Supplementary Material - Modeling the impact of school reopening and contact tracing strategies on Covid-19 dynamics in different epidemiologic settings in Brazil

Marcelo Eduardo Borges¹, Leonardo Souto Ferreira^{1,2}, Silas Poloni^{1,2}, Angela Maria Bagattini³, Caroline Franco^{1,2,4}, Michelle Quarti Machado da Rosa³, Lorena Mendes Simon⁵, Suzy Alves Camey⁶, Ricardo de Souza Kuchenbecker⁷, Paulo Inácio Prado^{1,8}, José Alexandre Felizola Diniz Filho^{1,5}, Roberto André Kraenkel^{1,2}, Renato Mendes Coutinho^{1,9}, and Cristiana Maria Toscano³

¹Observatório Covid-19 BR

²Instituto de Física Teórica, Universidade Estadual Paulista, São Paulo, SP, Brazil

³Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil

⁴Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK

⁵Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brazil

⁶Instituto de Matemática e Estatística, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil

⁷ Graduate Program in Epidemiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil

⁸Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil

⁹Centro de Matemática, Computação e Cognição - Universidade Federal do ABC, Santo André, Brazil

1 Introduction

This model framework was first introduced in Aguas et al. [1] and modified to account for brazilian hospital structure and percolation effects in Franco et al. [6]. The code is available at https://github.com/covid19br/school_reopening_manuscript. In Section 2 we introduce our modifications in the Brazilian model structure [6] to account for contact tracing strategies. Section 2.1 describes the equations, along with the explanation and sources of the parameters used. Section 2.2 describes how the force of infection for quarantined and non-quarantined work in the model. Section 2.3 thoroughly describes our contact tracing model. Section 3 lists the interventions used in the main paper. Finally, Section 4 shows the procedure used to fit the model to data and Section 5 describes our approach to sensitivity analysis.

2 Model structure

2.1 Model equations

The model consists in an expanded age-structured SEIR model to account for asymptomatic individuals, a detailed structure of the Brazilian health system, transmission in different settings, and non-pharmaceutical interventions, including contact tracing strategies. We write

$$\begin{aligned} \frac{d\mathbf{S}}{dt} &= -\lambda \mathbf{S} + \omega \mathbf{R} + \mathbf{A}_{\mathbf{G}} \cdot \mathbf{S} + \mu_{b} - \mu_{d} \mathbf{S} - (Q_{in} + Q_{in,2}) \mathbf{S} + Q_{d} \mathbf{Q} \mathbf{S} \\ \frac{d\mathbf{E}}{dt} &= \lambda \mathbf{S} - \gamma \mathbf{E} + \mathbf{A}_{\mathbf{G}} \cdot \mathbf{E} - \mu_{d} \mathbf{E} - (Q_{in} + Q_{in,2}) \mathbf{E} + Q_{d} \mathbf{Q} \mathbf{E} \\ \frac{d\mathbf{A}}{dt} &= \gamma (1 - P_{clin}) (1 - IHR) \mathbf{E} - \nu_{i} \mathbf{A} + \mathbf{A}_{\mathbf{G}} \cdot \mathbf{A} - \mu_{d} \mathbf{A} - (Q_{in} + Q_{in,2}) \mathbf{A} + Q_{d} \mathbf{Q} \mathbf{I} \\ \frac{d\mathbf{A}}{dt} &= (1 - Q_{cov} PT_{d}) \gamma P_{clin} (1 - P_{scl f is}) (1 - IHR) \mathbf{E} - \nu_{i} \mathbf{I} + \mathbf{A}_{\mathbf{G}} \cdot \mathbf{I} - \mu_{d} \mathbf{I} + Q_{d} \mathbf{Q} \mathbf{C} \\ \frac{d\mathbf{X}}{dt} &= \gamma P_{scl f is} P_{clin} (1 - IHR) \mathbf{E} - \nu_{i} \mathbf{X} + \mathbf{A}_{\mathbf{G}} \cdot \mathbf{X} - \mu_{d} \mathbf{X} \\ \frac{d\mathbf{H}}{dt} &= \gamma IHR(1 - P_{icu}) (1 - H_{c}) (\mathbf{E} + \mathbf{Q} \mathbf{E}) - \nu_{s} \mathbf{H} + \mathbf{A}_{\mathbf{G}} \cdot \mathbf{H} - \mu_{d} \mathbf{H} \\ \frac{d\mathbf{H}C}{dt} &= \gamma IHRP_{icu} (1 - ICU_{c}) (\mathbf{E} + \mathbf{Q} \mathbf{E}) - \nu_{sch} \mathbf{H} \mathbf{C} + \mathbf{A}_{\mathbf{G}} \cdot \mathbf{I} \mathbf{C} - \mu_{d} \mathbf{I} \mathbf{C} \mathbf{U} \\ \frac{d\mathbf{C} \mathbf{U}}{dt} &= \gamma IHRP_{icu} ICU_{c} (1 - ICU_{c}) (\mathbf{E} + \mathbf{Q} \mathbf{E}) - \nu_{icub} \mathbf{I} \mathbf{C} \mathbf{U} + \mathbf{A}_{\mathbf{G}} \cdot \mathbf{I} \mathbf{C} - \mu_{d} \mathbf{I} \mathbf{C} \mathbf{U} \\ \frac{d\mathbf{I} \mathbf{C} \mathbf{U}}{dt} &= \gamma IHRP_{icu} ICU_{c} (1 - ICUH_{c}) (\mathbf{E} + \mathbf{Q} \mathbf{E}) - \nu_{icuc} \mathbf{I} \mathbf{C} \mathbf{U} + \mathbf{A}_{\mathbf{G}} \cdot \mathbf{I} \mathbf{C} - \mu_{d} \mathbf{I} \mathbf{C} \mathbf{U} \\ \frac{d\mathbf{I} \mathbf{C} \mathbf{U}}{dt} &= \gamma IHRP_{icu} ICU_{c} ICUH_{c} (\mathbf{E} + \mathbf{Q} \mathbf{E}) - \nu_{icuc} \mathbf{I} \mathbf{U} \mathbf{C} + \mathbf{A}_{\mathbf{G}} \cdot \mathbf{I} \mathbf{C} - \mu_{d} \mathbf{I} \mathbf{C} \mathbf{U} \\ \frac{d\mathbf{I} \mathbf{C} \mathbf{U}}{dt} &= \gamma I HRP_{icu} ICU_{c} IUCU_{c} (\mathbf{E} + \mathbf{Q} \mathbf{E}) - \nu_{icuc} \mathbf{I} \mathbf{U} \mathbf{U} + \mathbf{A}_{\mathbf{G}} \cdot \mathbf{I} \mathbf{U} - \mu_{d} \mathbf{I} \mathbf{U} \\ \frac{d\mathbf{U} \mathbf{U}}{dt} &= \gamma I - \omega \mathbf{R} + \nu_{i} \mathbf{X} + \nu_{i} \mathbf{I} + \mathbf{A}_{\mathbf{G}} \cdot \mathbf{R} - \mu_{d} \mathbf{R} + \nu_{s} (1 - P_{d} \mathbf{I}_{in}) \mathbf{H} - \mu_{d} \mathbf{I} \mathbf{U} \\ + \nu_{icu} (1 - P_{dicu} IHFR) \mathbf{I} \mathbf{U} \mathbf{U} + \nu_{icu} (1 - P_{dicv} IHFR) \mathbf{I} \mathbf{U} \\ \frac{d\mathbf{U}}{dt} \\ \frac{d\mathbf{Q}}{dt} = -\lambda_{d} \mathbf{Q} \mathbf{S} + \omega \mathbf{Q} \mathbf{R} + \mathbf{A}_{\mathbf{G}} \cdot \mathbf{Q} \mathbf{S} + \mu_{d} \mathbf{Q} \mathbf{R} \\ + \nu_{icu} (1 - P_{dicv} IHFR) \mathbf{U} \mathbf{U} + \nu_{icu} \mathbf{Q} \mathbf{U} \\ \frac{d\mathbf{Q}}{dt} = \lambda_{q} \mathbf{Q} \mathbf{S} - \gamma \mathbf{Q} \mathbf{E} + \mathbf{A}_{\mathbf{G}} \cdot \mathbf{Q} \mathbf{E} - \mu_{d} \mathbf{Q} \mathbf{Q} \mathbf{Q} \\ \frac{d\mathbf{Q}}{dt} \\ \frac{d\mathbf{Q}}{dt} = \lambda_{q} \mathbf{Q} \mathbf{S} - \gamma \mathbf{$$

where each of the dynamic variables (corresponding to the compartments shown in Table 1) is further subdivided in 19 age classes consisting of 5 years age bins (0-4,5-9, up to 90+). Thereby, each of the parameters written in the model, aside from $\mathbf{A}_{\mathbf{G}}$ (ageing matrix), should be thought of as diagonal matrices containing parameter values corresponding to each age class. Take, as an example, the natural mortality rate, given by

$$\hat{\mu_d} = \operatorname{diag}(\mu_{d1}, \mu_{d2}, \dots, \mu_{dD}) = \operatorname{diag}(\vec{\mu_d}).$$

Note that, in the system of equations presented above, we drop the hats/bolds from all diagonal matrices to avoid an overloaded notation, but keep them in all variables. Thus, each of them actually represents D = 19 different ODEs, and therefore the number of equations is D multiplied by the number of compartments. A description of each parameter from the model is available at table 2.

Finally, A_G implements ageing of the population, and it is defined as a 19 × 19 matrix given by:

$$\mathbf{A}_{\mathbf{G}} = \frac{1}{1826.25} \begin{pmatrix} -1 & 0 & 0 & 0 & \dots & 0 & 0 & 0 \\ 1 & -1 & 0 & 0 & \dots & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 & \dots & 0 & 0 & 0 \\ \vdots & & & \ddots & & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \dots & 0 & 1 & 0 \end{pmatrix}$$
(1)

where the denominator accounts for the time to transition between age bins in a 5-year division in units of days.

2.2 Force of infection

Our model assumes two different forces of infection, one for the non-quarantined individuals λ and other for quarantined individuals λ_q . Non-quarantined individuals can be infected by non-quarantined infected individuals in four locations: school, work, home, and in the community. They can also be infected by interacting with quarantined familiars in the "home" setting, and quarantined individuals in other households through the "community" matrix setting. The later considers that transmission by occasional contacts with quarantined individuals in their households may occur, such as in food delivery contexts, for instance. Assuming that \hat{c} is the total contact matrix with percolation effect and non-pharmaceutical interventions described in Franco et al. [6], and \hat{c}_i being the other matrices with the "cocooning of older adults" intervention, with $i = \{\text{home, school, work, community}\}$, we have:

$$\lambda = (1 - mask(t))p\hat{c}(\rho \mathbf{E} + \mathbf{A} + \mathbf{I} + imports + \rho_s(\mathbf{H} + \mathbf{ICU} + \mathbf{ICUH}))/\mathbf{P}$$
(2)
+ $(1 - mask(t))p(1 - f_{perc})\hat{c}_{home}(\rho \mathbf{QE} + \mathbf{QI} + \mathbf{QC} + \mathbf{X} + \mathbf{HC} + \mathbf{ICUC})/\mathbf{P}$ + $(1 - mask(t))p(1 - Q_{eff,com})\hat{c}_{com}(\rho \mathbf{QE} + \mathbf{QI} + \mathbf{QC} + \mathbf{X} + \mathbf{HC} + \mathbf{ICUC})/\mathbf{P}$

where $Q_{eff,com}$ is a parameter of reduction in mean contacts between quarantined and non-quarantined by the "community" contact matrix, *imports* is the value of new imported cases added by day (see Section 3 for details), and f_{perc} and mask(t) are the percolation effect and the usage of mask intervention, respectively, described in Franco et al. [6].

Similarly, a quarantined susceptible individual can be infected by an infected person inside the household, or be infected by interacting through the "community" contact matrix, as follows:

$$\lambda_q = (1 - mask(t))p(1 - f_{perc})\hat{c}_{home}(\rho \mathbf{QE} + \mathbf{QI} + \mathbf{QC} + \mathbf{X} + \mathbf{HC} + \mathbf{ICUC})/\mathbf{P}$$
(3)
+ $(1 - mask(t))p(1 - Q_{eff,com})\hat{c}_{com}(\rho \mathbf{E} + \mathbf{A} + \mathbf{I} + imports + \rho_s(\mathbf{H} + \mathbf{ICU} + \mathbf{ICUH}))/\mathbf{P}$

2.3 Contact tracing

To implement the contact tracing strategy, we assume that individuals from compartment i, where $i = \{\mathbf{S}, \mathbf{A}, \mathbf{I}, \mathbf{HC}, \mathbf{ICUH}, \mathbf{ICUC}, \mathbf{R}\}$, can be transferred to their respective "quarantined" compartments where their remain isolated, thus, decreasing the chance of infecting other individuals. Isolation occurs after being positively diagnosed as infected by testing, or traced as a secondary contact of a positively diagnosed individual. For simplicity, we refer to all individuals isolated by the contact tracing strategy as "quarantined". Our model supports two ways of testing, one fixing the probabilities PT_i for each compartment or supplying a number of tests applied per day n_t . While the implementation of the first case is trivial, for the second one, we first calculate the entrance rate F_i from the exposed (quarantined and non-quarantined) compartment to the compartment studied (for example, $F_H = \gamma IHR(1 - P_{icu})(1 - H_c)(\mathbf{E} + \mathbf{QE})$), with *i* following the given sequence of priority $i = \{\mathbf{ICU}, \mathbf{ICUH}, \mathbf{H}, \mathbf{ICUC}, \mathbf{HC}, \mathbf{X} + \mathbf{CL}\}$. Then, the probability of testing the compartment *j* (that follows the same sequence of *i*) is given by:

$$PT_j = \min\left(\max\left(\frac{n_t - \sum_i^j F_i}{F_j + 1}, 0\right), 1\right) \tag{4}$$

where we add 1 to the fraction to avoid division by zero.

Consider again the entrance rate F_i , but this time only considering non-quarantined exposed individuals. Then, the entrance rate from a compartment to the quarantined equivalent is given by:

$$Q_{in} = \frac{Q_{cov}\tau_w}{P-Q} \left(\sum_k E_k \hat{c}_k\right) \sum_j PT_j F_j$$
(5)

where Q_{cov} is the adherence to quarantine, τ_W is the time window of traced contacts, P - Q is the total (alive) population discounted for already quarantined individuals, and E_k is the effectiveness of the contact tracing in each k contact matrix (For the results concerning this paper, the only non-zero effectiveness is the one related to school contacts). Notice that the entrance rates are age stratified, thus, the entrance rate to quarantine is also stratified.

Finally, if there are still tests available, they are applied to asymptomatic, exposed, recovered, and susceptible individuals who were identified as secondary contacts of already tested individuals:

$$PT_{I} = PT_{E} = \min\left(\max\left(O_{d}n_{t,2}\frac{\mathbf{S} + \mathbf{E} + \mathbf{A} + \mathbf{R}}{Q_{in} + 1}, 0\right), 1\right)$$
(6)

where O_d is the overdispersion parameter (we assume equal to 1) and $n_{t,2}$ is the number of remaining tests. Then the second order contacts detected are given by:

$$Q_{in,2} = \frac{Q_{cov}\tau_w}{P-Q} \left(\sum_k E_k \hat{c}_k\right) Q_{in}(PT_E \mathbf{E} + PT_I \mathbf{A})$$
(7)

Notice that we do not assume false positives. Therefore, PT_S and PT_R are equal to zero. Table 6 shows the contact tracing parameters assumed for this study.

3 List of interventions

Here we describe the interventions used as input of the model, reproducing (with permission) Franco et al. [6]. Tables 7, 8 and 9 comprises all interventions used in the fitting of the model. Figures 1, 2 and 3 show the timeline of these interventions.

• Self-Isolation: Symptomatic individuals that do not require hospitalization voluntarily isolate themselves during the time of infection and reduce the chance of infecting others. The beginning and end period of this intervention is defined by $\theta_{selfis}(t)$ and represents the days t when the population adheres to this behavior. The impact of this NPI depends on its adherence to self-isolation $selfis_{cov}$ and estimated reduction in contacts by self-isolation $selfis_{eff}$ values, where

$$P_{selfis} = selfis_{cov}(t)selfis_{eff}\theta_{selfis}(t) \tag{8}$$

• Social Distancing: the population avoids or reduces contacts in the community setting (\hat{c}_{com}) . This intervention comprises reduction of contacts on churches, markets, social events and gatherings, shopping activities, gyms, and others. The beginning and end period of this intervention is defined by $\theta_{dist}(t)$. The impact of this NPI depends on its adherence to social distancing at community level $(dist_{cov})$ and reduction of contacts in the community among those adhering to social distancing $(dist_{eff})$ values, where:

$$dist(t) = dist_{cov}(t)dist_{eff}\theta_{dist}(t);$$
(9)

• Use of masks: This intervention comprises individual protection measures, given by the adoption of mask usage. The beginning and end period of this intervention is defined by $\theta_{mask}(t)$. The impact of this NPI depends on its adherence to mask usage (mask_{cov}) and effectiveness (mask_{eff}), where

$$mask(t) = mask_{cov}(t)mask_{eff}\theta_{mask}(t);$$
(10)

• Work from home: This intervention reduces contacts in the work environment (\hat{c}_{work}) as workers perform their activities from their home. The beginning and end period of this intervention is defined by $\theta_{work}(t)$. The impact of this NPI depends on the adherence to home-office $(work_{cov})$ and reduction of contacts at work among those adhering to home-office $(work_{eff})$, where:

$$work(t) = work_{cov}(t)work_{eff}\theta_{work}(t);$$
(11)

• School closure: This intervention reduces the contacts in the school setting (\hat{c}_{school}) due to limitation of in-school activities or school closures. The beginning and end period of this intervention is defined by $\theta_{school}(t)$. The effectiveness of this NPI depends on the adherence to online (not in-person) school activities (school_{cov}) and the reduction of contacts in school upon school closure (school_{eff}), where:

$$school(t) = school_{cov}(t)school_{eff}\theta_{school}(t);$$
 (12)

Note that in the main text, $school_{cov}$ is also referred as PCS (potential contacts in school).

- cocooning of older adults: This intervention reduces the contacts to a proportion of the older adult population, given a minimum age D^{\dagger} . The beginning and end period of this intervention is defined by $\theta_{cocoon}(t)$. The effectiveness of this NPI depends on the adherence to cocooning of older adults ($cocoon_{cov}$) and reduction of contacts with older adults in all settings as a results of cocooning older adults ($cocoon_{eff}$). Additional details of this implementation is described in France et al. [6].
- *Travel ban*: This intervention models the interruption of travel flow from outside the city and the isolation of cases coming from outside, which reduces or eliminate import cases. This intervention is given by:

$$imports = (1 - travel_{eff})mean_imports$$
⁽¹³⁾

where $(mean_imports)$ is the mean value of imported cases, $travel_{eff}$ the effectiveness of this intervention, and *imports* the number of new cases that are added to the population per day.

4 Model Fitting

To fit the model onto epidemiological data, we used consolidated time series from Severe Acute Respiratory Infection (SARI) hospitalisations and deaths in São Paulo, Goiânia and Porto Alegre from the SIVEP-Gripe database [4] between the dates described in table 10.

In Brazil, SARI case notification is compulsory (leading to high reporting rates) and SARS-CoV-2 is included as a SARI category. Due to the lack of extensive testing, we assume that using only SARS-CoV-2 confirmed cases would lead to an underestimation of the actual number of cases. Hence, we assume that SARI cases are a better approximation to the number of SARS-CoV-2, rather than only cases confirmed by PCR tests. Since SIVEP-Gripe reports only severe cases that require hospitalisation, we fit SARI cases to the sum over all hospitalised compartments of the model.

Following Franco et al. [6], we chose to use weekly time series for new cases and new deaths to avoid carrying past information into future values, which occurs when using time series of cumulative data.

Based on data from SIVEP [4], we were able to estimate the COVID-19 In-Hospital Fatality Rate (IHFR) and Intensive Care mortality rate (ICMR) for each city (Table 3). Other local parameters are described in Table 4, and local demographic rates per age group in Table 5.

To perform a nonlinear least squares fitting of the free parameters $(p, T_{perc}, h_{steep}, startdate)$ to the data, we used the Levenberg-Marquardt algorithm implemented in the minpack. Im R package [5].

To fit both new cases (C) and new deaths (D), we had to account for residuals in different scales. One way to do that was by normalising each of the variables in respect to their total sum. Therefore, the resulting residual (R) is given by:

$$R = \frac{\sum (C_{model} - C_{observed})}{\sum C_{observed}} + \frac{\sum (D_{model} - D_{observed})}{\sum D_{observed}}$$

The algorithm minimises the square of this quantity, while evaluating the respective negative log-likelihood and minimising it.

To perform the non-linear optimisation, the algorithm requires a series of initial guesses. We tested a wide range of *startdate* values (from 2020 - 01 - 01 to 2020 - 02 - 24) and for each one we ran the fitting algorithm using several reasonable initial guesses for the other free parameters. Hence, this method gives us fitted p, T_{perc} and h_{steep} for each *startdate* considered.

With the goal to find a probability distribution for the fitted parameters [2], we selected the run which returned the lowest residual for each *startdate*, with its respective (p, T_{perc}, h_{steep}) set. We then computed the negative log-likelihood for each start date, L_t :

$$L_t = N \ln \left(\frac{1}{N} \sum_{i=1}^N R_{i,t}^2, \right)$$

from which we can derive the probability for each *startdate*, given by

$$P_t = \frac{exp(-L_t + min(\{L_t\}))}{\sum_t exp(-L_t + min(\{L_t\}))}$$

Finally, maximising the probability (which is equivalent to minimising the negative log-likelihood), we find sets of best fitted parameters for each of the cities considered (See Table 11)

5 Sensitivity analysis

For the sensitivity analysis, we evaluated how changes in a parameter of interest can qualitatively and quantitatively alter the simulation results for the different scenarios evaluated for the reopening of schools. We set each parameter of interest to be fitted together with the main parameters, sampling uniformly the initial conditions in the range described in 12 and choosing the best fit as result (see tables 13, 14 and 15). Each parameter was fit independently of the others. Since the adherence to the NPI varies in time, the parameter with "cov" were varied by a scaling factor, maintaining the variation in time.

We then compared the final difference in the incidence of cases and deaths in relation to a baseline scenario without school reopening. The simulations were repeated for the different school reopening values (PCS) and compared with the original simulation (see main text).

References

- Ricardo Aguas et al. "Modelling the COVID-19 pandemic in context: an international participatory approach". In: *BMJ Global Health* 5.12 (2020). Ed. by et al. DOI: 10.1136/bmjgh-2020-003126. eprint: https://gh.bmj.com/content/5/12/e003126.full.pdf. URL: https://gh.bmj.com/content/5/12/e003126.
- [2] Kenneth P. Burnham and David Raymond Anderson. Model Selection and multi-model inference: A practical information-theoretic approach. Springer New York, 2013.
- [3] Muge Cevik et al. "SARS-CoV-2, SARS-CoV-1 and MERS-CoV viral load dynamics, duration of viral shedding and infectiousness – a living systematic review and meta-analysis". In: (July 2020). DOI: 10. 1101/2020.07.25.20162107. URL: https://doi.org/10.1101/2020.07.25.20162107.
- [4] Datasus. SRAG 2020 Banco de Dados de Síndrome Respiratória Aguda Grave incluindo dados da COVID-19. 2020. URL: https://opendatasus.saude.gov.br/dataset/bd-srag-2020 (visited on 05/26/2021).
- [5] Timur V. Elzhov et al. minpack.lm: R Interface to the Levenberg-Marquardt Nonlinear Least-Squares Algorithm Found in MINPACK, Plus Support for Bounds. R package version 1.2-1. 2016. URL: https: //CRAN.R-project.org/package=minpack.lm.
- [6] Caroline Franco et al. "Percolation across households in mechanistic models of non-pharmaceutical interventions in SARS-CoV-2 disease dynamics". In: (June 2021). DOI: 10.1101/2021.06.07.21258403. URL: https://doi.org/10.1101/2021.06.07.21258403.
- [7] IBGE. Pesquisas Estatísticas do Registro Civil Tabela 2679 Nascidos vivos, por ano de nascimento, idade da mãe na ocasião do parto, sexo e lugar do registro. 2021. URL: https://sidra.ibge.gov.br/tabela/ 2679 (visited on 04/28/2021).
- [8] IBGE. *Projeções da população*. 2021. URL: https://www.ibge.gov.br/estatisticas/sociais/populacao/9109-projecao-da-populacao.html (visited on 10/01/2021).
- [9] IBGE. Tábuas completas de mortalidade. 2019. URL: https://www.ibge.gov.br/estatisticas/sociais/ populacao/9126-tabuas-completas-de-mortalidade.html?=&t=resultados (visited on 04/28/2021).
- Tatiana Pineda Portella et al. "Temporal and geographical variation of COVID-19 in-hospital fatality rate in Brazil". In: (Feb. 2021). DOI: 10.1101/2021.02.19.21251949. URL: https://doi.org/10.1101/2021.02.19. 21251949.
- [11] Henrik Salje et al. "Estimating the burden of SARS-CoV-2 in France". In: Science 369.6500 (May 2020), pp. 208-211. DOI: 10.1126/science.abc3517. URL: https://doi.org/10.1126/science.abc3517.
- [12] SMSSP. Inquérito sorológico para Sars-Cov-2: Prevalência da infecção em escolares das redes públicas e privada da cidade de São Paulo. http://www.capital.sp.gov.br/arquivos/pdf/2021/coletiva_saude_14-01.pdf. [Online; accessed 31-January-2021]. 2021.
- W. W. Sun et al. "Epidemiological characteristics of COVID-19 family clustering in Zhejiang Province". In: Chinese journal of preventive medicine 54.6 (2020), pp. 625–629. ISSN: 02539624. DOI: 10.3760/cma.j. cn112150-20200227-00199.
- Yongyue Wei et al. "A systematic review and meta-analysis reveals long and dispersive incubation period of COVID-19". In: (June 2020). DOI: 10.1101/2020.06.20.20134387. URL: https://doi.org/10.1101/2020.06.20.20134387.
- [15] Yongyue Wei et al. "A systematic review and meta-analysis reveals long and dispersive incubation period of COVID-19". In: *medRxiv* (2020).

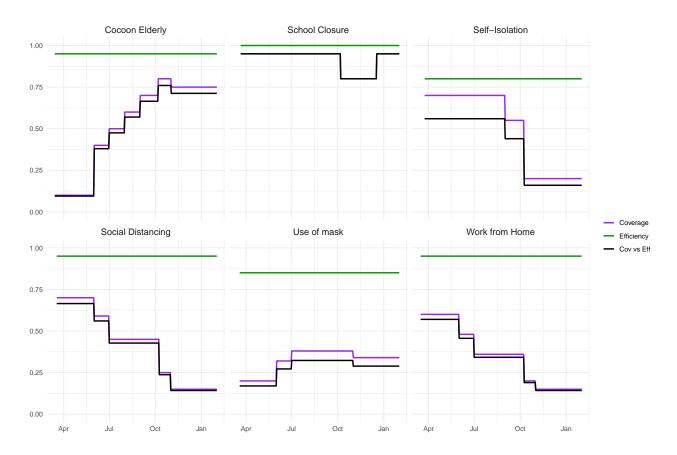


Figure 1: Diagram of adherence, reduction of contacts and their product for each of the considered non-pharmaceutical interventions considered in the model for São Paulo, SP.

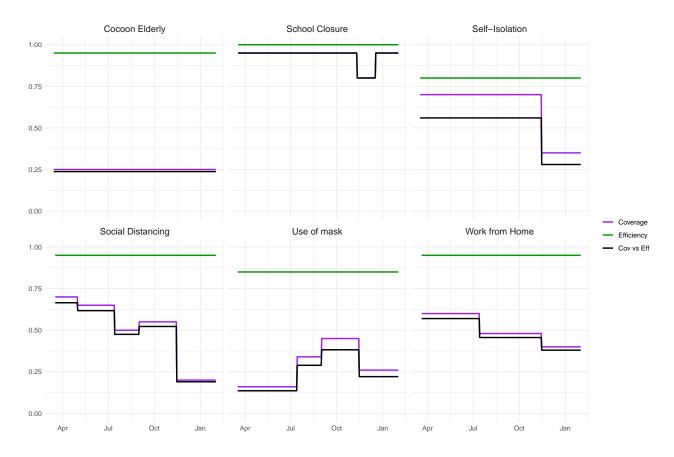


Figure 2: Diagram of adherence, reduction of contacts and their product for each of the considered non-pharmaceutical interventions considered in the model for Goiânia, GO.

code and	
equations	description
S	Susceptible population
$\tilde{\mathbf{E}}$	Infected and presymptomatic population
Ā	Infected population, asymptomatic and not isolated
Ι	Infected population, mildly symptomatic and not isolated
X	Infected population, mildly symptomatic and self-isolated at home
Н	Infected population, hospitalized in simple bed.
HC	Infected population that require hospital treatment but but are denied,
	due to healthcare system overload
\mathbf{ICU}	Infected population, hospitalised in Intensive Care Units (ICU).
ICUH	Infected population that require ICU but are hospitalised in simple beds,
	due to unavailability in ICU beds.
ICUC	Infected population that require ICU but are denied both
	an ICU or hospital simple bed, due to healthcare system overload.
R	Recovered population
\mathbf{QS}	Susceptible population in quarantine
\mathbf{QE}	Infected population in incubation period in quarantine
\mathbf{QI}	Infected asymptomatic population in quarantine
\mathbf{QR}	Recovered population in quarantine
\mathbf{QC}	Mildly symptomatic population in quarantine
С	Cumulative reported cases
$\mathbf{C}_{\mathbf{M}}$	Cumulative death cases
$\mathbf{C}_{\mathbf{MC}}$	Cumulative death cases of critical patients, i.e., those who hospitalization was denied.

Table 1: List of model variables in equations on supplementary material and in the code. Variables written in the main text may be different for readability, here, we stick to the nomenclature used throughout the code to help reproducibility.

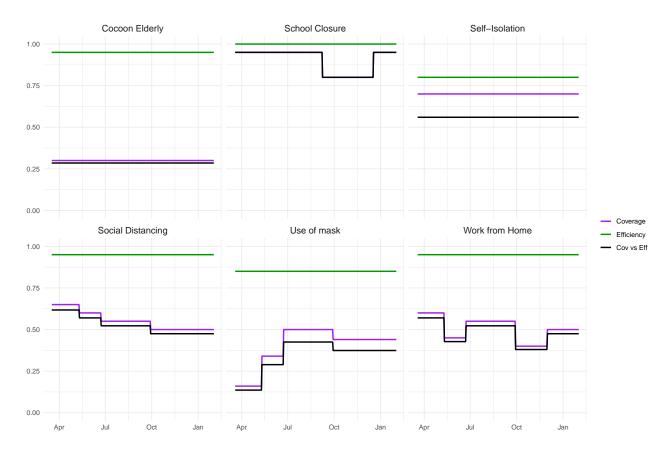


Figure 3: Diagram of adherence, reduction of contacts and their product for each of the considered non-pharmaceutical interventions considered in the model for Porto Alegre, RS.

Code	Equation	Description	Value	Source
lam	λ	force of infection	Variable	Eq. (2)
nort	μ_d	natural mortality $(days^{-1})$	See table 5	IBGE [9]
ageing	A_{G}	speed of population ageing $(days^{-1})$	-	Eq. (1)
oirth	μ_b	birth rate $(days^{-1})$	See table 5	IBGE [7]
gamma	γ	Inverse average of incubation period $(days^{-1})$	1/5.8	Wei et al. [14]
hr	IHR	Infection hospitalisation rate	See Table 3	Salje et al. [11]
		Rate of which recovered people become	0	· · · ·
omega	ω	susceptible again $(days^{-1})$	0	Assumed
rho	ρ	Relative infectiousness of incubation phase	0.105	Wei et al. [15]
rhos	ρ_s	Relative percentage of regular daily contacts	0.10	Assumed
1105	ps	when hospitalized		
pclin	P_{clin}	Probability upon infection of developing clinical symptoms by age groups	$\begin{array}{c} 0.305 \ (0\text{-}19) \\ 0.560 \ (20\text{-}59) \\ 0.690 \ (60+) \end{array}$	SMSSP [12] Sun et al. [13] Sun et al. [13]
selfis	P_{selfis}	Proportion of symptomatic individuals who self-isolate	Variable	Franco et al. $[6]$ (SM
prob_icu	P_{icu}	Proportion of hospitalised individuals	See Table 3	Datasus [4]
	ecu.	who need ICU beds		L T
critH	H_c	Proportion of hospitalised individuals	Variable	Franco et al. [6] (SM
011011		who have not received attendance	(dridbio	
		Proportion of hospitalised individuals		
critICU	ICU_c	who need ICU beds and	Variable	Franco et al. $[6]$ (SM
		have not received one		
		Proportion of hospitalised individuals		
critICUH	ICU_h	who need ICU beds and have not	Variable	Franco et al. [6] (SM
	1001	received one and also not have received	Variable	
		simple beds		
nui	$ u_i$	Recovery rate of mild	1/9	Cevik et al. [3]
nui	ν_1	symptomatic/asymptomatic individuals $(days^{-1})$	1/3	Cevik et al. [0]
nus	11	Recovery/death rate of hospitalised	1/8.3	Datasus [4]
nus	ν_s	individuals $(days^{-1})$	1/0.0	Datasus [4]
		Recovery/death rate of hospitalised		
nusc	ν_{sc}	individuals who have not received	1/11	Assumed
		attendance $(days^{-1})$		
nu_icu	14.	Recovery/death rate of hospitalised	1/14.7	Datasus [4]
liu_icu	$ u_{icu}$	individuals in ICU beds $(days^{-1})$	1/14.7	Datasus [4]
		Recovery/death rate of hospitalised		
nu₋icuh	ν_{icuh}	individuals who need ICU beds	1/11	Assumed
		but received simple beds $(days^{-1})$		
		Recovery/death rate of hospitalised		
nu_icuc	ν_{icuc}	individuals who need ICU beds and	1/11	Assumed
		have not received attendance $(days^{-1})$		
fr	IHFR	In hospital fatality rate	See Table $\frac{3}{2}$	Portella et al. $[10]$
ndooth h	D	Maximum probability of death for	See Table 4	Determs [4]
pdeath_h	P_d	a hospitalised infection requiring common bed	See Table 4	Datasus [4]
1	D	Maximum probability of death for	C., T.11, 4	Determs [4]
pdeath_icu	P_{dicu}	a hospitalised infection requiring ICU	See Table 4	Datasus [4]
		Maximum probability of death for		
pdeath_hc	P_{dhc}	a hospitalised infection requiring common bed	See Table 4	Assumed
-		but not receiving attendance		
		Maximum probability of death for		
pdeath_icuh	P_{dicuh}	a hospitalised infection requiring ICU	See Table 4	Assumed
		but receiving common bed attendance		
		Maximum probability of death for		
pdeath_icuc	P_{dicuc}	a hospitalised infection requiring ICU	See Table 4	Assumed
	uncut	but not receiving attendance		
report	r	Report rate of asymptomatic cases	0.00	Assumed
reporte	r_c	Report rate of symptomatic cases	0.01	Assumed
A 1 1 1 1 1	L	Report rate of hospitalized cases	-	

 Table 2: List of model parameters in equations on supplementary material and in the code. These variables are restricted to epidemiological variables (not the NPI-related ones).

Age group	Goiân	ia-GO	Porto A	legre-RS	São Pa	ulo-SP	prob_icu	IHR^1
	ICMR	IHFR	ICMR	IHFR	ICMR	IHFR		
0-4	0.29	0.034	0.26	0.028	0.14	0.014	0.45	0.1
5-9	0.29	0.034	0.26	0.028	0.14	0.014	0.45	0.1
10-14	0.29	0.034	0.26	0.028	0.14	0.014	0.52	0.1
15 - 19	0.29	0.034	0.26	0.028	0.14	0.014	0.52	0.1
20-24	0.29	0.034	0.26	0.028	0.14	0.014	0.25	0.5
25 - 29	0.29	0.034	0.26	0.028	0.14	0.014	0.25	0.5
30-34	0.25	0.036	0.21	0.013	0.2	0.028	0.32	1.1
35 - 39	0.25	0.036	0.21	0.013	0.2	0.028	0.32	1.1
40-44	0.36	0.049	0.25	0.031	0.24	0.045	0.34	1.4
45 - 49	0.36	0.049	0.25	0.031	0.24	0.045	0.34	1.4
50 - 54	0.42	0.075	0.35	0.05	0.36	0.087	0.40	2.9
55 - 59	0.42	0.075	0.35	0.05	0.36	0.087	0.40	2.9
60-64	0.59	0.166	0.56	0.109	0.52	0.162	0.48	5.8
65-69	0.59	0.166	0.56	0.109	0.52	0.162	0.48	5.8
70-74	0.69	0.194	0.71	0.262	0.62	0.248	0.54	9.3
75-79	0.69	0.194	0.71	0.262	0.62	0.248	0.54	9.3
80-84	0.76	0.295	0.82	0.498	0.69	0.459	0.47	26.2
85-89	0.76	0.295	0.82	0.498	0.69	0.459	0.47	26.2
90 +	0.76	0.295	0.82	0.498	0.69	0.459	0.47	26.2

Table 3: National COVID-19 infection-hospitalization rate (IHR), and COVID-19 In-Hospital Fatality Rate (IHFR) and Intensive Care mortality rate (ICMR) in the 3 study sites, by age sub-groups. Brazil, 2020 ¹ Source: Salje et al. [11]

			Parameter by site		
Parameter	Description	Goiânia GO	Porto Alegre RS	São Paulo SP	Source
pdeath_h	Probability of death hospitalized infection requiring common bed	0.295	0.498	0.459	Datasus [4]
$pdeath_icu$	Probability of death hospitalized infection requiring ICU	0.76	0.82	0.69	Datasus [4]
pdeath_hc	Probability of death hospitalized infection requiring common bed but not receiving attendance	0.80	0.80	0.80	Assumed
pdeath_icuh	Probability of death in hospitalized infection requiring ICU but receiving common bed attendance	0.97	0.97	0.97	Assumed
pdeath_icuc	Probability of death hospitalized infection requiring ICU	0.99	0.99	0.99	Assumed
nus	Duration of hospitalized infection	7.6	9.5	8.3	Datasus [4]
nu_icu	Duration of ICU infection	13.2	21.7	14.7	Datasus [4] Health's
beds_available	Number common bed	191	1096	3000	Secretary by site
icu_beds available	Number ICU bed	189	866	5000	Health's Secretary by site
$age_distribution$	Population by age groups				IBGE [8]
	0-4	84000	88650	768844	
	5-9	87000	84793	803328	
	10-14	111000	76285	682355	
	15-19	108000	106686	750345	
	20-24	123000	92060	898803	
	25-29	115000	109641	881006	
	30-34	122000	117420	983082	
	35-39	131000	121941	1027565	
	40-44	117000	105631	955037	
	45-49	104000	89660	833183	
	50-54	99000	87781	754688	
	55-59	94000	92668	678138	
	60-64	79000	83814	594097	
	65-69	53000	68434	468480	
	70-74	35000	50621	340908	
	75-79	25000	34142	198407	
	80-84	10334	16670	131116	
	85-89	10334	16670	72103	
	90 +	10334	16670	48038	

Table 4: Model Parameter Values used for analysis of COVID-19 school reopening scenarios in Goiânia, Porto Alegre and SãoPaulo, 2020

Age groups	$Population^1$	$\begin{array}{c} \text{Mortality rate} \\ \text{deaths}/1000 \text{ live births}^2 \end{array}$	Age groups	Live births ³
0-4 years	14789473	1445		
5-9 years	14540682	118		
10-14 years	15153816	143	10-14 years	8853
15-19 years	16392753	485	15-19 years	201857
20-24 years	17285630	702	20-24 years	345734
25-29 years	17062512	726	25-29 years	335131
30-34 years	17295219	816	30-34 years	295965
35-39 years	16675605	989	35-39 years	177131
40-44 years	14916472	1315	40-44 years	42099
45-49 years	13288554	1874	45-49 years	2437
50-54 years	12302879	2648	50 + years	226
55-59 years	10769470	3667		
60-64 years	8831107	5016		
65-69 years	6855834	6968		
70-74 years	4964070	9617		
75-79 years	3387785	12497		
80-84 years	2201850	50974		
85-89 years	1171537	50974		
90 + years	737781	50974		

Table 5: Demographic data used to calculate the birth and mortality rate in Brazil, 2020.
¹ Source: IBGE [8]
² Source: IBGE [9]
³ Source: IBGE [7]

Parameter	Description	Value
$\overline{n_t}$	Number of tests available at time t	Varies
$n_{t,2}$	Number of tests available at time t for second order testing	Varies
PT_i	Probability of case of compartment i being detected	Varies
Q_{cov}	Level of compliance to the contact tracing strategy	1
$ au_w$	Time window of the contact tracing strategy	2 days
E_{home}	Effectiveness of the strategy in tracing contacts from "home" environment	1
E_{school}	Effectiveness of the strategy in tracing contacts from "school" environment	1
E_{work}	Effectiveness of the strategy in tracing contacts from "work" environment	0
E_{com}	Effectiveness of the strategy in tracing contacts from "community" environment	0
O_d	Overdispersion of the contact tracing strategy	1
$Q_{eff,com}$	Effectiveness of quarantine to reduce contacts between quarantined and external individuals	0.95
Q_d	Inverse of days of quarantine $(days^{-1})$	1/10

Table 6: List of parameters used in the contact tracing model, most are variable and have values described in the main text.

		Self Isolation	
Start date	End date	Adherence	Reduction of Contacts
2020-03-24	2020-08-31	0.70	0.80
2020-09-01	2020-10-08	0.55	0.80
2020-10-09	2021-03-01	0.20	0.80
	S	ocial Distancing	
Start date	End date	Adherence	Reduction of Contacts
2020-03-18	2020-05-31	0.70	0.95
2020-06-01	2020-06-30	0.59	0.95
2020-07-01	2020-10-08	0.45	0.95
2020-10-09	2020-10-31	0.25	0.95
2020-11-01	2020-03-01	0.15	0.95
		School Closure	
Start date	End date	Adherence	Reduction of Contacts
2020-03-21	2020-10-06	0.95	1.00
2020-10-07	2020 - 12 - 17	0.80	1.00
2020-12-18	2021-03-01	0.95	1.00
		Use of Mask	
Start date	End date	Adherence	Reduction of Contacts
2020-03-19	2020-05-31	0.20	0.85
2020-06-01	2020-06-30	0.35	0.85
2020-07-01	2020-10-31	0.42	0.85
2020-11-01	2020-03-01	0.37	0.85
	V	Vork from Home	
Start date	End date	Adherence	Reduction of Contacts
2020-03-16	2020-05-31	0.60	0.95
2020-06-01	2020-06-30	0.48	0.95
2020-07-01	2020-10-08	0.36	0.95
2020-10-09	2020-10-31	0.20	0.95
2020-11-01	2021-03-01	0.15	0.95
	cocoo	oning of older ad	ılts
Start date	End date	Adherence	Reduction of Contacts
2020-03-14	2020-05-31	0.10	0.95
2020-06-01	2020-06-30	0.40	0.95
2020-07-01	2020-07-31	0.50	0.95
2020-08-01	2020-08-31	0.60	0.95
2020-09-01	2020-10-06	0.70	0.95
2020-10-07	2020-11-01	0.80	0.95
2020-11-02	2021-03-01	0.75	0.95
		Travel Ban	
Start date	End date	Mean imports	Reduction of Contacts
	0000 02 10	0.20	0.0
2020-02-19	2020-03-18	0.20	0.0

 Table 7: List of interventions used for model fitting in the case of São Paulo, SP.

	Self Isolation		
Reduction of Contacts	Adherence	End date	Start date
0.80	0.70	2020-11-14	2020-03-17
0.80	0.35	2020-03-01	2020-11-15
	ocial Distancing	S	
Reduction of Contacts	Adherence	End date	Start date
0.95	0.70	2020-04-30	2020-03-17
0.95	0.65	2020-07-13	2020-05-01
0.95	0.50	2020-08-31	2020-07-14
0.95	0.55	2020-11-14	2020-09-01
0.95	0.20	2020-03-01	2020-11-15
	School Closure		
Reduction of Contacts	Adherence	End date	Start date
1.00	0.95	2020-11-10	2020-03-18
1.00	0.80	2020-12-17	2020-11-11
1.00	0.95	2021-01-31	2020-12-18
1.00	0.30	2021-03-01	2021-02-01
	Use of Mask		
Reduction of Contacts	Adherence	End date	Start date
0.85	0.16	2020-07-13	2020-03-17
0.85	0.38	2020-08-31	2020-07-14
0.85	0.49	2020-11-14	2020-09-01
0.85	0.29	2021-03-01	2020-11-15
	Vork from Home	V	
Reduction of Contacts	Adherence	End date	Start date
0.95	0.60	2020-07-13	2020-03-20
0.95	0.48	2020-11-14	2020-07-14
0.95	0.40	2021-03-01	2020-11-15
ults	oning of older adu	cocoo	
Reduction of Contacts	Adherence	End date	Start date
0.95	0.25	2021-03-01	2020-03-14
	Travel Ban		
Reduction of Contacts	Mean imports	End date	Start date
0.0	0.20	2020-03-18	2020-02-19
0.70	0.20	2021-03-01	2020-03-19

 Table 8: List of interventions used for model fitting in the case of Goiânia, GO.

		Self Isolation	
Start date	End date	Adherence	Reduction of Contacts
2020-03-19	2020-12-18	0.70	0.80
	S	Social Distancing	
Start date	End date	Adherence	Reduction of Contacts
2020-03-17	2020-05-10	0.65	0.95
2020-05-11	2020-06-22	0.60	0.95
2020-06-23	2020-09-28	0.55	0.95
2020-09-29	2020-12-18	0.50	0.95
		School Closure	
Start date	End date	Adherence	Reduction of Contacts
2020-03-19	2020-09-07	0.95	1.00
2020-09-08	2020-12-17	0.80	1.00
2020-12-18	2021-12-18	0.95	1.00
		Use of Mask	
Start date	End date	Adherence	Reduction of Contacts
2020-03-19	2020-05-10	0.16	0.85
2020-05-11	2020-06-22	0.38	0.85
2020-06-23	2020-09-28	0.57	0.85
2020-09-29	2020-12-18	0.49	0.85
	V	Work from Home	
Start date	End date	Adherence	Reduction of Contacts
2020-03-19	2020-05-10	0.60	0.95
2020-05-11	2020-06-22	0.45	0.95
2020-06-23	2020-09-28	0.55	0.95
2020-09-29	2020 - 11 - 30	0.40	0.95
2020-12-01	2020-12-18	0.50	0.95
	cocoo	oning of older ad	ults
Start date	End date	Adherence	Reduction of Contacts
2020-03-14	2020-12-18	0.30	0.95
		Travel Ban	
Start date	End date	Mean imports	Reduction of Contacts
2020-02-19	2020-03-18	0.20	0.0
2020-03-19	2021-03-01	0.20	0.70

Table 9: List of interventions used for model fitting in the case of Porto Alegre, RS.

City	Start date	End date
São Paulo Goiânia	2020-03-22 2020-03-22	2020-12-18 2021-03-05
Porto Alegre	2020-03-22	2020-12-18

Table 10: Time interval of new hospitalizations from SIVEP-Gripe that were fitted for each city.

City	Parameter	Estimate	Std. Error	t value	Pr(> t)
São Paulo	p	0.04184	0.00010	397.8866	7.318e-155
	T_{perc}	0.55151	0.00152	362.8879	4.578e-151
	$\hat{h_{steep}}$	4.58545	0.02065	222.0186	8.082e-131
	startdate	2020-01-26			
Porto Alegre	p	0.04565	0.00019	239.8034	1.701e-107
	T_{perc}	0.48442	0.34299	1.4123	0.16209
	$\hat{h_{steep}}$	0.00243	0.00062	3.8858	0.00022
	startdate	2020-02-18			
Goiânia	p	0.02890	5.5e-05	523.3179	3.664e-166
	T_{perc}	0.72814	0.00307	237.4351	1.389e-133
	h_{steep}	15.0106	0.05038	297.9735	6.097 e-143
	startdate	2020-01-27			

 Table 11: Best fit results for each of the cities studied.

	rho	rhos	pclin young	hand eff	hand cov	selfis eff	selfis cov	dist cov	work cov	cocoon cov
Min	0	1	0.3	0.5	0.4	0.5	0.5	0.5	0.5	0.5
Max	88	100	0.7	0.99	1.25	0.99	1.25	1.25	1.25	1.25

Table 12: I	Range of	variation	of each	parameter	for	the sensitivity	analysis.
--------------------	----------	-----------	---------	-----------	-----	-----------------	-----------

startdate	p	P_{thresh}	P_{steep}	SA parameter	Best fit value	Original value	Residual	Neg loglik
2020-01-26	0.0417	0.55	4.49	-	-	-	0.00208	-798.33
2020-01-26	0.0372	0.60	4.64	rho	16.38	10.50	0.00324	-1011.15
2020-01-26	0.0416	0.58	4.7	rhos	10.15	10.0	0.00412	-987.58
2020-01-26	0.0413	0.58	4.62	pclin young	0.56	0.305	0.00284	-1023.88
2020-01-26	0.0414	0.58	4.63	mask eff	0.94	0.85	0.00313	-1014.5
2020-01-26	0.0416	0.57	4.74	self eff	0.84	0.80	0.00295	-1020.17
2020-01-26	0.041	0.60	4.63	selfis cov	1.17	1.0	0.00278	-1026.02
2020-01-26	0.042	0.61	4.58	dist cov	1.10	1.0	0.00297	-1019.73
2020-01-26	0.0417	0.53	4.67	work cov	0.93	1.0	0.00302	-1017.97
2020-01-26	0.0414	0.57	4.84	cocoon cov	1.11	1.0	0.00377	-996.1

 Table 13:
 Sensitivity analysis of the fitting for São Paulo, SP.

startdate	p	P_{thresh}	P_{steep}	SA parameter	Best fit value	Original value	Residual	Neg loglik
2020-02-18	0.0453	0.50	0	-	_	-	0.00277	-776.77
2020-02-18	0.0455	0.50	0	rho	10.78	10.50	0.00278	-776.44
2020-02-18	0.0455	0.49	0	rhos	10.14	10.0	0.00265	-779.98
2020-02-18	0.0455	0.50	0.01	pclin young	0.3	0.305	0.00266	-779.91
2020-02-18	0.0451	0.20	0.05	mask eff	0.81	0.85	0.00233	-789.71
2020-02-18	0.0432	0.51	0.02	self eff	0.53	0.80	0.00220	-794.24
2020-02-18	0.0446	0.49	0.05	selfis cov	0.87	1.0	0.00229	-791.05
2020-02-18	0.0448	0.50	0	dist cov	0.94	1.0	0.00257	-782.36
2020-02-18	0.0409	0.49	1.31	work cov	0.52	1.0	0.00228	-791.52
2020-02-18	0.0451	0.50	0	cocoon cov	0.83	1.0	0.00256	-782.59

 Table 14: Sensitivity analysis of the fitting for Porto Alegre, RS.

startdate	p	P_{thresh}	P_{steep}	SA parameter	Best fit value	Original value	Residual	Neg loglik
2020-01-27	0.0287	0.73	15.0	-	-	-	0.00224	-1012.19
2020-01-27	0.0299	0.70	22.92	rho	9.21	10.50	0.00280	-1025.46
2020-01-27	0.0299	0.71	15.07	rhos	6.56	10.0	0.00280	-1025.24
2020-01-27	0.0293	0.73	15.00	pclin young	0.590	0.305	0.00291	-1021.66
2020-01-27	0.0294	0.71	15.11	mask eff	0.87	0.85	0.00309	-1015.6
2020-01-27	0.0303	0.71	14.38	self eff	0.91	0.80	0.00288	-1022.57
2020-01-27	0.0293	0.72	14.5	selfis cov	0.99	1.0	0.00284	-1024.16
2020-01-27	0.0294	0.74	14.85	dist cov	1.03	1.0	0.00281	-1024.89
2020-01-27	0.0291	0.71	14.92	work cov	0.94	1.0	0.00282	-1024.65
2020-01-27	0.0296	0.71	14.96	cocoon cov	0.82	1.0	0.00255	-1034.54

 Table 15: Sensitivity analysis of the fitting for Goiânia, GO.