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Abstract (111 words):  

Few studies have explored the impact of rare variants (minor allele frequency, 

MAF<1%) on highly heritable plasma metabolites identified in metabolomic screens. 

The Finnish population provides an ideal opportunity for such explorations, given the 

multiple bottlenecks and expansions that have shaped its history, and the enrichment 

for many otherwise rare alleles that has resulted. Here, we report genetic associations 

for 1,391 plasma metabolites in 6,136 men from the late-settlement region of Finland. 

We identify 303 novel association signals, more than one third at variants rare or 

enriched in Finns. Many of these signals identify genes not previously implicated in 

metabolite genome-wide association studies and suggest mechanisms for diseases and 

disease-related traits. 
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Main text (3,890 words): 

The Finns are a geographically and linguistically isolated population who have 

experienced multiple population bottlenecks and expansions. This population history 

has resulted in large allele-frequency differences between Finns and non-Finnish 

Europeans (NFE), which are most pronounced in northern and eastern Finland, regions 

first settled in the 15th-16th centuries (“late settlement Finland”)1. In a previous study of 

64 cardiometabolic traits in ~20,000 individuals from these regions, we took advantage 

of the enrichment of otherwise rare alleles to identify 26 novel trait-associated rare 

deleterious alleles, 19 of which were >20-fold more frequent in late settlement Finns 

than in NFE2. These results suggested this allele-frequency enrichment could be 

leveraged to identify novel rare-variant associations for additional quantitative traits. 

Here, we do so, reporting genome-wide association study (GWAS) results for 1,391 

plasma metabolites (Metabolon platform) in 6,136 participants in METSIM, a study of 

middle-aged and older men recruited from a single site in late-settlement northeast 

Finland3, who were part of our previous study2. 

Metabolites are small molecules that play a pivotal role in cellular and 

physiological processes and their observed levels in biofluids can reflect those 

processes4. Most metabolomics studies are performed in blood (plasma or serum) 

which reflects the aggregate production and consumption of metabolites by tissues4. 

Abnormal metabolite levels are commonly associated with human diseases and 

disease-related traits, making them useful aids to understand disease mechanisms and 

to identify biomarkers for disease diagnosis, prognosis, and treatment monitoring4. 
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Many metabolites are highly heritable, and previous metabolite GWAS have identified 

common variants5-15; the impact of rare variants on metabolites is less well studied16,17. 

We identify 2,030 independent association signals (metabolite-index variant 

pairs) for 803 metabolites and demonstrate 946 genetic colocalizations of 248 

metabolites with 105 diseases and disease-related traits. Many of these associations 

identify genes not previously implicated in metabolite GWAS and suggest mechanisms 

for these diseases and traits. Of the 2,030 association signals, 303 are novel; of these 

303 signals, 111 are at 70 variants rare or >10-fold more frequent (“enriched”) in Finns 

compared to NFE, 78 are for 44 metabolites identified since 2015 on the Metabolon 

platform, and 17 are at variants on the X chromosome, which has often been ignored in 

previous metabolite GWAS. This study highlights the advantages of the Finnish 

population for rare-variant genetic association studies and the utility of integrating 

metabolite and disease genetic associations in disentangling disease mechanisms. 

 

Results 

GWAS on 1,391 metabolites. We assayed 1,544 plasma metabolites using the 

Metabolon DiscoveryHD4 mass spectrometry platform (Supplementary Tables 1-2) in 

6,136 randomly-selected METSIM participants who were non-diabetic at baseline and 

passed quality control (QC) (Supplementary Table 3; Supplementary Fig. 1). 1,391 

metabolites were successfully quantified in ≥500 of these 6,136 participants. We 

created a METSIM imputation reference panel of >26M genetic variants by integrating 

genome and exome sequence and array genotypes in 2,922 METSIM participants 
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(Methods; Supplementary Table 4). We used this reference panel to impute genotypes 

in all METSIM participants. 

We carried out GWAS across >16M variants with imputation r2≥0.3 and minor 

allele count (MAC)≥5 in the 6,136 METSIM participants for the 1,391 (correlated) 

metabolites (Methods; Supplementary Table 5; Supplementary Fig. 1). Single-variant 

association tests identified 305,555 associations at 109,368 variants for 803 metabolites 

at P<7.2×10-11=5.0×10-8/692 (Bonferroni correction for 692 principal components that 

together explained 95%15 of phenotypic variance for the 1,391 correlated metabolites; 

Methods). The GWAS p-values for each metabolite were well calibrated (genomic 

control inflation factor median=1.00, range=0.92-1.07; Supplementary Fig. 2). We built a 

multi-phenotype GWAS browser (PheWeb) (https://pheweb.org/metsim-metab/) to 

visualize and make publicly available our results for all 1,391 GWAS (Fig. 1; see 

Discussion). 

Since body mass index (BMI) influences levels of many metabolites18, we 

repeated all 1,391 GWAS with BMI as an additional covariate. Results with and without 

BMI adjustment were generally very similar, with Pearson correlation coefficient r=0.999 

for effect size estimates and -log10p-values for variant-metabolite pairs with P<7.2x10-11 

in either of the two analyses (Supplementary Fig. 3). Supplementary Table 6 lists the 83 

associations with substantially different effect sizes (ratio≥1.20) with and without BMI 

adjustment. In what follows, we present results for analyses without BMI adjustment.  

Detecting independent association signals. To identify (nearly) independent 

association signals, we carried out chromosome-wide stepwise conditional analysis for 

each chromosome-metabolite pair with ≥1 association at P<5.0×10-8. Conditional 
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analysis identified 2,030 association signals at 1,143 index variants for 803 metabolites 

at P<7.2×10-11 (Table 1; Supplementary Table 7; Supplementary Figs. 4-5). The 1,143 

index variants were of high imputation quality (r2 median=0.99, range=0.63-1.00). 311 

(27.2%) of the 1,143 index variants were associated (P<7.2×10-11) with ≥2 metabolites, 

suggesting widespread pleiotropy (Supplementary Fig. 6). Among the 1,143 index 

variants, 121 (for 125 metabolites) are rare in METSIM and 99 (for 148 metabolites) 

have MAF>10-fold greater in METSIM than in NFE (gnomAD v3.1); 58 of these variants 

are both rare and enriched in Finns (Fig. 2a; Supplementary Table 7).  

Index variants explained from 0.7% to 62.0% (median=1.4%; Supplementary Fig. 

7) of the phenotypic variance of the corresponding metabolite; 99 index variants 

explained ≥10% of the variance (Supplementary Table 8), including three missense 

variants with >10-fold greater frequency in METSIM than in NFE. For example, the 

putatively-deleterious AFMID missense variant p.Ala41Pro (rs77585764; MAF=5.4% in 

METSIM vs. 0.38% in NFE) explained 15.5% of the variance in N-formylanthranilic acid. 

AFMID encodes arylformamidase, an enzyme which catalyzes N-formylanthranilate to 

produce anthranilate and formate19.  

Fine mapping. To fine map the causal variants for the 2,030 association signals, 

we created 2 Mb regions centered on each index variant and merged overlapping 

regions associated with the same metabolite, resulting in 1,501 regions. We used 

Bayesian fine-mapping20 with a uniform prior to calculate the variant posterior inclusion 

probability (VPIP) that each variant is causal and the signal posterior inclusion 

probability (SPIP), the sum of the VPIPs for the variants in a region (Methods). This 

method can identify multiple independent signals in a region. In the 1,501 regions, we 
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identified 2,435 signals with SPIP≥0.95, 1,952 of which are among the 2,030 

association signals identified in conditional analysis. We built 95% credible sets21 of 

potential causal variants for the 1,952 signals (Fig. 3a; Supplementary Table 9). These 

credible sets included 1 to 544 variants (median=6); notably, 334 credible sets included 

only one variant (168 distinct variants). 

In each of the 1,952 credible sets, we identified the variant with the largest VPIP. 

This list comprised 1,119 distinct variants, 100 with MAF>10-fold greater in METSIM 

than in NFE. VPIPs for these 100 variants were greater than those for the remaining 

1,019 (VPIP mean=0.73 vs. 0.47; t-test P=1.7×10-21; Fig. 3b). 

Of the 1,119 variants, 263 had VPIP≥0.8 in 547 credible sets. Among these 263 

variants, 46 are rare in METSIM and 47 have MAF>10-fold greater in METSIM than in 

NFE; 28 of these variants are both rare and enriched in Finns (Supplementary Table 9). 

The 263 variants include 11 protein-truncating (PTV) and 69 missense variants across 

66 genes, and 183 other (mostly non-coding) variants (Supplementary Table 9). Given 

their likely impact on gene function, we focused on the 80=11+69 PTV and missense 

variants, which suggested causal roles for the corresponding 66 genes. These 80 

variants had VPIP≥0.8 in credible sets for 208 signals with 173 metabolites. Among the 

80 variants, 26 (5 PTV and 21 missense) are rare and 30 (6 PTV and 24 missense) 

have MAF>10-fold greater in METSIM than in NFE; 16 of these variants are both rare 

and enriched in Finns. 

Identifying novel association signals at rare and Finnish enriched variants. 

To determine which of the 2,030 association signals are distinct from previous 

metabolite GWAS findings, we repeated metabolite association analysis conditioning on 
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all variants that were (a) ≤1 Mb of the index variant and (b) previously reported as 

associated with any metabolite in a curated list of 381 publications (Methods; 

Supplementary Table 10). 303 association signals at 229 index variants remained 

significant for 201 metabolites (Pcondition<7.2×10-11; Fig. 2b; Supplementary Table 7). The 

303 novel signals included 64 signals (for 58 metabolites) at 51 rare variants and 79 

signals (for 71 metabolites) at 47 variants >10-fold more frequent in METSIM than in 

NFE (Table 2); 33 of these signals are at variants both rare and enriched in Finns 

(Supplementary Table 7). In addition, 17 signals for 16 metabolites are on the X 

chromosome, and 78 signals are for 44 metabolites identified since 2015 on the 

Metabolon DiscoveryHD4 platform.  

Multiple novel associations arose at the same index variants. For example, we 

identified novel association signals with 19 metabolites at the putatively-deleterious 

SLC23A3 missense variant p.Asn336Lys (rs192756070; Supplementary Fig. 8). 

p.Asn336Lys has 107-fold greater frequency in METSIM than in NFE (MAF=2.3% vs. 

0.022%) and is likely the causal variant for most or all 19 metabolite associations (VPIP 

median=0.98, range=0.57-1.00). SLC23A3 encodes an SLC23 ascorbic acid transporter 

without demonstrated nucleobase transport22. These novel associations suggest a wide 

range of transport functions for SLC23A3.  

Among the novel association signals at index variants enriched in Finns, we 

identified an association with 3-amino-2-piperidone at the putatively-deleterious OAT 

missense variant p.Leu402Pro (rs121965043, β=1.91, P=3.7×10-35). p.Leu402Pro has 

100-fold greater frequency in METSIM than in NFE (MAF=0.35% vs. 0.0031%) and is 

the likely causal variant for this association (VPIP=0.997). OAT encodes the key 
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mitochondrial enzyme ornithine aminotransferase which converts arginine and ornithine 

into glutamate and gamma aminobutyric acid23. OAT has not previously been implicated 

in metabolite GWAS, but inactivation of OAT is responsible for the Finnish heritage 

disease gyrate atrophy characterized by hyperornithinemia24. Previous studies have 

found increased 3-amino-2-piperidone levels in the urine of individuals with gyrate 

atrophy25.  

Among the novel association signals on the X chromosome, we identified an 

association for tiglylcarnitine at the putatively-deleterious HSD17B10 missense variant 

p.Ala95Thr (rs201378370, β=0.94, P=5.2×10-122). p.Ala95Thr has 76-fold greater 

frequency in METSIM than in NFE (MAF=2.6% vs. 0.034%) and is the likely causal 

variant for this association (VPIP=0.997). HSD17B10 encodes 17-β-hydroxysteroid 

dehydrogenase X, a mitochondrial enzyme which catalyzes oxidation of neuroactive 

steroids and degradation of isoleucine26. Mutations in HSD17B10 that abolish enzyme 

activity lead to HSD10 deficiency, an infantile neurodegenerative disorder in which 

tiglylcarnitine level is elevated27. In contrast, HSD17B10 is overexpressed in brains of 

individuals with Alzheimer’s disease28, in which tiglylcarnitine level is decreased29.  

A previous study reported an association between the GNPTAB intronic variant 

rs7964859 and aspartate15. We identified an independent aspartate association signal 

with the GNPTAB frameshift variant p.Cys528ValfsTer19 (rs1209353188) (LD r2=0.01; 

β=0.91, Pcondition=5.2×10-15 conditioning on rs7964859). p.Cys528ValfsTer19 is rare in 

METSIM (MAF=0.58%), absent in gnomAD NFE, and is the likely causal variant for the 

METSIM aspartate association (VPIP=0.996). GNPTAB encodes the alpha- and beta-
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subunits of N-acetylglucosamine-1-phosphotransferase which catalyzes the N-linked 

glycosylation of asparagine residues with mannose-6-phosphate30.  

Nominating putative causal genes. To nominate putative causal genes for 

metabolite association signals, we applied two approaches. First, we nominated 66 

putative causal genes for the 208 association signals for which fine-mapping analysis 

identified PTV or missense variants at VPIP≥0.8 (see Fine mapping). Second, we 

implemented a knowledge-based approach to integrate biological information about the 

metabolite and the 20 protein-coding genes nearest the corresponding index variant for 

the 1,666 of the 2,030 association signals with named metabolites (Methods). The 

knowledge-based approach nominated 215 single genes for 1,033 association signals 

with 480 metabolites (Supplementary Fig. 9) and 19 sets of 2 to 7 genes with similar 

biochemical activity (62 additional genes) for 324 association signals with 208 

metabolites (Supplementary Tables 7, 11). 

We compared gene nominations for the 138 metabolite association signals for 

which both approaches nominated causal genes. Compared to the fine-mapping 

analysis, the knowledge-based approach nominated the same gene for 119 signals, 

multiple paralogs including the same gene for 18, and a different gene for 1, for an 

overall consistency >99% (Supplementary Table 12). 

The 277=215+62 genes identified by the knowledge-based approach and the 66 

identified by fine mapping together comprised 290 genes. 204 (70%) of the 290 genes 

are the closest genes to the index variants, including 188 (68%) of the 277 genes 

identified by the knowledge-based approach. 58 of the 290 genes have not previously 

been implicated in metabolite GWAS (Fig. 2c). Of the 58 novel genes, 51 were identified 
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by the knowledge-based approach (Box 1), 21 by fine-mapping analysis 

(Supplementary Table 9), and 14 by both. Of the 58 novel genes, 40 represent novel 

loci and 18 are within loci in which metabolite associations have previously been 

identified but the genes we nominated have not previously been implicated. 

Novel genes nominated based on association signals with amino acid levels 

provide insight into how the encoded enzymes or transporters contribute to 

modifications of amino acid derivatives. As a first example, we identified a novel 

association at the HDAC6 missense variant p.Arg832His (rs61735967) with N6-

acetyllysine (MAF=2.9%, β=0.71, P=3.6×10-80) and suggested p.Arg832His is the likely 

causal variant (VPIP=0.998). Both the fine-mapping and knowledge-based approaches 

nominated HDAC6 as the putative causal gene. HDAC6 encodes a lysine deacetylase 

that removes the acetyl group from acetyllysine in histones. Increased HDAC6 

expression has been found in brains of individuals with Alzheimer's disease31. Elevated 

levels of N6-acetyllysine were recently found in an Alzheimer’s disease mouse model32.  

As a second example, we identified a novel association between the QPCT 

intronic variant rs77684493 and pyroglutamylglutamine (MAF=6.2%, β=-0.55, P=9.0×10-

31). rs77684493 is in near-perfect LD (r2=0.996) with the putatively-deleterious QPCT 

missense variant p.Arg54Trp (rs2255991), which was also associated with 

pyroglutamylglutamine (β=-0.54, P=1.6×10-30) and has >7-fold greater frequency in 

METSIM than in NFE (MAF=6.3% vs. 0.89%). Our knowledge-based approach 

nominated QPCT as the putative causal gene for this association. QPCT encodes the 

enzyme glutaminyl-peptide cyclotransferase, which performs cyclization of the N-

terminal glutamine residues and results in the pyroglutamine residue33. QPCT has been 
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implicated in a schizophrenia GWAS34 and suggested as a druggable target for 

Huntington’s disease35.  

GWAS of metabolites recently identified on the Metabolon platform helped 

nominate novel putative causal genes with high biochemical relevance in known 

metabolite-associated regions. For example, a previous study in a Japanese sample 

identified associations for blood creatinine and uracil levels at the LRIG1 missense 

variant p.Thr792Met (rs202007714)36, which is monomorphic in METSIM and gnomAD 

Finns. We identified an association at the nearby (13 kb) SLC25A26 missense variant 

p.Thr208Met (rs13874) with 2,3-dihydroxy-5-methylthio-4-pentenoate (DMTPA) 

(MAF=48.3%, β=0.17, P=2.3×10-21). We suggest SLC25A26 as the causal gene for the 

DMTPA association. DMTPA, an S-adenosylmethionine, was recently identified on the 

Metabolon DiscoveryHD4 platform. SLC25A26 is the only known mitochondrial S-

adenosylmethionine transporter. 

Seven of the 58 novel genes were identified only by fine mapping. Among them, 

we identified a novel association for glycocholenate sulfate at the rare ADCK5 missense 

variant p.Ala508Thr (rs552968665; β=1.31, P=3.6×10-12), which is >79-fold more 

frequent in METSIM than in NFE (MAF=0.25% vs. 0.0031%). Fine-mapping analysis 

suggested p.Ala508Thr is the likely causal variant (VPIP=0.89), implicating a causal role 

for ADCK5. ADCK5 encodes the aarF domain containing kinase 5. These results 

suggest ADCK5 plays a role in human bile acid metabolism. 

Colocalization of metabolites with human diseases. Integrating metabolite 

and disease genetic associations can improve fine-mapping resolution37 and clarify the 

potentially causal variants and disease genes. We performed Bayesian colocalization 
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analysis37,38 based on the probabilistic fine-mapping results of METSIM metabolites and 

of 980 disease and disease-related dichotomous traits (henceforth, disease traits) in 

176,899 Finns in FinnGen release 4 (Methods; Supplementary Table 13). We calculated 

the regional colocalization probability (RCP) of a putative causal variant shared between 

a METSIM metabolite and a FinnGen disease trait (Methods). We identified 946 

colocalizations involving 248 metabolites and 105 interrelated disease traits (RCP≥0.5; 

Supplementary Table 14).  

Integrating metabolite associations substantially increased the fine-mapping 

confidence of FinnGen disease trait association signals (SPIP median=0.91 vs. 0.73; 

paired t-test P=2.5×10-70) and the probability assigned to the most likely disease variant 

(maximum VPIP median=0.54 vs. 0.11; paired t-test P=9.1×10-128; Supplementary Fig. 

10). For example, the putatively-deleterious SERPINA1 missense variant p.Glu366Lys 

(rs28929474) was associated with N-acetylglucosaminylasparagine level in METSIM 

(MAF=2.3%, β=0.56, P=4.9×10-16) and risk of cholestasis of pregnancy in FinnGen 

(odds ratio (OR)=6.23, P=8.1×10-17). Our fine-mapping analysis suggested a causal role 

of SERPINA1 p.Glu366Lys for N-acetylglucosaminylasparagine (VPIP=0.81). We 

detected colocalization in this region between signals for N-

acetylglucosaminylasparagine and cholestasis of pregnancy (RCP=0.99). Colocalizing 

these association signals increased the SPIP for cholestasis of pregnancy from 0.69 to 

0.99, and the VPIP of SERPINA1 p.Glu366Lys from 0.37 to 0.80. SERPINA1 encodes a 

serine protease inhibitor produced mainly in the liver. SERPINA1 mutations have been 

associated with familial intrahepatic cholestasis39, and SERPINA1 p.Glu366Lys with 

liver diseases40 and circulating liver enzymes41.  
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Campesterol and gallstones: potential causal link. Gallstones affect 10-20% 

of adults worldwide42. Aberrant cholesterol homeostasis, particularly the physical-

chemical imbalance of cholesterol solubility in bile, induces gallstones43. Blood 

campesterol levels have been associated with gallstones44, but it is uncertain whether 

the relationship is causal. We identified associations at the ABCG8 intronic variant 

rs6544713 with lower campesterol level in METSIM (MAF=20.1%, β=-0.33, P=2.7×10-

37) and higher gallstone risk in FinnGen (OR=1.32, P=8.0×10-65). In 4,689 METSIM 

participants with observed campesterol levels, 199 with gallstones, plasma campesterol 

level was inversely associated with gallstone risk (β=-0.52, P=3.7×10-5).  

Colocalization analysis suggested campesterol and gallstones share the same 

causal variant in this region (RCP=0.65; Fig. 4a) and nominated rs6544713 (SCP=0.45) 

as the most likely causal variant. rs6544713 resides in active regulatory units in 

intestinal tissue45 and its campesterol-decreasing allele is associated with higher 

ABCG8 expression in colon tissue46 (β=0.37, P=7.2×10-16), but not in the liver46. ABCG8 

and its nearby paralog ABCG5 have previously been suggested as candidate genes for 

gallstones47. Mutations in ABCG5 and ABCG8 cause sitosterolemia, characterized by 

elevated campesterol48. 

Mendelian randomization analysis using 15 independent variants for campesterol 

suggested a causal effect of lower plasma campesterol level on higher gallstone risk 

(Methods; β=-0.70, P=7.2×10-8; Fig. 4b-c). Interestingly, we also identified a causal 

effect of gallstones on lower plasma campesterol level (β=-0.49, P=1.3×10-39) in 

Mendelian randomization analysis using 151 independent variants. ABCG5 and ABCG8 

together encode a heterodimeric ATP-binding cassette transporter that facilitates 
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secretion of cholesterol and non-cholesterol sterols in the intestine and bile. High 

plasma campesterol levels might compete with cholesterol for ABCG5/ABCG8 

transporters during biliary cholesterol secretion, resulting in decreased biliary 

cholesterol levels and reduced risk of gallstones49,50 (Supplementary Fig. 11).  

DBH influence on vanillylmandelate and hypertension: distinct pathways. 

Stepwise conditional analysis identified the putatively-deleterious DBH missense variant 

p.Arg79Trp (rs77273740) as associated with lower vanillylmandelate (β=-0.38, 

P=1.8×10-15); p.Arg79Trp is >10-fold more frequent in METSIM than in NFE (MAF=4.5% 

vs. 0.39%). Both fine-mapping and the knowledge-based approach suggested a causal 

role for DBH. The knowledge-based approach suggested DBH could exhibit an effect on 

vanillylmandelate in two ways (Supplementary Fig. 11): by converting dopamine to 

norepinephrine, a vanillylmandelate precursor51, or by transforming homovanillate acid 

to vanillylmandelate through hydroxylation52. 

In FinnGen, the DBH p.Arg79Trp vanillylmandelate-decreasing allele was 

significantly associated with lower hypertension risk (OR=0.84, P=5.2×10-13), consistent 

with previous associations with systolic and diastolic blood pressures53,54. No other 

variants were associated with FinnGen hypertension or METSIM vanillylmandelate in 

this region (P>10-6; Supplementary Fig. 12). In 5,173 METSIM participants with 

observed vanillylmandelate levels, 1,233 with hypertension, plasma vanillylmandelate 

level was associated with hypertension (β=0.52, P=3.2×10-9). 

Colocalization analysis suggested that hypertension colocalized with 

vanillylmandelate (RCP=0.996). However, Mendelian randomization found no evidence 

for a causal effect of vanillylmandelate on hypertension (P=0.15; 10 independent 
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variants; Supplementary Fig. 12) or hypertension on vanillylmandelate (P=0.17; 157 

independent variants), suggesting this signal conferred effects on hypertension risk and 

vanillylmandelate through different pathways, consistent with the two possible DBH 

effects identified by our knowledge-based approach (Supplementary Fig. 11).  

  

Discussion 

We performed GWAS of 1,391 plasma metabolites in 6,136 men from the late-

settlement region of Finland. We sought to identify putative causal variants and genes 

for the resulting genetic associations, and interrogated disease molecular mechanisms 

by integrating metabolite and disease genetic associations. We identified 2,030 

association signals for 803 metabolites, including 157 signals for 125 metabolites at 121 

rare variants. We identified 303 association signals for 201 metabolites as novel, 

including 64 signals for 58 metabolites at 51 rare variants.  

Over half of these 303 novel association signals stem from the population history 

of Finland, the analysis of previously-unstudied metabolites, or the analysis of the X 

chromosome. The Finnish population history of alternating founding events and 

population expansions has resulted in a set of genetic variants rare elsewhere but more 

common in Finns, providing increased statistical power for genetic discovery for these 

variants2, as exemplified by the Finnish heritage diseases55. 79 of the 303 novel 

association signals we identified are at 47 variants with MAF>10-fold greater in METSIM 

than in NFE, with 37 novel signals at 14 variants with MAF>100-fold greater. These 

include the novel association of 3-amino-2-piperidone with the rare OAT missense 



19 

 

variant p.Leu402Pro; mutations in OAT cause the Finnish heritage disease gyrate 

atrophy (see Results). 

 Metabolon continues to expand the set of metabolites identified on their 

platform. 78 of the 303 novel association signals were for 44 metabolites identified after 

2015 on the Metabolon DiscoveryHD4 platform, and so studied only in the most recent 

Metabolon-based metabolomics GWAS13. For example, we identified a novel 

association at SLC23A3 missense variant p.Asn336Lys for 2-O-methylascorbic acid, 

identified on the Metabolon platform in 2019. 

Our study is one of the first Metabolon metabolomics GWAS to analyze the X 

chromosome, where 17 of the 303 novel association signals arose. For example, we 

identified a novel association for tiglylcarnitine at the HSD17B10 missense variant 

p.Ala95Thr. HSD17B10 mutations cause a rare inborn error of metabolism 

characterized by cognitive impairment and variable neurological abnormalities. 

Biochemical analysis existed for decades prior to the advent of GWAS. 

Experiments linking a gene to a metabolite often already existed in the published 

literature. We identified 277 putative causal genes through existing links in the literature 

between tested metabolites and biochemical activities of genes near our association 

signals. Our results suggested most of these putative causal genes acted on the 

associated metabolites or closely-related metabolites. These putative causal genes 

characterized the genetic regulatory mechanisms for plasma metabolite levels. The 

associations of multiple metabolites with the same gene help improve the understanding 

of the gene function. For example, we nominated SLC23A3 as a causal gene for 19 
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metabolites of various biochemical classes, suggesting a wide range of transport 

functions in addition to its known role as an ascorbic acid transporter. 

Integrating metabolite and disease genetic associations helps disentangle 

disease biology. We identified 946 metabolite-disease trait pairs likely sharing the same 

causal variants, which helped pinpoint the likely causal variants and disease genes 

(Supplementary Table 14). For example, colocalization analysis of 

acetylglucosaminylasparagine and cholestasis suggested a shared causal role of 

SERPINA1 p.Glu366Lys. Mendelian randomization analysis suggested for the first time 

a protective effect of high plasma campesterol on gallstones. Plasma campesterol is 

commonly used as a biomarker for gallstones56 and campesterol is used as a 

supplement to reduce low-density lipoprotein cholesterol57. Our finding provides 

supporting evidence for these applications of campesterol in the treatment of gallstones.  

Data sharing increases the impact of genetic studies. To support data exploration 

of our metabolite GWAS results58, we have constructed a METSIM metabolite PheWeb 

site59 (Fig. 1). This site supports querying, visualizing, and downloading our METSIM 

Metabolon metabolite genetic association results, including Manhattan and quantile-

quantile plots, and summary statistics for all 1,391 metabolites. In addition, we provide 

direct links to the Human Metabolome Database (HMDB)60, which presents the 

metabolites’ biochemical characteristics and enables interpretation of metabolite genetic 

association results.  

In summary, we performed parallel GWAS for 1,391 plasma metabolites in 6,136 

adult Finnish males from the METSIM study, colocalized metabolite and disease genetic 

associations, and made these GWAS results available using PheWeb. Our findings 
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reveal genetic determinants for a wide range of plasma metabolites and demonstrate 

the utility of metabolite genetic associations for the investigation of disease biology. 
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Methods 

METabolic Syndrome In Men (METSIM) study. METSIM is a study of 10,197 

Finnish men from Kuopio in the late-settlement region of northeast Finland designed to 

investigate factors associated with type 2 diabetes and cardiovascular diseases3 

(Supplementary Table 3). Participants were aged 45 to 74 (median=58) years during 

baseline visits from 2005-2010. Participants provided demographic, diet, exercise, 

disease, and medication history information, and underwent laboratory measurements, 

including oral glucose tolerance test, after ≥10-hour overnight fast. Morbidity, mortality, 

and drug treatment information was periodically updated for participants who consented 

to use of their hospital admission, drug reimbursement, and prescription records in 

Finnish national registries. Due to funding constraints, we randomly selected 6,490 of 

the 8,777 METSIM participants who at baseline were neither diagnosed with diabetes 

nor taking diabetes medications that might broadly impact metabolomics levels for the 

Metabolon metabolomics assay. After exclusion of participants who subsequently 

developed diabetes (n=264), lacked array genotypes (n=65) or body mass index (BMI) 

measurement (n=1), had sex mismatch (n=3), and/or were non-Finnish (n=21), our 

analysis set comprised 6,136 participants (Supplementary Table 3; Supplementary Fig. 

1). This study was approved by the Ethics Committee at the University of Eastern 

Finland and the Institutional Review Board at the University of Michigan. All participants 

provided written informed consent. 

Metabolomics profiling and data processing. Non-targeted metabolomics 

profiling was performed at Metabolon, Inc. (Durham, North Carolina, USA)61 on EDTA-

plasma samples obtained after ≥10-hour overnight fast during METSIM baseline visits. 
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Briefly, methanol extraction of biochemicals followed by a non-targeted relative 

quantitative liquid chromatography–tandem mass spectrometry (LC-MS/MS) Metabolon 

DiscoveryHD4 platform was applied to assay named (n=1,240) and unnamed (n=304) 

metabolites (Supplementary Tables 1-2). Samples were randomized across batches. 

Batches contained ~144 METSIM samples and 20 well-characterized human-EDTA 

plasma samples for quality control (QC). All 6,490 samples were processed together for 

peak quantification and data scaling. We quantified raw mass spectrometry peaks for 

each metabolite using the area under the curve. We evaluated overall process 

variability by the median relative standard deviation for endogenous metabolites present 

in all 20 technical replicates in each batch. We adjusted for variation caused by day-to-

day instrument tuning differences and columns used for biochemical extraction by 

scaling the raw peak quantification to the median for each metabolite by Metabolon 

batch.  

Array genotyping and exome sequencing. All METSIM participants were array 

genotyped on the Human OmniExpress-12v1_C BeadChip (OmniExpress) and Infinium 

HumanExome-12 v1.0 BeadChip (exome array) platforms62. We excluded individuals for 

sex or relationship mismatch, apparent sample duplication, or ancestry outliers based 

on genetic principal component analysis (PCA). We removed variants with genotype call 

rate <95% (OmniExpress) or <98% (exome array), or Hardy-Weinberg equilibrium 

(HWE) P<10-6 (either array)62.  

We captured exomes for all METSIM participants by SeqCap EZ HGSC 

VCRome kit (Roche) and sequenced them by HiSeq2000 (Illumina) (average depth 

45x)2. For exome sequences, we excluded samples with estimated contamination >3% 



24 

 

or sample swaps compared to the array genotype data62 and required single-nucleotide 

variant (SNV) array genotype concordance >90% if array data were available. We 

filtered variants with genotype call rate <98%, HWE P<10−6, or overall low allele 

balance (alternate allele count/sum of total allele count <30%)2. The resulting array-

genotype dataset consisted of n=10,066 METSIM participants with 679,866 SNVs. The 

exome-sequence dataset consisted of n=9,957 participants with 583,947 SNVs and 

40,270 small insertions/deletions (indels). 

Genome sequencing. We whole genome sequenced METSIM participants in 

two waves. In wave 1, we genome sequenced 3,074 METSIM participants (average 

depth 23x)63. Genomic DNA was fragmented on a Covaris LE220 instrument and size-

selected to ensure an average insert size of 350-375 base pairs (bp). Libraries were 

constructed with the Illumina TruSeq or KAPA Hyper PCR-free library prep kit. qPCR 

was used to determine concentration of each library. Libraries were subsequently 

pooled and sequenced with 2×150 bp paired-end reads using HiSeq X (Illumina). We 

filtered read alignments with mismatch rate ≥5%, inter-chromosomal rate ≥5%, 

discordance rate of paired reads ≥5%, or haploid coverage <19.5x. We generated QC 

statistics in Picard v2.4.1 (http://broadinstitute.github.io/picard/), Samtools v1.3.164, and 

VerifyBamID v1.1.365. We called SNVs and small indels and performed base quality 

score recalibration in GATK v3.5 (https://gatk.broadinstitute.org/). We excluded variants 

with missingness >2%, HWE P<10-6 in unrelated individuals, or allele imbalance <30%. 

The resulting genome sequence consisted of n=3,074 participants genotyped for 

23,849,428 SNVs and 2,914,167 indels. We used wave 1 as part of our imputation 

reference panel (see METSIM integrative panel and genotype imputation). 
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In wave 2, we sequenced 2,875 additional METSIM participants using the same 

methods used for wave 1. We generated a combined wave 1+2 call set of n=5,949 

using the same methods, resulting in calls for 55,648,111 SNVs and 12,850,837 indels. 

Wave 2 data became available only after the main analysis for this paper was complete; 

we used wave 1+2 combined data to determine linkage disequilibrium (LD) proxies for 

previously-identified metabolite associated variants that were missing in wave 1 but 

present in wave 1+2 combined data (see Identification of novel associations). 

METSIM integrative panel and genotype imputation. Using the 3,074 

METSIM participants with wave 1 genome sequence data, we generated an integrated 

list of genetic variant sites by merging site lists from the genome and exome sequence 

data, and the OmniExpress and exome array data. Of the 3,074 participants, 3,055 had 

OmniExpress and exome array data, and 3,037 had exome sequence data. We 

calculated genotype likelihoods for each individual at each site as the product of 

genotype likelihoods assuming independent data across platforms66. For OmniExpress 

and exome array genotypes, we converted genotype calls to genotype likelihoods 

assuming a genotype error rate of 10-6. We then phased genotypes using integrated 

genotype likelihoods in Beagle v4.1 with 50,000 markers per chunk and 3,000 

overlapping genetic markers between consecutive chunks67. We subsequently excluded 

1 individual who self-identified as non-Finnish, 2 individuals identified as population 

outliers in genetic PCA, and 149 close relatives (estimated kinship ≥0.125 in KING 

v2.2.168). The resulting integrative panel comprised 2,922 individuals genotyped for 

23,294,337 SNVs and 2,851,848 indels (Supplementary Table 4). 2,670 (91.4%) of the 

2,922 individuals had Metabolon metabolomics data.  
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We imputed genotypes for the 6,490 study participants on the framework of their 

OmniExpress genotypes using the METSIM integrative panel with Minimac v469. We 

excluded imputed variants with imputation r2<0.3, leaving 19,182,997 SNVs and 

2,404,717 indels for downstream analysis (Supplementary Table 5).  

Variant functional annotation. We annotated all variants using the Ensembl 

Variant Effect Predictor (VEP) version 9970. We used the “-pick_order” option to 

annotate each variant using a single transcript, with transcripts prioritized in the 

following order: transcript support level (i.e. well-supported and poorly-supported 

transcript models based on the type and quality of the alignments used to annotate the 

transcript), transcript biotype (protein coding preferred), APPRIS isoform annotation (i.e. 

annotation based on a range of computational methods to identify the most functionally 

important transcripts from cross-species conservation), deleteriousness of annotation as 

estimated by Ensembl, transcript CCDS status (i.e. amount and type of evidence that 

supports the existence of a variant), canonical status of transcript 

(https://m.ensembl.org/Help/Glossary), and transcript length71. We used the dbNSFP 

(version 4.0)72 plugin to generate additional predictions of variant deleteriousness from 

five in silico algorithms: Polyphen2 HDIV73, Polyphen2 HVAR73, SIFT4G74, 

MutationTaster75, and the Likelihood Ratio Test (LRT)76. 

Trait transformation. For each metabolite, we inverse normalized the 

Metabolon-reported metabolite level, regressed on covariates (age at sampling, 

Metabolon batch, and lipid-lowering medication use status for lipid traits only), and 

inverse normalized the residuals. In the single-variant association analyses with BMI 

adjustment, we also included BMI among the covariates. 
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Single-variant association analysis. We carried out single-variant association 

tests using a linear mixed model in EPACTS (v3.2.6) 

(https://github.com/statgen/EPACTS) on the normalized residual metabolite values. We 

limited analysis to the 1,391 metabolites successfully measured on ≥500 METSIM 

participants and to the genetic variants with minor allele count (MAC)≥5. This resulted 

in 10,914,098 to 16,172,108 variants (median=16,042,879) tested across the 1,391 

metabolites, since the number of variants with MAC≥5 varied with the set of individuals 

successfully measured for each metabolite.  

To choose a study-wise significance threshold for the 1,391 parallel metabolite 

GWAS, we carried out PCA across the metabolites to determine the number of principal 

components required to explain metabolite variation. To account for missing data 

(Supplementary Fig. 13), we first imputed missing metabolite values using the K-nearest 

neighbors approach77 with K=5. PCA of the imputed data showed that 692 principal 

components explained 95% of phenotypic variation for the 1,391 metabolites. We 

therefore used a study-wise significance threshold of P<5.0×10-8/692=7.2×10-11 for our 

single-variant analyses. A metabolite quantified in n=500 participants provided >80% 

power at P<7.2×10-11 to detect variants that explained phenotypic variance≥11% and 

had MAC≥5. 

PheWeb browser. We built a PheWeb browser59 of the 1,391 metabolite GWAS 

to support interactive visualization, exploration, and download of these results. This 

PheWeb (https://pheweb.org/metsim-metab/) includes Manhattan and quantile-quantile 

plots, summary statistics, and links to biochemical characteristics and functions in the 

Human Metabolome Database (HMDB)60 for all 1,391 metabolites.  



28 

 

Stepwise conditional analysis. We carried out stepwise conditional analysis in 

EPACTS (v3.2.6) (https://github.com/statgen/EPACTS) to identify near-independent 

association signals. For each metabolite-chromosome pair with at least one single-trait 

genome-wide significant association (P<5.0×10-8), we first conditioned on the most 

significant associated variant and continued conditioning on the most significant 

remaining variant until no variant attained P<5.0×10-8. 

Fine mapping and credible sets. For each of the 2,030 nearly-independent 

association signals, we built genomic regions of 1 Mb on either side of the index variant, 

less near chromosome ends. We merged overlapping regions for the same metabolite, 

resulting in 1,501 genomic regions of 1.2 to 3.1 Mb. To identify potential causal variants 

within each region, we performed fine-mapping analysis using the Deterministic 

Approximation of Posteriors (DAP-g) method20 (https://github.com/xqwen/dap), 

assigning equal priors to all candidate variants. DAP-g uses individual-level metabolite, 

genotype, and covariate data to produce fine-mapping results. Since DAP-g does not 

allow for related participants, we corrected for relatedness approximately by including 

the first ten genetic principal components as covariates; repeating the DAP-g analysis 

with 0, 20, or 100 principal components yielded similar results. 

DAP-g allows for multiple independent association signals within each region. 

For each identified signal, DAP-g computes (1) a signal posterior inclusion probability 

(SPIP) that there is at least one causal variant in the signal; and (2) a posterior inclusion 

probability for each variant (VPIP) that the variant is causal for the signal. For each of 

the 1,952 signals identified in stepwise conditional tests that had SPIP≥0.95 in DAP-g, 
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we constructed a 95% credible set of potential causal variants by ranking the variants in 

descending VPIP and including variants until their summed VPIP was ≥0.95.  

Identification of novel associations. To assess which of our metabolite 

associations were novel, we compiled a list of 381 published metabolite GWAS papers 

(Supplementary Table 10): 354 from the NHGRI-EBI GWAS catalog78 

(https://www.ebi.ac.uk/gwas/; release date December 1, 2020); and 27 others from the 

list curated by Kastenmüller et al.11 (accessed April 1, 2021). From these papers, we 

identified 8,502 variants with metabolite associations at P<5.0×10-8 or at the significance 

threshold used in the paper, whichever was more stringent (Supplementary Table 10). 

Among these 8,502 published variants, 7,807 were present in the METSIM imputed 

genotype data. For 194 of the published variants not present in the METSIM imputed 

genotype data, we identified proxies (LD r2≥0.8 and ≤500 kb) using the wave 1+2 

genome sequence dataset of 5,949 METSIM participants. The 7,807 variants present in 

the METSIM imputed genotype data and the 194 LD proxies for missing variants 

together comprised 8,000 unique variants. To avoid problems with multicollinearity, we 

pruned these 8,000 variants at METSIM LD r2>0.99 and ≤1 Mb, yielding 6,501 LD-

pruned variants. Then, for each of the 2,030 association signals, we repeated the 

conditional association analysis including the subset of these LD-pruned variants within 

≤1 Mb of the corresponding index variant as covariates. We considered as novel signals 

those index variants with conditional P<7.2×10-11 and location >500 kb from any of the 

8,502-7,807-194=501 published variants, which were neither present nor with proxies in 

the METSIM imputed genotype data. Among the 501 variants, 380 were monomorphic 

in gnomAD v3.1 Finns (n=5,316).  
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Knowledge-based approach to gene nomination. To nominate putative causal 

genes for the 1,666 of 2,030 signals associated with named metabolites, we employed 

a two-stage knowledge-based approach15. In stage 1, for each variant, we identified the 

20 closest protein-coding genes using the minimum distance from the index variant to 

the refSeq genes’ transcription start or end sites. We employed an algorithm to look for 

lexical overlaps between the associated metabolite and each of the 20 genes. 

Specifically, we searched automatically for matching strings using customized scripts 

between: (1) the HMDB60 metabolite name and synonyms and Entrez gene names79; 

(2) the metabolite and Entrez gene names listed in HMDB as interacting with the 

metabolite; (3) the metabolite name and Uniprot protein names75 and their synonyms; 

(4) the metabolite and its parent classes as defined in HMDB and the Uniprot protein 

names and their synonyms; (5) the metabolite name and rare disease names linked to 

each gene in OMIM (Online Mendelian Inheritance in Man, https://omim.org/, accessed 

January 1, 2021) after removing the non-specific substrings uria, emia, deficiency, 

disease, transient, neonatal, hyper, hypo, defect, syndrome, familial, autosomal, 

dominant, recessive, benign, infantile, hereditary, congenital, early-onset, idiopathic; (6) 

the metabolite and its parent classes and Gene Ontology (GO) biological process 

names80 associated with each gene after removing the non-specific substrings 

metabolic process, metabolism, catabolic process, response to, positive regulation of, 

negative regulation of, regulation of (we only considered gene sets of <500 genes); and 

(7) Kyoto Encyclopedia of Genes and Genomes (KEGG)81 maps (https://www.kegg.jp/) 

containing the metabolite (as defined in HMDB) and KEGG maps containing each gene 

(as defined in KEGG) omitting the large “metabolic process map”. For each of these 
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pairs of terms, we calculated a Pair Distance score ranging from 0 to 1 using the Ruby 

gem “fuzzy_match” (https://github.com/seamusabshere/fuzzy_match), and considered a 

score >0.5 as a match. 

In stage 2, we manually reviewed the evidence collected at stage 1. We selected 

the biologically most plausible causal gene if we identified experimental evidence linking 

the gene to the metabolite. >1 putative causal genes could be nominated if >1 gene was 

suggested in stage 1 and/or 2; this happened most often when a locus contains multiple 

paralogs with similar biochemical activity. If no clear experimental evidence existed for 

any of the 20 genes, no causal gene was selected.  

Colocalization of FinnGen disease traits and METSIM metabolites. To 

identify shared causal variants between METSIM metabolites and FinnGen disease 

traits, we carried out Bayesian pairwise colocalization analysis using fastENLOC37,38 

(https://github.com/xqwen/fastenloc). We downloaded FinnGen release 4 

(https://www.finngen.fi/en/access_results) FINEMAP82-based fine-mapping results for 

980 disease traits with at least one association at P<5.0×10-8. fastENLOC used these 

FinnGen fine-mapping results and our DAP-g-based fine-mapping results for METSIM 

metabolites to carry out colocalization analysis assuming a single causal variant. For 

each FinnGen disease trait, we estimated its degree of enrichment for genome-wide 

associations in metabolite GWAS using TORUS83 (https://github.com/xqwen/torus) and 

used this enrichment estimate as the prior for Bayesian analysis in fastENLOC. 

fastENLOC computes two probabilities. The regional colocalization posterior probability 

(RCP) is the probability of the same causal variant within a region for both the 

metabolite and the FinnGen disease trait. The variant colocalization posterior probability 
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(SCP) is the probability a specific variant is causal for both traits. We limited 

colocalization analysis to the 1,952 metabolite stepwise association signals with 

SPIP≥0.95 for 792 metabolites and present colocalizations for metabolite-FinnGen 

disease trait pairs with RCP≥0.5 (Supplementary Table 14). 

Associations of campesterol with gallstones and vanillylmandelate with 

hypertension in METSIM. Among the 4,698 METSIM participants with measured 

plasma campesterol level at baseline, we identified 199 with gallstones in METSIM 

(December 2020). To test for association between plasma campesterol level and 

presence of gallstones, we used logistic regression with covariates baseline study age, 

Metabolon batch, and lipid medication use. Among the 5,173 METSIM participants with 

measured plasma vanillylmandelate level at baseline, we identified 1,233 individuals 

with hypertension, and used logistic regression with covariates baseline study age, 

Metabolon batch, and hypertension medication use to test for association between 

plasma vanillylmandelate level and hypertension status. 

Causal effects between metabolites and FinnGen disease traits. To infer the 

potential causal effects of plasma campesterol on FinnGen gallstones (phenocode: 

K11_CHOLELITH) and plasma vanillylmandelate on hypertension (phenocode: 

I9_HYPTENS), we applied four two-sample Mendelian randomization methods: inverse 

variance weighted84, weighted median85, MR-PRESSO86, and MR-Egger87. These 

methods make different assumptions and use different strategies to account for 

horizontal pleiotropy, which can result in false positive inference of causality. For each 

metabolite, we identified nearly-independent genetic instrument variables (LD r2<0.1, 

distance≥500 kb) with unconditional single-variant association P<10-6. We also ran 
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Mendelian randomization analyses to infer the causal effect of FinnGen gallstones 

(phenocode: K11_CHOLELITH) on campesterol and FinnGen hypertension 

(phenocode: I9_HYPTENS) on vanillylmandelate in a similar way. We considered 

findings significant if they had the same effect direction and P<0.05 for all four 

Mendelian randomization methods. We present MR-PRESSO effect estimate and p-

values in the main text.  
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Figure legends 
 
Figure 1: Our METSIM Metabolomics PheWeb facilitates the characterization of genetic 
associations and gene activities. a) Manhattan plot for N-acetylkynurenine highlighting the roles 
of the associated genes (https://pheweb.org/metsim-metab/pheno/C100006378). Chemical 
structure for N-acetylkynurenine and activities for the associated genes are added manually on 
top of the Manhattan plot. b) Stacked PheWeb plots show significant associations between 
rs6705977 (NAT8, https://pheweb.org/metsim-metab/variant/2:73622043-C-G) and fifteen N-
acetylated molecules, and the more restricted set of associations between rs948445 (ACY3, 
https://pheweb.org/metsim-metab/variant/11:67647021-C-T) and four N-acetylated aromatic 
amino acids. LI: lipid; XE: xenobiotics; AA: amino acid; CA: carbohydrate; NU: nucleotide; PE: 
peptide; CV: cofactor and vitamin; EN: energy; PC: partially characterized; UN: unnamed.  
 
Figure 2: Characterization of the 2,030 significant metabolite genetic association signals in the 
6,136 METSIM participants with Metabolon metabolomics data. Comparison of MAFs for the 
1,143 index variants between METSIM and non-Finnish Europeans in gnomAD v3.1; index 
variants are colored a) purple if MAF>10-fold greater in METSIM than in non-Finnish 
Europeans; or b) blue they represent novel association signals. The dashed line is of slope one 
through the origin. c) Overlaid Manhattan plots of the 1,391 metabolite GWAS. The red dashed 
line depicts P=7.2x10-11. The associations at 40 novel putative causal genes within novel 
regions (blue) and 18 novel putative causal genes within previously reported regions (maize) 
are highlighted. The seven novel putative causal genes implicated only by fine-mapping 
analysis are starred. HADHA/B represents the HADHA and HADHB genes and ARSD/L the 
ARSD and ARSL genes. 
 
Figure 3: The 1,952 of the 2,030 metabolite genetic association signals identified in stepwise 
conditional tests with SPIP≥0.95 in DAP-g Bayesian fine mapping. a) Numbers of variants in the 
95% credible sets and distribution of variant posterior inclusion probabilities (VPIPs) for the 
most likely causal variants within the 95% credible sets. b) Density plot of largest VPIPs 
highlights the variants with >10-fold greater frequency in METSIM than non-Finnish Europeans 
(gnomAD v3.1; blue) have larger VPIPs than all other variants (maize).  
 
Figure 4: Colocalization and causal relationship between campesterol and gallstones. a) 
Stacked regional association plots for campesterol and gallstones (cholelithiasis, 
K11_CHOLELITH in FinnGen release 4) in the ABCG5/ABCG8 region. The index variants 
identified in stepwise conditional analysis (campesterol) and approximate conditional analysis 
(gallstones) are labeled and variants colored by their linkage disequilibrium (LD) to the index 
variant with which they are in strongest LD in METSIM. The campesterol signal (index variant 
rs6544713) is colocalized with the gallstone signal (rs4299376, pairwise LD r2=0.993, 
RCP=0.65) shown in the gray box. In contrast, no colocalization was detected between the 
signals indexed by rs4614977 and rs11887534. No coding variants within 1 Mb have LD r2>0.2 
with rs6544713 in METSIM. b) Comparison of effect sizes for the 15 instrumental variables 
genome-wide without significant heterogeneity (P>0.05) used in Mendelian randomization 
analysis between campesterol and gallstones. rs6544713 is in blue. The slope of the blue 
dashed line depicts the estimated causal effect size of campesterol on gallstones. The Egger 
regression intercept is deemed not significant (P=0.15). c) Negative relationship between 
instrumental variable and risk of gallstones. OR: odds ratio.  
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Table 1: Summary of the 2,030 genetic association signals by metabolite biochemical class 

Biochemical class 
and abbreviation 

Metabolites   Association signals   

Total Significant   Total  Novel   

Lipid (LI) 548 357   903 74   

Amino acid (AA) 215 154   441 73   

Xenobiotics (XE) 163 52   91 16   

Nucleotide (NU) 42 26   65 29   

Peptide (PE) 42 18   28 7   

Cofactors and vitamins (CV) 38 25   69 27   

Carbohydrate (CA) 25 20   38 7   

Energy (EN) 10 4   11 3   

Partially characterized (PC) 16 8   20 1   

Unnamed (UN) 292 139   364 66   

Total 1,391 803   2,030 303   

Significant: number of metabolites with at least one association signal with P<7.2×10-11. 
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Table 2: 79 significant metabolite genetic association signals at 47 novel variants with MAF>10-fold greater in METSIM than in 
gnomAD v3.1 non-Finnish Europeans 

Metabolite ID Biochemical name Class Chr:Pos EA/NEA rsID N MAF(%) MAFNFE(%) RMAF β P Putative 
causal gene 

C999917676 X – 17676 UN 1:18874480 G/C rs200711248 4,817 0.321 0.009 34.5 1.18 5.40E-11 - 
C825 Uracil NU 1:97291353 T/C rs1254152519 5,730 0.613 0.002 395.2 1.33 5.39E-28 DPYD 

C100008954 palmitoyl dihydrosphingomyelin (d18:0/16:0) LI 1:224189697 C/G rs752521494 6,114 0.190 0.000 ∞ 1.91 2.53E-14 DEGS1 
C999912127 X – 12127 UN 2:6887157 A/G rs189344406 3,352 0.302 0.006 48.7 -1.75 3.27E-14 - 
C100001269 Campesterol LI 2:44319310 A/G rs1247627279 4,698 0.362 0.003 116.8 1.11 5.26E-11 ABCG5|ABCG8 
C100000015 Xanthurenate AA 2:143042078 C/T rs199546957 5,976 0.151 0.000 ∞ 2.07 4.96E-18 KYNU 
C100002514 hydantoin-5-propionate AA 2:200637007 A/G rs144419430 5,148 0.928 0.015 59.9 -0.76 2.16E-13 unknown 
C100000039 methionine sulfoxide AA 2:219163470 T/A rs192756070 6,136 2.915 0.022 134.4 -0.72 1.77E-39 SLC23A3 
C100000295 Tartarate XE 2:219163470 T/A rs192756070 6,020 2.929 0.022 135.1 -0.38 4.11E-12 SLC23A3 
C100000808 cysteine s-sulfate AA 2:219163470 T/A rs192756070 5,774 3.032 0.022 139.8 0.62 2.39E-29 SLC23A3 
C100000840 tartronate (hydroxymalonate) XE 2:219163470 T/A rs192756070 6,126 2.912 0.022 134.3 -0.97 7.57E-71 SLC23A3 
C100000841 oxalate (ethanedioate) CV 2:219163470 T/A rs192756070 6,136 2.915 0.022 134.4 -1.05 1.77E-83 SLC23A3 
C100001022 Threonate CV 2:219163470 T/A rs192756070 6,132 2.917 0.022 134.5 -0.68 1.43E-35 SLC23A3 
C100002466 cysteinylglycine disulfide AA 2:219163470 T/A rs192756070 6,136 2.915 0.022 134.4 0.45 2.51E-16 SLC23A3 
C100002537 4-hydroxy-2-oxoglutaric acid LI 2:219163470 T/A rs192756070 5,865 2.937 0.022 135.5 -0.46 2.23E-16 SLC23A3 
C100003258 2-O-methylascorbic acid CV 2:219163470 T/A rs192756070 6,136 2.915 0.022 134.4 -0.47 3.94E-17 SLC23A3 
C100009232 Thioproline XE 2:219163470 T/A rs192756070 6,136 2.915 0.022 134.4 0.44 1.62E-15 SLC23A3 
C100009329 ascorbic acid 2-sulfate CV 2:219163470 T/A rs192756070 6,079 2.917 0.022 134.5 -0.39 1.27E-12 SLC23A3 
C100020409 ascorbic acid 3-sulfate CV 2:219163470 T/A rs192756070 6,133 2.916 0.022 134.5 -0.42 4.61E-14 SLC23A3 

C1052 Glycerate CA 2:219163470 T/A rs192756070 6,132 2.917 0.022 134.5 -1.07 8.04E-85 SLC23A3 
C279 cysteine AA 2:219163470 T/A rs192756070 6,136 2.915 0.022 134.4 0.53 8.82E-22 SLC23A3 

C999914056 X – 14056 UN 2:219163470 T/A rs192756070 6,136 2.915 0.022 134.4 0.60 9.09E-28 - 
C999915674 X – 15674 UN 2:219163470 T/A rs192756070 3,632 2.662 0.022 122.8 -0.58 8.37E-15 - 
C999916964 X – 16964 UN 2:219163470 T/A rs192756070 6,104 2.930 0.022 135.1 0.45 1.02E-16 - 
C999922771 X – 22771 UN 2:219163470 T/A rs192756070 6,132 2.916 0.022 134.5 0.44 9.69E-16 - 
C999924432 X – 24432 UN 2:219163470 T/A rs192756070 3,826 2.322 0.022 107.1 -0.64 2.79E-16 - 
C999915666 X – 15666 UN 2:219314517 G/A rs140758280 6,123 4.073 0.376 10.8 -0.42 1.40E-19 - 
C999924475 X – 24475 UN 3:45796383 A/G rs202158371 5,309 0.814 0.012 65.6 -0.91 9.61E-17 - 
C100005864 methyl glucopyranoside (alpha + beta) XE 4:23134756 C/G rs186284085 5,823 1.370 0.008 176.7 0.69 9.41E-20 GBA3 
C100020377 ethyl beta-glucopyranoside XE 4:23134756 C/G rs186284085 6,070 1.358 0.008 175.2 0.62 1.99E-16 GBA3 
C999912844 X – 12844 UN 4:69480762 A/G rs200280202 6,131 1.436 0.034 42.1 -0.83 5.21E-26 - 

C1215 N-acetylglucosaminylasparagine CA 4:177436152 G/C rs561604250 4,697 0.668 0.008 86.3 0.97 1.16E-14 AGA 
C100002009 5alpha-pregnan-3beta,20beta-diol monosulfate (1) LI 5:35957220 G/A rs141884785 5,483 1.374 0.073 18.9 0.54 1.04E-11 UGT3A1 
C999924544 X – 24544 UN 5:35957220 G/A rs141884785 5,798 1.320 0.073 18.1 0.76 1.74E-22 - 

C1256 Choline LI 5:135871459 G/A rs200164783 6,135 2.634 0.136 19.3 0.70 2.32E-33 unknown 
C503 Serine AA 7:66770240 G/T rs1297328831 6,134 0.162 0.002 104.6 -1.64 6.82E-13 unknown 

C100001293 N-acetylhistidine AA 7:101173434 T/C rs146438324 5,984 0.946 0.057 16.5 1.51 1.71E-61 NAT16 
C100002528 Sulfate XE 7:123128887 T/C rs138989506 6,136 1.910 0.029 64.9 -1.41 1.55E-99 SLC13A1 
C999926054 X – 26054 UN 7:134566237 A/G rs976212663 3,104 0.231 0.019 12.4 -2.08 3.52E-15 - 
C100001426 3-(3-amino-3-carboxypropyl)uridine NU 8:123302741 C/T rs149926554 5,446 2.898 0.175 16.6 0.43 7.97E-14 unknown 

C1021 5-oxoproline AA 8:144051778 A/C rs782359519 6,136 0.854 0.019 45.8 0.92 1.43E-24 OPLAH 
C93 alpha-ketoglutarate EN 8:144349144 A/C rs191616586 6,133 3.113 0.195 15.9 -0.45 7.65E-17 unknown 

C1021 5-oxoproline AA 8:144352727 A/G rs558946866 6,136 0.442 0.034 13.0 0.99 4.54E-15 OPLAH 
C100001989 glycocholenate sulfate LI 8:144392777 A/G rs552968665 6,135 0.245 0.003 79.1 1.31 3.59E-12 unknown 
C100004182 3b-hydroxy-5-cholenoic acid LI 8:144392777 A/G rs552968665 4,671 0.297 0.003 95.9 1.50 9.43E-14 unknown 
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C100006370 3beta-hydroxy-5-cholestenoate LI 8:144392777 A/G rs552968665 6,135 0.245 0.003 79.1 1.55 8.62E-16 unknown 
C100020361 3-amino-2-piperidone AA 10:124398057 G/A rs121965043 6,128 0.346 0.003 111.7 1.91 3.73E-35 OAT 

C444 Ornithine AA 10:124398057 G/A rs121965043 6,136 0.346 0.003 111.7 1.68 1.63E-27 OAT 
C100001662 Deoxycarnitine LI 11:24918496 C/T rs1268699195 6,134 0.577 0.002 372.3 0.90 1.25E-12 unknown 
C100003271 beta-citrylglutamate AA 11:90808240 A/G rs182295429 6,133 4.615 0.064 72.6 0.52 3.73E-28 NAALAD2 

C799 Betaine AA 12:300510 G/A rs1358634021 6,133 0.093 0.005 20.0 2.43 1.56E-16 SLC6A12 
C1215 N-acetylglucosaminylasparagine CA 12:101766121 A/AG rs1209353188 4,697 0.524 0.000 ∞ -0.98 2.77E-11 GNPTAB 
C234 Aspartate AA 12:101766121 A/AG rs1209353188 6,135 0.578 0.000 ∞ 0.91 9.92E-14 GNPTAB 

C100001948 succinylcarnitine (C4-DC) EN 15:63141403 C/G rs200127857 6,117 0.342 0.005 73.6 2.20 2.37E-45 LACTB 
C100001948 succinylcarnitine (C4-DC) EN 15:63141626 A/G rs200480788 6,117 0.104 0.005 22.4 2.40 3.96E-19 LACTB 
C100000054 5-hydroxylysine AA 15:78513293 G/A rs201135688 5,918 4.513 0.447 10.1 0.39 6.83E-22 HYKK 
C999917676 X – 17676 UN 16:21040189 C/G rs185603444 4,817 1.983 0.184 10.8 -0.60 5.56E-16 - 
C100001416 Orotidine NU 17:75130818 T/A rs201899452 5,631 0.143 0.002 92.3 -1.80 2.41E-13 NT5C 
C100004561 N-formylanthranilic acid AA 17:78191027 C/G rs77585764 5,910 5.407 0.378 14.3 1.24 9.55E-218 AFMID 
C100006378 N-acetylkynurenine (2) AA 17:78191027 C/G rs77585764 5,284 5.593 0.378 14.8 0.41 5.58E-23 AFMID 
C999924455 X – 24455 UN 17:78191027 C/G rs77585764 5,871 5.281 0.378 14.0 0.45 2.31E-27 - 
C100002106 sphingomyelin (d18:1/18:1, d18:2/18:0) LI 19:8261758 A/G rs527480139 6,128 0.330 0.000 ∞ -1.41 2.51E-19 CERS4 
C100001882 glycosyl-N-stearoyl-sphingosine (d18:1/18:0) LI 19:18896239 T/G rs1013893365 5,348 2.956 0.046 64.2 1.25 2.17E-106 CERS1 
C999911315 X – 11315 UN 19:35811961 A/C rs201742362 6,092 1.134 0.033 34.9 1.43 1.62E-61 - 
C100003258 2-O-methylascorbic acid CV 22:19962740 T/G rs6267 6,136 5.778 0.142 40.6 -0.82 9.49E-108 COMT 
C999912707 X – 12707 UN 22:19962740 T/G rs6267 5,355 5.808 0.142 40.8 0.35 6.70E-16 - 
C999912713 X – 12713 UN 22:19962740 T/G rs6267 2,255 5.410 0.142 38.0 -0.52 5.51E-15 - 
C100003258 2-O-methylascorbic acid CV 22:19963596 G/A rs199637204 6,136 0.098 0.005 21.1 -1.87 1.49E-12 COMT 
C100008998 gamma-tocopherol/beta-tocopherol CV 22:30416033 A/G rs182488695 6,108 1.548 0.008 199.9 0.89 7.37E-33 SEC14L2 
C100015735 ceramide (d18:1/14:0, d16:1/16:0) LI 22:30416033 A/G rs182488695 4,895 1.565 0.008 202.1 0.55 2.71E-11 unknown 

C1105 alpha-tocopherol CV 22:30416033 A/G rs182488695 6,135 1.549 0.008 200.1 0.61 2.51E-16 SEC14L2 
C100001664 N6-succinyladenosine NU 22:40361505 C/T rs8192461 3,743 1.175 0.073 16.1 1.12 9.38E-27 ADSL 
C100001664 N6-succinyladenosine NU 22:40364370 C/G rs773404017 3,743 0.414 0.006 66.8 2.55 2.30E-44 ADSL 
C100001446 5-methyluridine (ribothymidine) NU 22:50510801 G/C rs548223694 6,136 0.448 0.039 11.6 1.36 9.47E-27 TYMP 
C100001446 5-methyluridine (ribothymidine) NU 22:50526407 T/G rs756647111 6,136 0.119 0.000 ∞ 2.04 2.35E-14 TYMP 

C536 2'-deoxyuridine NU 22:50623176 T/G rs556167510 4,348 0.601 0.042 14.4 1.07 2.45E-14 TYMP 
C100001597 tiglylcarnitine (C5:1-DC) AA X:53432321 T/C rs201378370 6,095 2.584 0.034 76.7 0.94 5.21E-122 HSD17B10 
C100002458 3-methylglutaconate AA X:53432321 T/C rs201378370 6,132 2.568 0.034 76.3 0.30 2.79E-13 HSD17B10 

C1161 Tigloylglycine AA X:53432321 T/C rs201378370 1,581 4.186 0.034 124.3 0.81 2.92E-39 HSD17B10 

Metabolite ID: Metabolon metabolite chemical ID. Biochemical name: biochemical name of the metabolite. Class: biochemical class of the 
metabolite. Chr:Pos: chromosome and base pair position in genome build 38. EA and NEA: effect and non-effect allele. rsID: dbSNP variant ID. N: 
number of METSIM participants assayed and passing quality control for this metabolite. MAF, MAFNFE, and RMAF: minor allele frequency in 
METSIM, in gnomAD v3.1 non-Finnish Europeans, and their ratio. When the index variant is monomorphic in gnomAD v3.1 non-Finnish 
Europeans (n=34,029), the ratio is labeled as infinite, ∞. β: effect size estimate from the metabolite-specific stepwise conditional association test. 
P: p-value of metabolite-specific stepwise conditional association test. Putative causal gene: the putative causal gene(s) nominated in the 
knowledge-based approach. For unnamed metabolites, the putative causal gene results are represented by "-". If no putative causal gene is 
nominated, it is labeled as “unknown”. If multiple putative causal genes are nominated, they are separated by a vertical bar.  
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Box 1: Primary supportive biochemical evidence for the 51 novel putative causal genes 
nominated in the knowledge-based approach 

ADSL (N6-succinyladenosine, NU, rs773404017): ADSL encodes adenylosuccinate lyase which 
converts adenylosuccinate to adenosine monophosphate. N6-succinyladenosine is the 
dephosphorylated version of adenylosuccinate. Rare loss of function of this enzyme results in 
elevated circulating N6-succinyladenosine levels (PMID: 5432795). 
ALDH4A1 (S-1-pyrroline-5-carboxylate, AA, rs61757683): ALDH4A1 encodes delta-1-pyrroline-5-
carboxylate dehydrogenase which converts pyrroline-5-carboxylate to glutamate in the breakdown 
of proline (PMID: 2211729). 
ALDH7A1 (6-oxopiperidine-2-carboxylate, AA, rs79449010): ALDH7A1 encodes an aldehyde 
dehydrogenase which produces alpha-aminoadipic acid in the pipecolic acid pathway of lysine 
catabolism. Alpha-aminoadipic acid can be cyclized to form 6-oxopiperidine-2-carboxylic acid 
though the mechanism in human is unknown (PMID: 16491085|9544928). 
AOX1 (7-methylguanine, NU, rs77225800): AOX1 encodes an aldehyde oxidase which can act on 
many substrates including purines. 7-methylguanine is a substrate (PMID: 5044040). 
AQP10 (arabonate/xylonate, CA, rs6702754): AQP10 encodes an aquaglyceroporin which 
transports water, glycerol and larger molecules including xylitol (PMID: 21733844). 
ARSD|ARSL (ascorbic acid 3-sulfate, CV, rs1637781): ARSD|ARSL encode a pair of aryl 
sulfatases. The homologs ARSA and ARSB act on ascorbic acid 2-sulfate. Ascorbic acid 3-sulfate 
is a plausible substrate for one or both proximal enzymes (PMID: 28257906|33715). 
CDO1 (hypotaurine, AA, rs10038137): CDO1 encodes cysteine dioxygenase which catalyzes the 
first step in the conversion of cysteine to hypotaurine (PMID: 2307). 
CERS1 (glycosyl-N-stearoyl-sphingosine (d18:1/18:0), LI, rs1013893365): CERS1 encodes a 
ceramide synthase with specificity for C18 fatty acids. Sphingomyelins can be synthesized from 
ceramides (PMID: 12105227). 
CHKA (choline phosphate, LI, rs7940113): CHKA encodes choline kinase. Choline phosphate is 
the product of the reaction (PMID: 4373031). 
CRYL1 (mannonate, XE, rs9552189): CRYL1 encodes an enzyme with gulonate dehydrogenase 
activity. Mannonate is a potential substrate (PMID: 15809331). 
DBH (vanillylmandelate (VMA), AA, rs77273740): DBH encodes dopamine beta-hydroxylase 
which converts dopamine to noradrenaline, a precursor for vanillylmandelate. DBH can also 
produce vanillylmandelate directly from homovanillate (PMID: 14253475|15702409). 
DEGS1 (palmitoyl dihydrosphingomyelin (d18:0/16:0), LI, rs752521494): DEGS1 encodes 
sphingolipid delta 4-desaturase which introduces a double bond at the 4 position in sphingomyelin. 
Palmitoyl dihydrosphingomyelin should be a substrate for this enzyme (PMID: 11937514). 
DHDH (arabinose, CA, rs35230038): DHDH encodes dihydrodiol dehydrogenase which can 
oxidize arabinose and generate the corresponding lactone (PMID: 11306093). 
DPYD (uracil, NU, rs3918290): DPYD encodes dihydropyrimidine dehydrogenase which catalyzes 
the first step in the breakdown of uracil (PMID: 8083224). 
ECHDC1 (ethylmalonate, AA, rs79919786): ECHDC1 encodes ethylmalonyl-CoA decarboxylase 
which converts ethylmalonyl-CoA to butyryl-CoA (PMID: 22016388). 
ECI1 (dodecadienoate (12:2), LI, rs55650311): ECI1 encodes an enoyl-CoA delta isomerase 
which exchanges a double bond at the 3 position for one at the 2 position in CoA bound fatty acids 
with demonstrated activity on C12 enoyl-CoA. Dodecadienoate is likely derived from a product of 
this reaction (PMID: 8486162). 
FDX1 (3beta-hydroxy-5-cholestenoate, LI, rs2724417): FDX1 encodes ferredoxin 1 which is 
involved in electron transport for multiple cytochrome P450 enzymes, including CYP27A1. 
CYP27A1 plays a key role in bile acid biosynthesis and leads to the metabolites observed (PMID: 
2340092). 
FTCD (formiminoglutamate, AA, rs398124234): FTCD encodes a glutamate 
formimidoyltransferase which transfers one-carbon units between glutamate and folate. 
Forminoglutamate can be a substrate or a product for this enzyme (PMID: 13672973).  
GNPTAB (aspartate, AA, rs1209353188): GNPTAB encodes an N-acetylglucosamine-1-
phosphotransferase which produces aspartylglucosamines. The degradation of 
aspartylglucosamine produces aspartate (PMID: 6457829). 
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GSTZ1 (maleate, LI, rs7972): GSTZ1 encodes a maleylacetoacetate isomerase which converts 
maleylacetoacetate to fumarylacetoacetate. Hydrolysis of maleylacetoacetate produces maleate 
(PMID: 9925947). 
HADHA|HADHB (3-hydroxylaurate, LI, rs116654420): HADHA|HADHB together encode a 
mitochondrial heterodimer which is involved in fatty acid beta oxidation. The alpha subunit of the 
heterodimer encodes the 3-hydroxyacyl-CoA dehydrogenase activity (PMID:1550553). 
HDAC6 (N6-acetyllysine, AA, rs61735967): HDAC6 encodes a lysine deacetylase which can act 
on multiple proteins. Acetyllysine is the substrate (PMID: 12606581). 
HSD17B10 (tiglylcarnitine (C5:1-DC), AA, rs201378370): HSD17B10 encodes 2-methyl-3-
hydroxybutyryl-CoA dehydrogenase in the isoleucine degradation pathway. Tiglyl-CoA is an 
upstream metabolite and HSD17B10 deficiency results in accumulation of tiglylcarnitine and 
tigloylglycine (PMID: 7639524|11102558). 
KYNU (xanthurenate, AA, rs199546957): KYNU encodes kynureninase, a vitamin B6 dependent 
enzyme which hydrolyzes kynurenine. Xanthurenate is an alternate metabolite of kynurenine. In 
animals deprived of vitamin B6, excretion of xanthurenate is increased (PMID: 13032082). 
L2HGDH (2-hydroxyglutarate, LI, rs12886516): L2HGDH encodes the mitochondrial L-2-
hydroxyglutarate dehydrogenase which generates 2-oxoglutarate from L-2-hydroxyglutarate 
(PMID: 8241290). 
MOCOS (7-methylguanine, NU, rs16967566): MOCOS encodes molybdenum cofactor sulfurase 
which sulfurates the molybdenum cofactor used by aldehyde oxidase (encoded by AOX1). 
Aldehyde oxidase acts on many substrates including 7-methylguanine. The AOX1 locus harbors 
its own associations with this same metabolite (PMID: 11302742|5044040). 
NAAA (N-stearoyltaurine, LI, rs112197434): NAAA encodes N-acylethanolamine-hydrolyzing acid 
amidase. N-acyl taurines such as n-stearoyltaurine represent a potential substrate class for NAAA 
(PMID: 15655246). 
NIT2 (alpha-ketoglutaramate, AA, rs3830303): NIT2 encodes an omega-amidase which converts 
alpha-ketoglutaramate to alpha ketoglutarate (PMID: 19595734). 
NR5A1 (pregnenediol sulfate (C21H34O5S), LI, rs4838190): NR5A1 encodes the steroidogenic 
factor-1, a transcription factor that regulates many genes involved in steroidogenesis, including 
SULT2A1; SULT2A1 is also associated with pregnenediol sulfate (PMID: 22427816). 
OAT (3-amino-2-piperidone, AA, rs121965043): OAT encodes ornithine aminotransferase which 
converts ornithine to glutamate 5-semialdehyde. 3-amino-2-piperidone, known as cyclo-ornithine, 
is a closely related metabolite (PMID: 4990629). 
PCMT1 (S-adenosylhomocysteine, AA, rs9505982): PCMT1 encodes a methyltransferase which 
produces S-adenosylhomocysteine. PCMT1 is important for reversing oxidative damage in 
neurons and erythrocytes. Pcmt1 knockout mice show reduced levels of S-adenosylhomocysteine 
(PMID: 12023972|11279164). 
PTRH1 (N-formylmethionine, AA, rs504434): PTRH1 encodes a mitochondrial-directed peptidyl-
tRNA hydrolase which releases tRNA from peptidyl-tRNA chains. N-formylmethionine is likely a 
product of the activity of this enzyme (PMID: 4981785). 
PYCR3 (S-1-pyrroline-5-carboxylate, AA, rs2242090): PYCR3 encodes a pyrroline-5-carboxylate 
reductase which generates proline from S-1-pyrroline-5-carboxylate (PMID: 23024808). 
QPCT (pyroglutamylglutamine, PE, rs77684493): QPCT encodes a glutaminyl-peptide 
cyclotransferase which cyclizes an N-terminal glutamine residue. Pyroglutamylglutamine is a likely 
product of this reaction (PMID: 3473473). 
SCD5 (lignoceroylcarnitine (C24), LI, rs141560958): SCD5 encodes stearoyl-CoA desaturase 
which catalyzes the formation of monounsaturated fatty acids from saturated fatty acids. The 
metabolite observed here, the acylcarnitine of a long chain saturated fatty acid, is a potential 
substrate (PMID: 15907797). 
SEC14L2 (gamma-tocopherol/beta-tocopherol, CV, rs182488695): SEC14L2 encodes a 
tocopherol-binding protein (PMID: 10829015). 
SLC10A2 (glycodeoxycholate 3-sulfate, LI, rs55971546): SLC10A2 encodes a bile acid 
transporter. Glycodeoxycholate 3-sulfate is a sulfated bile acid derivative (PMID: 7860756). 
SLC23A1 (ascorbic acid 3-sulfate*, CV, rs33972313): SLC23A1 encodes an ascorbate 
transporter. Ascorbic acid 3-sulfate and its derivatives are key associations at this locus (PMID: 
10471399). 
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SLC23A2 (ascorbic acid 3-sulfate, CV, rs141583725): SLC23A2 encodes an ascorbic acid 
transporter. The observed metabolite is a sulfate derivative of ascorbic acid (PMID: 10556521). 
SLC23A3 (glycerate, CA, rs192756070): SLC23A3 encodes an SLC23 ascorbic acid transporter 
without detectable ascorbic acid transport activity. SLC23A3 is highly expressed in the kidney, and 
is likely as a reuptake transporter. Glycerate is a possible substrate (PMID: 23506882). 
SLC25A26 (2,3-dihydroxy-5-methylthio-4-pentenoate (DMTPA), AA, rs13874): SLC25A26 
encodes a transporter which transports S-adenosylmethionine (SAM) into the mitochondria. 2,3-
dihydroxy-5-methylthio-4-pentenoate is derived from SAM (PMID: 14674884|29578721). 
SLC27A5 (3b-hydroxy-5-cholenoic acid, LI, rs147464959): SLC27A5 encodes a bile acid-CoA 
ligase which transfers CoA to various bile acids including cholic acid. 3b-hydroxy-5-cholenoic acid 
is structurally similar to cholic acid (PMID: 17401). 
SLC28A1 (5,6-dihydrouridine, NU, rs55990066): SLC28A1 encodes a pyrimidine-specific sodium-
nucleoside cotransporter (hCNT1) which can transport uridine. Dihydrouridine is a frequent 
modification of uridine (PMID: 9124315). 
SORD (ribitol, CA, rs55901542): SORD encodes sorbitol dehydrogenase which oxidizes multiple 
polyols including ribitol (PMID: 3365415). 
SPHK2 (sphingomyelin (d18:1/20:1, d18:2/20:0), LI, rs61751862): SPHK2, a sphingosine kinase, 
produces sphingosine-1-P(S1P), which can be incorporated into the observed metabolite. S1P 
also represents the initial step in sphingomyelin catabolism (PMID: 10802064). 
ST3GAL5 (lactosyl-N-behenoyl-sphingosine (d18:1/22:0), LI, rs7603766): ST3GAL5 encodes 
lactosylceramide alpha-2,3-sialyltransferase which transfers an sialic acid moiety to lactosyl-n-
behenoyl-sphingosine to produce the ganglioside GM3 (PMID: 1999428). 
TH (dopamine 3-O-sulfate, AA, rs200180914): TH, tyrosine hydroxylase, converts tyrosine to L-
DOPA, which can then be converted to dopamine 3-O-sulfate (PMID: 14216443). 
TMLHE (N6,N6,N6-trimethyllysine, AA, rs547447): TMLHE encodes an epsilon trimethyllysine 
hydroxylase which adds a hydroxyl group to epsilon-n-trimethyl-lysine in the first step of carnitine 
biosynthesis (PMID: 6772170). 
XPNPEP2 (prolylproline, PE, rs4830164): XPNPEP2 encodes a protease which specifically 
cleaves at a proline residue. Prolylproline is a plausible substrate or product (PMID: 15361070). 

The putative causal gene is in bold. The associated metabolite, its biochemical class, and the 
index genetic variant are in parentheses after the gene symbol. The resource publication from 
which the supporting evidence was identified can be accessed through the PMID at the end of 
supportive evidence. 










