on the 
ventricular side, and the flow near the ATC at lower sinus was slower than that near the free 
edges at upper sinus. The potential regions of flow stasis (black colored regions in Figure 6) 
were observed between the lower sinus and the aortic side of BAV leaflets, where the maximum 
velocity is less than 0.1 m/s throughout the cardiac cycle. 
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3.3 Flow at peak systole 

 
Figure 7: (a). Flow field at four different cross sections from the aortic root to the ascending 
aorta at peak systole for the five BAV models. Both the velocity contour and the velocity vectors 
are plotted. (b) The alignment of cross sections. (c) The four cross sections are at the level of the 
sinuses of Valsalva, the sinotubular junction (STJ), L1, and L2, where L2 is close to the aortic 
arch, and L1 is roughly in the middle between STJ and L2.  
 

For the flow at peak systole, Figure 7 presents the velocity contours and velocity vectors 
at four different cross sections (sinus, STJ, L1, L2, depicted in Fig 7c) from the aortic root to the 
ascending aorta. At the sinus level, the peak velocities of the systolic jet were observed in the 
narrow “fish-mouth” shaped (instead of nearly round for a tricuspid aortic valve) regions, which 
corresponded to the stenotic opening of BAV.  At the STJ level, peak velocity regions started to 
deviate from the center of aorta, and the velocity direction started to deviate from the normal 
direction of the cross section. Within the aortic root (sinus and STJ level), forward flow was 
observed in the center region, and reverse flow was observed near the aortic walls, with the 
presence of the recirculation vortices (Figure 5b). As the systolic jet exited the aortic root and 
entered the ascending aorta (L1 and L2 level), the peak velocity started to decrease and the 
reverse flow gradually weakened. On the other hand, the in-plane secondary flow became more 
evident. Patient-specific variations were observed among the five patients. Specifically, patient B 
had the most severe AS with fastest eccentric systolic jet, and the strongest helical flow motion. 
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Table 3: The mean vorticity magnitude, flow reversal ratio and the helicity index at different 
cross sections (sinus, STJ, L1, and L2) for all five BAV patients. The values were averaged over 
each cross section. For the helicity index, the absolute values were averaged, which represented 
the overall strength of the helical flow. 

 

 
Figure 8: The mean ± SD values of the (a) vorticity magnitude, (b) flow reversal ratio, and (c) 
absolute helicity index on the four cross sections at the sinus, STJ, L1 and L2. The values were 
averaged among the five BAV patients. 
 

To quantify the flow structure at peak systole, the magnitude of vorticity, flow reversal 
ratio and the absolute helicity index over four cross sections (sinus, STJ, L1, and L2) were 
calculated (Table 3). Figure 8 presents the mean ± SD values averaged among five patients at 
each cross section. In general, the magnitude of the averaged vorticity was the largest (263.1 ± 
56.2 s-1) at the sinus, and gradually decreased along the aorta (234.0 ± 58.1 s-1 at STJ, 119.6 ± 
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         Patient ID 
Location 

A B C D E 

Vorticity 
(s-1) 

Sinus 309.62 335.02 233.73 261.06 176.11 

STJ 311.39 290.73 202.70 208.84 156.18 

L1 131.70 232.64 83.84 98.85 51.10 

L2 129.82 152.99 60.48 64.42 47.30 

Flow 
reversal 

ratio 

Sinus 0.01338 0.00979 0.02352 0.01346 0.00578 

STJ 0.06893 0.13045 0.09224 0.04310 0.03522 

L1 0.00043 0.08545 0.00057 0.00156 0.00162 

L2 0.00009 0.00002 0.00067 0.00070 0.00129 

Helicity 
index 

Sinus 0.2202 0.2262 0.2195 0.1814 0.2055 

STJ 0.2081 0.2079 0.1990 0.1937 0.2740 

L1 0.3382 0.2492 0.1964 0.2575 0.1960 

L2 0.1853 0.4171 0.1799 0.1685 0.1640 
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62.2 s-1 at L1, and 91.0 ± 42.2 s-1 at L2). The flow reversal ratio was 0.013 ± 0.006 at the sinus, 
increased to the maximum value of 0.074 ± 0.035 at the STJ where the expanded recirculation 
vortices located (Figure 5b), and then decreased sharply along the ascending aorta (0.017 ± 0.033 
at L1, and 0.0006 ± 0.0005 at L2). The helicity index did not vary significantly along the aorta, 
the mean value increased slightly from the sinus (0.21 ± 0.02) to the STJ (0.22 ± 0.03), and to L1 
(0.25 ± 0.05), then slightly decreased downstream (0.22 ± 0.10 at L2).  

To characterize the systolic jet, the peak systolic velocity, the normalized flow 
displacement d’, the jet angle θ were quantified for each patient (Table 4) as described in Section 
2.5. Among all five patients, patient B had the fastest systolic jet with high eccentricity. 
 

Table 4: The peak systolic velocity, the normalized flow displacement d’, the jet angle θ for all 
five BAV patients. 

  

         Patient ID 
Metrics 

A B C D E 

Peak systolic 
velocity (m/s) 

5.24 5.79 3.94 4.26 3.64 

d’ 0.117 0.132 0.061 0.039 0.035 

θ (°) 1.57 8.69 5.18 10.28 6.79 
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4. DISCUSSION 

The main contribution of this study is a comprehensive analysis of BAV hemodynamics in 
rigorously developed patient-specific cardiac computational models. Specifically, this work 
presents an engineering study that 

(1) Integrated cardiac tissue mechanics and blood flow modeling using a fully coupled FSI 
framework which allowed for an accurate assessment and validation of patient-specific 
BAV hemodynamics. 

(2) Investigated the hemodynamics of BAV over the entire cardiac cycle using patient-
specific models, which included the BAV leaflets (with raphe and calcifications), aortic 
root, ascending aorta, part of the LV and the surrounding myocardium. 

(3) Quantified the flow patterns at peak systole using the vorticity, flow reversal ratio and 
helicity index at different locations from the aortic root to the ascending aorta. 

(4) Investigated the relation between multiple jet metrics (peak velocity, normalized flow 
displacement, jet angle) and the flow patterns within the ascending aorta. 

4.1 Patient-specific analysis of BAV hemodynamics using FSI modeling 

4.1.1 BAV hemodynamics throughout the cardiac cycle 

 

 
Figure 9: Schematic showing the overall flow structure at (a) systole and (b) diastole. The 
schematic at diastole corresponds to the BAV patients with mild AI. 

During systole, the flow can be characterized as a jet flow through the aortic valve into a 
confined geometry of the aorta (Figure 9a). The peak velocity at the centerline of the jet remains 
nearly uniform within the potential core region immediately downstream the aortic valve. As the 
jet gradually expands, the potential core shrinks, and the shear layer grows within which the 
entrainment of the quiescent fluid occurs. Within a confined geometry of the aorta, this 
entrainment drives the formation of recirculation vortices, which circles from the belly region 
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towards the free edge of the BAV leaflets, and turns around along the sinus after the recirculation 
flow hits the aortic wall. 

During diastole, the flow is in general very weak as the BAV closes. No coherent flow 
structures are observed as the flow momentum gradually dissipates, which is consistent with 
previous in vitro observations (43). While the mild AI leads to converging retrograde flow 
towards the BAV and regurgitant jet downstream of the BAV (Figure 9b), the regurgitant jet is 
much weaker than the systolic jet, and the entrainment within the sinus is too weak to form any 
coherent recirculation vortices. 

4.1.2 Flow in the sinus 

The flow within the sinus is slow throughout the cardiac cycle. In the upper sinus, two 
recirculation vortices typically form during systole, corresponding to the two BAV leaflets. 
Driven by the entrainment of the systolic jet, the two vortices always rotate in the opposite 
direction, and these directions do not change over the cardiac cycle. This is consistent with 
experimental studies (43, 44) which found that the shear stress on the leaflet aortic side was 
unidirectional rather than bidirectional. In the lower sinus, the flow is significantly slower and 
nearly stagnant over the entire cardiac cycle (Figure 6). This indicates that the calcium build-up 
is more likely to occur near the ATC at lower sinus than near the free edges at upper sinus. 

4.1.3 Flow at peak systole 

The flow structures at peak systole are quantified using the vorticity, flow reversal ratio 
and the helicity index. The magnitude of the vorticity describes the rotation strength of the flow. 
Since the rotational motion of the flow is mostly induced by the high velocity systolic jet passing 
through the BAV leaflets, the vorticity is the largest in the sinus, and gradually decreases within 
the ascending aorta as the rotational momentum of the flow dissipates (Figure 8a). The flow 
reversal ratio describes the strength of reverse flow, which is mostly associated with the 
recirculation vortices. As the result, the reversal flow ratio is the largest at the STJ, and decreases 
to nearly zero downstream of the ascending aorta (Figure 8b). The helicity index describes the 
relative strength of the helical motion. Unlike the rotational and reversal motion, the helical 
motion of the blood flow could be induced by the torsion in the ascending aorta (14). Therefore, 
the helicity index does not vary much within the ascending aorta (Figure 8c).  

The flow complexity is found to be associated with the velocity and eccentricity of the 
systolic jet. At early and late systole, slower jet leads to weaker entrainment, and the entire flow 
field is overall well regulated (Figure 5a, 5c). At peak systole, the flow shows richer dynamics as 
the systolic jet reaches maximum velocity and is usually eccentric (Figure 5b). The recirculation 
vortices expand due to the stronger entrainment, and the two vortices become asymmetric due to 
the combined effect of the eccentric jet and the asymmetric leaflet/sinus geometries. Furthermore, 
helical motion was also observed in the ascending aorta. A more detailed quantitative analysis of 
correlations between the flow patterns and jet metrics is discussed below in Section 4.2. 
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4.1.4 Patient-specific BAV hemodynamics 

Our results suggest that patient-specific FSI modeling is important for comprehensive 
analysis of BAV hemodynamics. Previous fluid dynamics analyses that ignored the valves (11, 
12) only investigated the flow at peak systole, and were unable to capture the dynamic motion of 
the jet and recirculation vortices in the sinus. FSI studies that used 2D models (23) were unable 
to predict the helical flow pattern, which is characteristic of BAV hemodynamics. Furthermore, 
the studies using idealized geometries were unable to capture accurate patient-specific variations. 
For example, Marom et al. (45) reported that the size of recirculation vortex was simply 
associated with the leaflet/sinus size, while we found that the jet eccentricity affected the vortex 
size as well. In addition, Liu et al. (14) suggested that the torsion of aorta was an important factor 
that induced the helical flow motion, therefore simulations with an idealized aorta with only in-
plane curvature (22) might not be able to accurately predict helical flow motion and secondary 
flow in cross sections. 

4.2 Relation between jet metrics and flow patterns in the ascending aorta 

 

Figure 10: Linear regression analysis between the jet flow metrics (peak systolic velocity, the 
normalized flow displacement d’, the jet angle θ) and the vorticity, helicity index, flow reversal 
ratio over the ascending aorta. The five data points in each correlation represents the values of 
the five BAV patients. The mean values of vorticity, helicity index and flow reversal ration of 
each patient were averaged over three cross sections (STJ, L1, and L2). 
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To investigate the effects of the systolic jet on the overall flow patterns within the 
ascending aorta, the parameters that quantified the flow structures (described in Section 2.4) are 
correlated with different flow metrics of the systolic jet (described in Section 2.5) using the 
linear regression analysis (Figure 10). The parameters that quantified the flow structures are the 
mean values of vorticity, helicity index and the flow reversal ratio over the ascending aorta (from 
STJ to L2 location), while the jet flow metrics include the peak velocity, the normalized flow 
displacement d’, and the jet angle θ. The peak velocity of the systolic jet showed good correlation 
with the vorticity and helicity index, and an acceptable correlation with the flow reversal ratio 
(Figure 10a). This suggests that the aortic stenosis could enhance the flow complexity and the 
helical flow structure in the ascending aorta, which is consistent with previous numerical studies 
(19) and in vivo patient data analysis (46). The normalized flow displacement d' shows good 
correlation with the vorticity, helicity index and the flow reversal ratio (Figure 10b), but the jet 
angle θ does not correlate well with any of these parameters (Figure 10c). These findings are 
consistent with the previous study of Sigovan et al. (10) which found the normalized flow 
displacement better characterized the degree of eccentric flow, and the study of Mahadevia et al. 
(6) who observed that the normalized flow displacement was more sensitive than the jet angle to 
differences in BAV aortopathy phenotype. Considering that the measurement of jet metrics is 
more feasible in the clinical practice than the detailed analysis of flow field, our findings suggest 
that the peak systolic velocity and the normalized flow displacement could be useful noninvasive 
metrics for identifying and evaluating the abnormal flow structures in the ascending aorta. 

4.3 Limitations 

There are several limitations in this study. Firstly, while the BAV leaflets were 
deformable, the aorta was essentially stationary.  More accurate simulations will consider the 
pre-stress and the aorta deformation. Secondly, due to the inherent limitation of Abaqus SPH 
formulation, small-scale flow and turbulence features may not be accurately resolved close to the 
aortic wall. However, as discussed in previous numerical studies (13, 19, 45), simulations 
without a turbulent model were able to capture the hemodynamic phenomena of interest in the 
bulk flow, and the simulation results in this study have been validated with available in vivo data. 
Finally, a limited number of type 0 (n = 2) and type 1 (n=3) BAV patient data were collected. 
Therefore, it is unfeasible to investigate the effect of BAV phenotypes on BAV hemodynamics. 
Future studies would benefit from a larger number of patients with the inclusion of different 
BAV phenotypes.  
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5. CONCLUSIONS 

We have performed patient-specific FSI analysis of BAV hemodynamics. The systolic 
flow can be characterized by a systolic jet and two counter-rotating recirculation vortices, the 
diastolic flow was weak without coherent flow structures, and the sinus flow was slow 
throughout the entire cardiac cycle, especially in the lower sinus. The flow at peak systole 
showed the richest dynamics, with eccentric jet, asymmetric recirculation vortices, and varying 
helical flow pattern in the ascending aorta. The flow structure at peak systole was quantified 
using the vorticity, flow reversal ratio and helicity index at multiple locations. While the vorticity 
and flow reversal ratio decreased significantly from the aortic root towards the ascending aorta, 
the helicity index did not vary much and typically reached maximum within the ascending aorta. 
The complex flow structures were found to be associated well with the velocity and the 
eccentricity of the systolic jet. In specific, both the peak velocity and the normalized flow 
displacement (rather than the jet angle) of the systolic jet showed a strong correlation with the 
vorticity and helicity index of the flow downstream in the ascending aorta, which suggests that 
these jet metrics can be used for noninvasive evaluation of BAV flow structures. 
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Appendix 
Modeling of mechanical material properties for Cardiac tissues 

The mechanical response of the ascending aorta, aortic root sinuses, BAV leaflets, raphe 
and myocardium was modeled with a modified version of the anisotropic hyperplastic Holzapfel-
Gasser-Ogden material model (MHGO) (34, 35), in which the cardiac tissues were assumed to be 
composed of a matrix material with two families of embedded fibers, each consisting of a 
preferred direction. The strain energy function, W, can be expressed as 

� � ����exp����	
� � 3
 � 1�� � ��

���
∑ �exp �����
� � �1 � 3��
�� � 1��� � 1��
��� �

�

�
�� � 1��     i � 1, 2,      (A.1) 

where ���, ��� are the matrix parameters, ��, ��  are the material parameters, D is a material 

constant which enforces incompressibility, 
�  and 
��  are the strain invariants (47-49), which 
describe the matrix material and the fiber family properties, respectively, �  is a dispersion 
parameter which determines the level of dispersion in the fiber orientations, and J is the 
determinant of the deformation gradient. The mean local fiber directions are assumed symmetric 
with respect to the circumferential axis of the local coordinate system. Local coordinate systems 

were defined for each leaflet, and the local fiber orientations were defined through 
�� � "��
·

$"��
, where $  is the right Cauchy Green tensor, with "��

� %&'(), (*+), 0-  and "��
�

%&'(), �(*+), 0-, and θ defines the angle between one of the mean local fiber direction and the 
circumferential direction of the local coordinate system.  

 In addition, the mechanical response of the intervalvular fibrosa was modeled with the 
isotropic hyperelastic Ogden material model (36).  

� � ∑ �	�
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�
	./

�


� � ./
�


� � ./
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� � 3
�
��� ,  (A.2)

 

where μi and ai are material constants, and ./
�


�  are the modified principal stretches. The 

anisotropic hyperelastic MHGO model and the isotropic hyperelastic Ogden model were 
implemented into ABAQUS/Explicit 2016 (Dassault Systèmes Simulia Corp., Providence, RI, 
USA) with a user sub-routine VUANISOHYPER (37, 38), where the model parameters (Table 
A.1) were obtained from the in-house multiprotocol biaxial and uniaxial testing data of human 
cardiac tissues in our lab. The calcification was assumed to be homogeneous, isotropic and linear 
elastic, with a Young's modulus of 12.6�MPa and a Poisson's ratio of 0.3 (39). SPH particles 

were given Newtonian blood properties with a density of 0 � 1056 kg/6�  and a dynamic 
viscosity of 7 � 0.0035 Pa · s. 

 For a normal TAV patient, the collagen fibers on the leaflets are typically orientated 
circumferentially from commissure to commissure, and nearly parallel to the free edge (50-52). 
However, for a fused leaflet with raphe, the fibers in the raphe region are typically disoriented 
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(53, 54). It has been reported that the orientation of the fibers can be almost 45° (instead of 
parallel) to the free edge, and in the raphe, the fibers from the opposite side can merge at a 90° 
angle (53). Therefore, the local coordinate system was defined accordingly (25): for the leaflet 
without raphe, the circumferential axis of the local coordinate system was set to be nearly 
parallel to the free edge; while for the leaflet with raphe, the circumferential axis was set to be 
approximately +45° and -45° to the free edge on both sides of the raphe, forming a 90° angle at 
the raphe.  

Table A.1. The cardiac tissues material parameters used in the MHGO material model and the 
Ogden model. 

MHGO model ���  (kPa) ��� �� (kPa) �� � �°
 � � �kPa��
 

BAV leaflets and 
raphe 

0.017 147.262 39704.1 2352.96 0 0.317 5.0e-4 

Sinuses 1.755 13.707 10.550 80.379 20.06 0 5.0e-4 

Aorta 4.175 3.464 3.771 15.927 70.95 0.086 5.0e-4 

Myocardium 0.0374 15.387 6.079 98.366 6.78 0.144 5.0e-4 

Ogden model 
� (MPa) �� 
�  (�Pa) �� 
�  (MPa) ��  

Intervalvular fibrosa 1.505 21.400 11.207 21.400 1.441 21.400  
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