All rights reserved. No reuse allowed without permission.

Title: Estimates and Correlates of District-Level Maternal Mortality Ratio in India

First Author: **Srinivas Goli, PhD** (*Corresponding Author*) Australia India Institute (AII) NGN Research Fellow UWA Public Policy Institute **University of Western Australia (UWA)** 35 Stirling Highway Perth WA 6009 Australia Email: <u>srinivas.goli@uwa.edu.au</u> T +61 8 6488 2914, M +61 41`6271232 **&**

Assistant Professor, Population Studies Centre for the Study of Regional Development Room No. 102, School of Social Sciences (SSS-III) **Jawaharlal Nehru University (JNU)** New Delhi-110067 Phone No: 011 26738798 The University of Western Australia (M251), 35 Stirling Highway, 6009 Perth, Australia Email: <u>srinivas.goli@uwa.edu.au; sirispeaks2u@gmail.com</u> http://orcid.org/0000-0002-8481-484X

Second Author: Parul Puri

Department of Mathematical Demography and Statistics, International Institute for Population Sciences Mumbai, Maharashtra, India Email: parulpuri93@gmail.com; <u>parul@iips.net</u> https://orcid.org/0000-0001-6272-837X

Third Author: **Pradeep S. Salve, PhD** Assistant Professor, **Population Research Centre (PRC),** Dharwad, Karnataka - 580 004, India Phone No: +91 986 795 4621 Email: <u>pradeep_salve@biari.brown.edu</u>, <u>pradeep8889@gmail.com</u> ORCID: <u>https://orcid.org/0000-0002-6879-1246</u>

Fourth Author: **Saseendran Pallikadavath, PhD** Professor in Demography and Global Health, Portsmouth-Brawijaya Centre for the Global Health, Population and Policy, **University of Portsmouth**, United Kingdom Phone No: +44 (0) 2392 844442 Email: <u>sasee.pallikadavath@port.ac.uk</u> <u>https://orcid.org/0000-0002-2598-9949</u>

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

All rights reserved. No reuse allowed without permission.

Fifth Author: **K.S. James, PhD** Director & Senior Professor **International Institute for Population Sciences (IIPS),** Govandi Station Road, Deonar, Mumbai – 400088, India Phone No: 022-42372888 Email: <u>ksjames@iips.net; ksjames@gmail.com</u> <u>https://orcid.org/0000-0002-5364-5326</u>

Estimates and Correlates of District-Level Maternal Mortality Ratio in India

ABSTRACT

Despite the progress achieved, approximately one-quarter of all maternal deaths worldwide occur in India. Till now, India monitors maternal mortality in 18 out of its 36 provinces using information from the periodic sample registration system (SRS). The country does not have reliable routine information on maternal deaths for smaller states and districts. And, this has been a major hurdle in local-level health policy and planning to prevent avoidable maternal deaths. For the first time, using triangulation of routine records of maternal deaths under Health Management Information System (HMIS), Census of India, and SRS, we provide Maternal Mortality Ratio (MMR) for all states and districts of India. Also, we examined sociodemographic and health care correlates of MMR using large-sample and robust statistical tools. The findings suggest that 70% of districts (448 out of 640 districts) in India have reported MMR above 70 deaths-a target set under Sustainable Development Goal-3. According to SRS, only Assam shows MMR more than 200, while our assessment based on HMIS suggests that about 6-states (and two union territory) and 128-districts have MMR above 200. Thus, the findings highlight the presence of spatial heterogeneity in MMR across districts in the country, with spatial clustering of high MMR in North-eastern, Eastern, and Central regions and low MMR in the Southern and Western regions. Even the better-off states such as Kerala, Tamil Nadu, Andhra Pradesh, Karnataka, and Gujarat have districts of mediumto-high MMR. In order of their importance, fertility levels, the sex ratio at birth, health infrastructure, years of schooling, post-natal care, maternal age and nutrition, and poor economic status have emerged as the significant correlates of MMR. In conclusion, we show that HMIS is a reliable, cost-effective, and routine source of information for monitoring maternal mortality ratio in India and its states and districts.

All rights reserved. No reuse allowed without permission.

Key questions

What is already known?

- Despite the progress achieved, approximately one-quarter of all maternal deaths worldwide occur in India.
- Maternal mortality prevalence is highly heterogeneous across the major provinces of India.
- ► So far country monitors maternal mortality in 18 out of 36 states using information from the periodic sample registration system (SRS).
- Clinical and socio-demographical reasons for maternal mortality have been studied using hospital-based studies and micro-level qualitative studies.

What are the new findings?

- For the first time, the study provides maternal mortality ratio (MMR) estimates for all states and districts of India.
- ► The findings suggest that 70% of districts (448 out of 640 districts) in India have reported MMR above 70 deaths per 1000 live births—a target set under Sustainable Development Goal-3.
- According to SRS, only Assam shows MMR of more than 200, while our estimates based on HMIS suggest that 6 states (and two union territory) and 128 districts demonstrate MMR above 200.
- ► The findings highlight the presence of spatial heterogeneity among districts in the country, with spatial clustering of high MMR in North-eastern, Eastern, and Central regions; and low MMR in the Southern and Western regions. We have also observed considerable within-state variations—across districts.
- ► Using a larger sample and robust statistical process, the study documents sociodemographic and health care correlates of MMR across the districts of India.

What do the new findings imply?

- ► Findings help in identifying 'hot spots' within the states and key socio-demographic and health care correlates of maternal mortality, thus assisting in micro-level maternal health care policy and planning.
- Availability of health infrastructure, access to affordable and quality maternal health care, especially in districts with high fertility, low education, and economically poor are key pathways to reduce maternal mortality in India.
- A significant association between sex ratio at birth and MMR suggest that, maternal deaths are also happening due to unsafe abortions, thus this needs policy attention.
- ► HMIS is a reliable, cost-effective, and routine source for monitoring progress in the reduction of avoidable maternal mortality in India and its states and districts.

All rights reserved. No reuse allowed without permission.

INTRODUCTION

Maternal mortality refers to death from any complications during pregnancy and childbirth or within 42 days of termination of pregnancy, irrespective of the duration and site of the pregnancy, but not from accidental or incidental causes¹. Maternal Mortality Ratio (MMR) is the number of deaths per 100,000 live births. The recent global MMR estimates suggest significant progress. In particular, from 2000 to 2017, we notice a 38% decline in MMR—from 342 deaths to 211 deaths per 100,000 live births². However, this average annual rate of reduction (2.2%) is less than the rate of decline needed (2.7%) to achieve the Sustainable Development Goal (SDG-3.1) of 70 maternal deaths per 100,000 live births by 2030³. Though the improvement is remarkable in the context of a steep decline in the absolute number of maternal deaths from 451,000 in 2000 to 295,000 in 2017 deaths, it is still 800 women dying each day due to pregnancy complications and childbirth worldwide. Sub-Saharan Africa and South Asia contributed about 86% of maternal deaths in the world. In particular, South Asia accounts for 20% of maternal deaths, with 163 maternal deaths per 100,000 live births. Among South Asian countries, India is home to the highest number of maternal deaths (35000 maternal deaths) estimated globally in 2017. In percentage, the country accounts for 12% of global maternal deaths, next only to Nigeria (23%)².

According to the estimates of the Sample Registration System (SRS) of India, the MMR has significantly dropped from 400 per 100,000 live births in the early 1990s to 230 in 2008 and 130 in 2016⁴⁵. Recent estimates of SRS have witnessed a steady decline in the MMR from 130 to 113 per 100,000 live births, with the highest rate in the state of Assam (215 per 100,000 live births) and lowest in the state of Kerala (43 per 100,000 live births)⁵. The findings of previous studies indicate that even though the overall MMR of India has drastically declined, the rate of decline in MMR is not uniform across the states^{5 6 7 8 9 10 11}. Empowered Action Group (EAG) states including Bihar, Madhya Pradesh, Rajasthan, Uttar Pradesh, and Assam contributed approximately 75% of the total estimated maternal deaths in India and Uttar Pradesh alone has more than 30% of the maternal deaths^{5 9 10}.

The Government of India launched National Health Mission (NHM) in 2015, subsuming the previous National Rural Health Mission (NRHM) and National Urban Health Mission (NUHM) to bring out the necessary structural changes in public health care and delivery system in India. The NHM design provides the Reproductive-Maternal-Neonatal-Child and Adolescent Health (RMNCH+A) services, strengthening the health system to achieve the important demographic and health goals. Schemes like Janani Suraksha Yojana (JSY) under NRHM have contributed significantly to the rise in antenatal care and institutional deliveries, thereby reducing MMR^{12 13 14}. Some of the states have already achieved or are about to achieve the SDG goal of reducing the MMR to 70 per 100,000 live births by 2030^{5 15}. Nonetheless, seven out of eight EAG states, including Bihar, Madhya Pradesh, Chhattisgarh, Odisha, Rajasthan, Uttar Pradesh and Uttarakhand, still have a long way to go to achieve the target set under SDG-3⁵.

Owing to data limitations, previous studies in India documented trends and patterns in MMR for only major states and 284 districts in nine empowered action group states, while the smaller states are completely excluded from the analyses⁵ ¹³ ¹⁶. For a long time, the SRS has been the only reliable source of maternal mortality, which provides estimates for 18 major states⁵. Although the Annual Health Survey (AHS) provided MMR estimates for 284 districts in nine EAG states from 2010 to 2013⁴, the survey was repealed thereafter, assuming

All rights reserved. No reuse allowed without permission.

that NFHS would be redesigned to provide district-level health indicators for all Indian districts¹⁷. However, MMR estimates based on AHS never received as much prominence as SRS. Moreover, considering within-state heterogeneity observed in other maternal and child health care indicators¹⁸, we believe that there must be considerable within-state variation in MMR. However, to our knowledge, so far, there is not a single study in India that provides MMR estimates for the smaller states and all the districts of India.

On the other hand, earlier studies that investigated socio-economic, demographic, and health care correlates of maternal mortality using either macro-level analyses based on the sample of 15 to 19 states or with the help of micro-level qualitative studies have limitations⁸ ¹³ ¹⁸. The socio-economic correlates identified based on the sample ranging from 15 to 18 states are less reliable, while micro-level local evidence is not nationally representative. Although a significant number of studies have documented clinical causes of maternal deaths⁷ ¹⁰ ¹⁹ ²⁰ ²¹, the identification of socio-economic, demographic, and health care correlates immensely helps in designing policies and practices to avoid the death of women during pregnancy.

In the above context, this study makes two significant contributions: (1) for the first time, using Health Management Information System (HMIS) data, we provide MMR estimates for all 640 districts from 29 states and seven union territories of India. (2) Also, using the district-level information from National Family Health Survey (NFHS) alongside HMIS, we have assessed socio-economic, demographic and health care correlates of MMR based on a significantly larger sample than previous studies. Also, for the first time, we have included district-level health infrastructure index and maternal health care variables as predictors of MMR.

METHODS

Data input and processing

The study used data from multiple sources – HMIS (2017-18, 2018-19, 2019-20), the Sample Registration System (SRS, 2017-18), the Census of India (2011), and the National Family Health Survey (NFHS-4, 2015-16). The HMIS data source is the official data source of the Ministry of Health and Family Welfare (MoHFW), Government of India²². It provides the consolidated public and private health facility-based service statistics data for India on the reproductive, maternal, neonatal, child, and adult health indicators. We have accessed the unit level data through the open access link (https://hmis.nhp.gov.in/#!/standardReports) available in the public domain from the HMIS website.

An independent evaluation of completeness of HMIS records of maternal and child health indicators in 2016 suggests an average of 88.5% completeness, while it is as high as 94.6% for maternal health care indicators²³. Moreover, HMIS has been continuously improving its information recording system over the years. Thus, we would expect much better quality information for the years 2018 to 2020 than what was observed in 2016.

The SRS has been a gold standard source for fertility and mortality data for more than five decades and the largest demographic and health survey in the country, which gives reliable estimates at the national and state level separately by urban and rural areas. The dual registration system, huge sample size and verbal autopsy instruments make the estimates of SRS more reliable and representative at the national and state level (for details, see Office of the Registrar General of India, 2020)⁵. The NFHS is the largest sample survey that provides information on population, health, and nutrition for states and districts of India (for details)

All rights reserved. No reuse allowed without permission.

see IIPS and ICF Macro, 2017)¹⁸. The population of women in the age group 15-49 years is drawn from the Census of India 2011²⁴.

For the present study, we have analysed a total of 61,982,623 live births and 61,169 maternal deaths recorded in HMIS during 2017-19. HMIS enumerated numbers are considerably higher than the SRS sample of 429,173 live births and 525 maternal deaths at the all-India level during 2015-17. Further, the estimated annual number of births in India based on the birth rate from SRS is about 25 million in recent years that will amount to about 75 million in three years from 2017 to 2019⁵. This suggests that HMIS covers nearly 77% of all live births in India and such a high number can produce fairly reliable estimates despite potential coverage errors. This study is reported as per the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) guidelines (Supplementary Table 1). However, this study did not have a prespecified analysis plan.

Patient and Public Involvement

It was not appropriate or possible to involve patients or the public in the design, or conduct, or reporting, or dissemination plans of our research.

Variables

Our outcome variable is the MMR estimated using live births and maternal deaths recorded through HMIS during 2017-20. Based on variables related to maternal deaths in the previous literature^{6 7 8 10 13 19 20 25} and also considering data availability, we have included some key maternal health care, demographic and socioeconomic predictors to explain MMR variation across the districts of India. The predictor variables include health infrastructure index (HII) antenatal care, post-natal care, institutional delivery, mean age at first birth, contraception use in women, the mean number of children ever born, percentage of underweight, and anaemic women, years of schooling, household size, percentage of women in poor wealth status, and the sex ratio at birth. Detailed definitions and descriptions of the variables are mentioned in Table 1 and Table 2, respectively.

Estimation of Maternal Mortality Ratio (MMR)

We used triangulation of data from the HMIS, SRS, and Census of India (2011) to derive the final MMR estimates. A calibration factor (Cf) was computed and used to account for the under-(over)-reporting of maternal deaths by states and districts of India. The calibration factor was initially estimated for states, as the ratio of MMR from SRS and HMIS as shown in equation (1). For the states where MMR estimates were missing, we used the estimates of Infant Mortality Rates (IMR) as a proxy to MMR estimates to compute the calibration factor. In this case, the calibration factor was the ratio of IMR from SRS and HMIS, as shown in equation (2). The mathematical expressions for the aforementioned computations are as follows:

$$Cf = \frac{SRS_MMR^{State_Estimate}}{HMIS_MMR^{State_Estimate}}$$
(1)

And, for the states where MMR is missing in SRS, we utilized the value of IMR as a proxy. In this case, the expression for computation of Cf can be written as follows:

$$Cf = \frac{SRS_{IMR}^{State_{Estimate}}}{HMIS_{IMR}^{State_{Estimate}}}$$
(2)

All rights reserved. No reuse allowed without permission.

Then, we have adjusted the district estimates of each state using the calibration factor (Cf) derived for that particular state using the aforementioned procedure in equations 1 and 2. The adjusted MMR for each district was derived as below:

$$District MMR^{Adjusted} = District MMR^{Unadjusted} * Cf$$
(3)

Finally, we have derived the adjusted state estimates using adjusted district MMRs and district population weights. Population weight for each district is derived using the information on women 15-49 years of age from Census of India, 2011. This procedure will adjust for district-level unequal size in error margins proportionately weighted by population size while deriving the state-level adjusted MMRs using HMIS data. The estimated MMR for each state is as follows:

State MMR^{Adjusted} =
$$\frac{\sum_{i=1}^{n} \text{District MMR}^{\text{Adjusted}}*pw}{n}$$
 (4)

Where pw is population weight defined as:

$$pw = \frac{\text{Total female population of the district in age 15-49 years}}{\text{Total female population of the State in age 15-49 years}}$$
(5)

Geographical distribution and spatial clustering

We have carried out statistical analyses in three stages: First, used GIS mapping to show the geographical distribution of MMR across the states and districts of India. In the second stage, to assess the extent of geographical clustering, univariate local Moran's I and Local indicator of Spatial Association (LISA) cluster and significance maps were employed. Spatial proximity was quantified using the Queen contiguity matrix, which includes neighbours sharing geographical boundaries of non-zero length²⁶. Moran's I statistics range between -1 and +1, where a positive, negative and zero value is indicative of positive, negative, and no spatial autocorrelation, respectively²⁷ ²⁸. Cluster map depicts the locations (districts) with a significant local Moran's I statistic classified by spatial auto-correlation type; the color red symbolises the hot spots (districts with high MMR levels, with similar neighbours), green symbolises the cold spots (districts with low MMR levels, with similar neighbours), and the light blue and light red color symbolizes the spatial outliers (districts with high MMR levels, but with low- MMR level neighbours and vice-versa).

Ordinary least square regression model: Macro-level correlates

In the last stage, we have carried out an Ordinary least square (OLS) log-linear regression model to understand the maternal health care, demographic and socioeconomic correlates of MMR. We have modelled six OLS regressions to avoid the collinearity between the explanatory variables. Except for model 6, we have avoided highly collinear variables (r>0.60) in the same model based on the correlation matrix of the study explanatory variables. The mathematical expression of the model is given below:

$$Y_{(\text{Log}_MMR)} = a + b_1 X_{1 (\text{Log}_HII)} + b_2 X_{2 (\text{Log}_No.of ANCs)} + b_k X_{k...} + \varepsilon_i$$
(6)

Where Y is the outcome variable (*i.e.* MMR), which is influenced by a set of predictor variables X_1 , X_2 , X_3 ------X_K (*e.g.*, HII, antenatal care, postnatal care, institutional delivery, mean age at first birth) in the manner specified with parameters β_1 , β_2 β_K .

All rights reserved. No reuse allowed without permission.

Statistical analyses were performed using STATA 16 statistical software (Stata Corporation, College Station, TX, USA).

RESULTS

Geographical variation and spatial clustering of maternal mortality

Figure 1 depicts the spatial pattern of MMR across 29 states and 7 union territories in India. Findings underline considerable geographical heterogeneity in MMR across Indian states. MMR was categorised into four groups, less than 70, 70-139, 140-209, greater than or equal to 210 deaths per 100000 live births. The first cut-off was taken at 70 which is a primary target under SDG-3 for MMR; while the second cut-off at 140 is a second target under SDGs. Further, the same interval has been taken to create two more categories¹⁵. Such categorisation allows classifying Indian states and districts as those achieved, near to achieve, or far from the achievable SDG target 3.1.

Among the states, the highest MMR is found in Arunachal Pradesh (284) and the lowest in Maharashtra (40). The findings illustrate that five states, including Arunachal Pradesh (284), Manipur (282), Andaman and Nicobar Island (275), Meghalaya (266), and Sikkim (228), have MMR greater than or equal to 210. Nine States and two Union Territories have MMR in the range of 140-209. These states are Nagaland (143), Punjab (143), Chhattisgarh (144), Jammu and Kashmir (151), Delhi (162), Rajasthan (162), Bihar (164), Madhya Pradesh (179), Lakshadweep (208), Uttar Pradesh (208), and Assam (209).

Eleven states have MMR in the range of 70-139: Gujarat (76), Jharkhand (78), Karnataka (85), Haryana (90), Goa (91), West Bengal (100), Uttarakhand (107), Tripura (119), Himachal Pradesh (127), Mizoram (131), and Odisha (138). Furthermore, the estimates indicate that nine out of 36 provinces have MMR less than 70: Chandigarh (15), Maharashtra (40), Puducherry (41), Kerala (44), Daman and Diu (48), Telangana (53), Tamil Nadu (56), Dadra and Nagar Haveli (61) and Andhra Pradesh (64) (Supplementary Table 2).

[Figure 1 Geographical pattern of maternal mortality ratio by states/union territories in India, HMIS]

Figure 2 depicts the geographical pattern of MMR in 640 districts of India. Among the districts, the highest MMR is found in Tirap district in Arunachal Pradesh (1671), while thirteen districts reported lowest MMR levels, these included seven districts from Arunachal Pradesh (0), two districts from Himachal Pradesh (0) and one district from Jammu & Kashmir (0), Maharashtra (0), Puducherry (0), and Uttrakhand (0), each. The results indicate that 192 districts have MMR less than 70 and 210 districts fall in the range of 70-139. However, about 124 districts have MMR in the range 140-209, and 114 districts fall in the category of greater than or equal to 210. In particular, among the districts with MMR greater than or equal to 210, 46 districts belonged to the Central Region, and 33 districts are located in the Northeastern region; while 18 districts belonged to the Northern region and 16 to the Eastern region.

A majority of the districts in southern India and Maharashtra have an MMR of less than 70. Around 70 districts from Southern (68 district) India have MMR less than 70, followed by Western (46 districts), Eastern (30 districts), and Northern (30 districts) regions. While Northeastern (12 district) and Central (6 districts) regions have the least number of districts that achieved the primary SDG target of MMR (Supplementary Table 3).

All rights reserved. No reuse allowed without permission.

However, Figure 2 also demonstrates the presence of huge within-state inequalities. For instance, the state of Karnataka as a whole, falls in the category of 70-139, but several of its districts have an MMR above 140. Similarly, some districts in Tamil Nadu, Kerala, Andhra Pradesh, and Telangana also have MMR above 140, despite all four states falling in the category of MMR below 70 at state level. A similar kind of district-level heterogeneity is observed in other states as well.

[Figure 2 Geographical pattern of maternal mortality ratio by 640 districts in India, HMIS]

Supporting these findings, the results from univariate LISA (Figure 3) also suggest the presence of spatial heterogeneity in MMR with statistically significant spatial autocorrelation (Moran's I=0.229, p-value=0.001) across districts in the country. Geographical clustering of high MMR was observed in the North-eastern and parts of the Central region. Southern and Western regions in the country reported a noticeable geographical clustering of low MMR.

[Figure 3. Univariate Moran's I for Maternal Mortality Ration in India]

Furthermore, bivariate LISA assessed the spatial association between the selected background variables and MMR for 640 districts in the country. The findings from the bivariate spatial analysis are presented in Supplemental Figure 1. Bivariate analysis suggests that regions with low age at first birth, low contraception use, high mean number of children ever born, higher percentage of underweight and anaemic women are more likely to report higher MMR. Also, the MMR is found to be higher for the districts with a lower percentage of four or more ANC, lower percentage of post-natal care, lower percentage of institutional deliveries, and lower health infrastructure. Lower percentage of ten or more years of schooling, higher mean household size, low percentage urban population, and higher percentage poor economic status are more likely to report higher MMR among districts in India. However, there are several exceptional cases found where regions with higher age at first birth and lower prevalence of anaemic women also found with higher MMR, thus indicating spatial heterogeneity in the relationship between MMR and socio-economic characteristics. It also suggests that MMR is influenced by a multitude of factors, thus investigation of the net effect of socioeconomic correlates controlling for confounders is important.

Factors associated with maternal mortality: a macro-level analysis

Table 3 presents the net effect of socio-economic, demographic, and health care correlates of maternal mortality ratio based on the OLS regression model. In model 1, before controlling for other correlates, ANCs (β = -0.273, p<0.01) is negatively associated with MMR. However, in models 2, 5, and 6, when we controlled for all other correlates, 4 or more ANC visits do not show the desired relationship with MMR. Similarly, when we run the regression model considering only health infrastructure and maternal health care variables, health infrastructure (β = -0.551, p<0.01) and PNCs within 48 hours of delivery (β = -0.279, p<0.1) are negatively associated and statistically significant. Surprisingly, institutional delivery is positively associated and statistically not significant across all the models.

Using only demographic variables, the results in model-3 suggest that age at first birth (β = 7.905, p<0.1), ever use of contraception (β = 0.219, p<0.05) and children ever born (β = 1.822, p<0.01) are positively associated, while BMI (β = -0.437, p<0.05) is negatively associated with

All rights reserved. No reuse allowed without permission.

MMR. Model 4 which uses only socio-economic variables reveals that the sex ratio at birth (β = -1.218, p<0.01) is negatively associated, while the poor economic status of the households (β = 0.215, p<0.01) is positively linked to MMR. Share of SC/ST population is positively associated (β = 0.188, p<0.05) with MMR in Model 5. Model 6 that controls for all variables suggests that health infrastructure (β = -0.535, p<0.01), PNCs within 48 hours of delivery (β = -0.370, p<0.05), BMI (β = -0.357, p<0.01) and year of schooling (β = -0.437, p<0.01) are negatively associated, while age at first birth (β = 7.431, p<0.05) and children ever born (β = 1.589, p<0.01) are positively and significantly correlated with MMR. The institutional deliveries continue to show statistically insignificant negative relationships.

Robustness checks: Data reliability assessment

The first robustness check parameter used in this study is estimation of completeness of birth registration in HMIS. The estimated annual number of births in India is about 81 million in three years from 2017 to 2019; while reported cumulative live births during 2017-19 under HMIS is 62 million—this suggest that HMIS has coverage of 77% of all estimated live births in the country. Among major states, with 95%, Telangana and Kerala show the highest completeness of birth registration; while the corresponding figure is lowest in the state of Uttar Pradesh (62%). However, 26 out 37 states and union territories have completeness of birth registration equal to or above the national average. Twenty out of 37 states and 17 of 37 states show above 80% and 85% of completeness of birth registration which indicates that HMIS information is highly reliable for deriving basic demographic estimates (Figure 4). Although the missing deaths or deaths that physicians were unable to code cannot be ignored but given their low proportion, conservatively it is safe to assume that they did not affect the general regional pattern of MMR shown in this study.

[Figure 4 Percentage of reported live births out of estimated live births by states in HMIS, 2017-19]

The second parameter used to make a reliability assessment of MMR estimates based on HMIS, is the comparison of MMR estimates from HMIS to corresponding estimates from SRS for the major states. At all India level, SRS shows 130 in 2014-16 and 113 in 2016-18, while HMIS reports 122 in 2017-19 (Supplementary Table 2). In Figure 5, we plot MMR estimates from SRS and HMIS. The MMR estimates from HMIS are close to SRS in socio-demographically better-off states (Andhra Pradesh, Gujarat, Karnataka, Tamil Nadu, and Kerala, Maharashtra, etc.), while the gap is slightly higher in socio-demographically weaker states (Assam, Bihar, Chhattisgarh, Uttar Pradesh, Madhya Pradesh, and Odisha). Despite a slight gap in MMR estimates from HMIS and SRS in a few states, the pattern remains more or less the same in the estimates from both sources: the MMR is higher in socio-demographically weaker states compared to their counterparts in socio-economically advanced states. The similar evidence can also be observed in case of comparison of IMR from SRS and MMR from HMIS. We found a high positive correlation between IMR from SRS and MMR from HMIS with a correlation coefficient of 0.78 (Figure 6).

[Figure 5 Correspondence between MMR estimates from SRS and HMIS]

[Figure 6 Correlation between IMR estimates from SRS and MMR estimates from HMIS]

All rights reserved. No reuse allowed without permission.

Thirdly, comparison MMR estimates from other sources with our estimates suggest that both SRS and HMIS based MMR is much lower than the Global Burden of Disease (GBD) study estimate of 247.6 for 2015, but closer to estimates (145 in 2017) by WHO, UNICEF, UNFPA, World Bank Group and the United Nations Population Division^{2 5 29}. Overall, our MMR estimates using HMIS more or less align with SRS estimates and the estimates from WHO, UNICEF, UNFPA, World Bank Group, and the United Nations Population Division^{2 5}.

Fourth, we further compared a few other basic demographic estimates from HMIS (2017-19) with SRS (2018). For instance, IMR from HMIS (2017-19) is 26.2 against 32 from SRS (2018). Similarly, the Sex Ratio at Birth from HMIS (2017-19) is 108 against 111 from SRS (2018). While Crude Birth rate in HMIS is 24, it is 20.2 in SRS. HMIS based IMR, SRB, and CBR estimates are also close to corresponding year estimates from the report of the technical group on population projections³¹ (Supplementary Table 4).

Fifth, the macro-level regression estimates showing expected direction of association between health infrastructure, maternal health care and socio-demographic indicators and MMR also strengthen our belief that the estimates are in line with the status of districts sociodemographic and health status. If there was a health facility-led bias in MMR registration, we would not have seen the expected direction of the relationship between these variables. Overall assessment of the quality of data reported in HMIS vis-à-vis gold standard SRS estimates suggests that HMIS fares well with slight discrepancies with reference to SRS. However, in the absence of other reliable data sources at the micro-level (district-level) in India, HMIS fills the gap with decent quality information that can help policy and planning at district level in the country.

DISCUSSION

Considering the global SDG targets, all countries are expected to have MMR below 70 per 100,000 live births, and no country with MMR above 140 per 100,000 live births by 2030³. In view of this, 71 percent of the total districts (456 out of 640 districts) in India have reported MMR above 140. According to SRS (2016-18), only Assam (215) has MMR of more than 200, while our district-level assessment based on HMIS suggests that about 130 districts have reported above 200 maternal deaths per 100,000 live births. Thus, our findings from mapping and spatial analyses highlight the presence of a greater spatial heterogeneity across districts in the country, with spatial clustering (hot-spots) of high MMR in the North-eastern and Central regions, and low MMR in the Southern and Western regions. However, we have also observed considerable within-state variations in states across their districts. Even the better-off states such as Kerala, Tamil Nadu, Andhra Pradesh, Karnataka, and Gujarat have pockets of medium to high MMR that needs policy attention. Owing to data availability, so far, only Assam from the North-eastern region was in the lime-light for higher maternal deaths, but with this study, it has been learned that the entire region is facing a similar problem and needs policy attention.

Our assessment of socio-economic correlates of MMR suggests that improvement in antenatal care, postnatal care within 48 hours of delivery, BMI, years of schooling, and reduction of higher-order births, births in higher ages, and poor economic status will help in reducing MMR in the districts of India. The districts with better health infrastructure have significantly less MMR, while those with a high SC/ST population show higher MMR levels. However, the most surprising factor is the lack of significant negative association of

All rights reserved. No reuse allowed without permission.

institutional deliveries with MMR. Looking at this finding in conjunction with previous studies, which showed an unexpected relationship with both infant mortality and maternal mortality, suggests that it may be because a considerable number of women rush to institutional deliveries when complications arise; most often a majority of them have not obtained full and quality antenatal care^{11 13}. Thus, the risky deliveries contribute to the greater number of deaths at the institutions compared to home deliveries^{12 13 30}. In particular, Randive and colleagues found that a gap exists between access to just institutional deliveries and access to emergency obstetric care, perhaps demonstrating that women delivering in institutions are not automatically receiving sufficient care¹⁶. Another startling finding is the positive relationship between contraceptive use and MMR. However, such a relationship is possible in the context of low quality of care in family planning which leads to greater maternal morbidity and increases the risk of obstetric complication and mortality¹⁸.

From a policy perspective, the findings of the study advance two key messages: first, despite decent progress in reducing maternal mortality, several districts in India need to initiate immediate action to meet the ambitious SDG-3 target of MMR, and ultimately eliminate preventable maternal mortality. Although the district-specific rates of reduction that are needed to achieve SDG targets are ambitious for most high MMR districts, the states that made a concerted effort to reduce maternal mortality, especially post-2005 provide pathways on how to accomplish the acceleration necessary to substantially reduce preventable maternal deaths. In particular, post-2005 MMR reduction in Maharashtra, Telangana, and Andhra Pradesh are very impressive^{5 13}.

Secondly, the study highlights that maternal health care, especially postnatal care, and maternal nutrition are key for reducing maternal mortality. Considering that children ever born, years of schooling and poor household economic status also emerged as critical factors, avoiding higher-order births, ensuring dissemination of right maternal health knowledge and affordable essential services helps in accelerating the process of reduction in MMR. Despite JSY being in place, out of pocket expenditure on maternal health care in several states of India is way higher than JSY incentives³²; which might be impacting on accessing quality antenatal and institutional delivery care and as a result, this is impacting on reducing maternal mortality. Therefore, ongoing Pradhan Mantri Matriva Vandhana Yojana (PMMVY) must consider the raising of JSY incentives to ensure affordable and quality maternal health care to all. Moreover, a significant association between sex ratio at birth and MMR suggests that, maternal deaths are also happening due to unsafe abortions, and thus needs policy attention. A highly developed state like Punjab falling in the moderate to high category of MMR also raises the question that unsafe sex-selective abortions may be contributing to maternal deaths.

Third, although the reliability of routinely recorded mortality data by health system employees has been continuously questioned³³, if it is handled well, systems like HMIS would be a permanent solution to the long-standing problem of the absence of micro-level demographic and health information in India. Despite some caveats associated with HMIS data on maternal deaths, in the absence of any other reliable data sources at micro-level (district-level) in India, it fills the gap with decent quality information that can help policy and planning at district level in the country. In general, vital registration systems such as HMIS lack political priority in several states thus leading to poor management, supervision, and underfunding. While an efficient system of death reporting may be more complex and entail institutional arrangements across many governmental departments, they can be made to

All rights reserved. No reuse allowed without permission.

work subject to strong regional momentum and leadership. Given the encouraging results already achieved with minimal support for HMIS, an integrated review system and supervision should probably produce better results. Therefore, our study will rejuvenate the plan of increasing efforts to revive the vital registration system at a national level with an inspiration of reasonably good quality registration evident in case of maternal deaths under HMIS.

Acknowledgments

We thank P.M. Kulkarni (Rtd Professor, Center for the Studies in Regional Development, Jawaharlal Nehru University) for numerous discussions about HMIS data and methodology of MMR estimation using HMIS; and also, for reviewing the first draft of the paper. We also thank Prof. Christophe Guilmoto (a senior fellow in Demography at the French Institut de Recherche pour le Développement (IRD)) and Prof. Arvind Pandey (Former Director, National Institute of Medical Statistics, New Delhi) for useful discussion about the demographic estimates using the vital registration system data.

Funding None declared
Competing interests None declared
Patient consent for publication Not required.
Provenance and peer review Not commissioned; externally peer-reviewed.

Twitter Srinivas Goli @ SrinivasGoli1

Contributors Srinivas Goli contributed to the study conceptualization. Srinivas Goli designed the study. Srinivas Goli and Pradeep Salve performed the literature search. K.S. James and Pradeep Salve undertook the data collection. Parul Puri and Srinivas Goli performed statistical analyses of all data in this study. Srinivas Goli, Parul Puri and Pradeep Salve drafted the manuscript. Saseendran Pallikadavath and K.S. James reviewed and finalized the draft. All authors analyzed and interpreted the results and provided comments on and critical revision of the manuscript. Saseendran Pallikadavath and K. S. James are the guarantors.

Data availability statement All data relevant to and included in the study are available in the public domain at the following links: HMIS: https://hmis.nhp.gov.in/#!/standardReports

NFHS-4, 2015-16: https://dhsprogram.com/data/available-datasets.cfm

ORCID iDs

Srinivas Goli <u>https://orcid.org/0000-0002-8481-484X</u> Parul Puri <u>https://orcid.org/0000-0001-6272-837X</u> Saseendran Pallikadavath <u>https://orcid.org/0000-0002-2598-9949</u> Pradeep Salve <u>https://orcid.org/0000-0002-6879-1246</u> K. S. James <u>https://orcid.org/0000-0002-5364-5326</u>

Supplementary material

Supplementary Table 1. STROBE Checklist. STROBE, strengthening the reporting of observational studies or cross-sectional studies in epidemiology. (DOC)

Supplementary Table 2 State-wise estimates of MMR from SRS and HMIS. (DOC)

Supplementary Table 3 District-wise estimates of MMR from HMIS. (DOC)

Supplementary Figure 1 Bivariate LISA (Cluster and Significance) maps depicting spatial clustering and spatial outliers of maternal mortality ratio by selected background characteristics in India. (DOC)

Supplementary Table 4 Comparison of Infant Mortality Rate, Sex Ratio at Birth and Crude Birth Rate from SRS and HMIS. (DOC)

REFERENCE

- 1 WHO. Mortality and burden of disease. World Heal. Organ. 2021.
- World Health Organization (WHO). Maternal mortality : level and trends 2000 to 2017 Estimates by WHO, UNICEF, UNFPA, World Bank Group and the United Nations Population Division.
 2019;:12.https://www.who.int/reproductivehealth/publications/maternal-mortality-2000-2017/en/
- 3 Transforming our World: The 2030 agenda for Sustainable Development. United Nations Dev. Progr. 2015.https://sdgs.un.org/2030agenda
- Ministry of Health and Family Welfare G of I. Special Bulletin on Maternal Mortality in India 2014-16. SRS Bull 2018;:1–
 3.http://www.censusindia.gov.in/vital_statistics/SRS_Bulletins/MMR Bulletin-2014-16.pdf
- 5 Office of the Registrar General I. Special Bulletin on Maternal Mortality in India 2016-18. *Sample Regist Syst* 2020;:1–4.
- 6 Barros AJ, Ronsmans C, Axelson H, *et al.* Equity in maternal, newborn, and child health interventions in Countdown to 2015: A retrospective review of survey data from 54 countries. *Lancet* 2012;**379**:1225–33. doi:10.1016/S0140-6736(12)60113-5
- Montgomery AL, Ram U, Kumar R, *et al.* Maternal mortality in India: Causes and healthcare service use based on a nationally representative survey. *PLoS One* 2014;9. doi:10.1371/journal.pone.0083331
- 8 Jat TR, Deo PR, Goicolea I, et al. Socio-cultural and service delivery dimensions of maternal mortality in rural central India: A qualitative exploration using a human rights lens. Glob Health Action 2015;8:1–15. doi:10.3402/gha.v8.24976
- 9 Ministry of Health and Family Welfare; Government of India. Guidelines for Maternal Death Surveillance & Response. 2017. http://www.nhm.gov.in/images/pdf/programmes/maternalhealth/guidelines/Guideline_for_MDSR.pdf

- 10 Horwood G, Opondo C, Choudhury SS, *et al.* Risk factors for maternal mortality among 1.9 million women in nine empowered action group states in India: secondary analysis of Annual Health Survey data. *BMJ Open* 2020;**10**:e038910. doi:10.1136/bmjopen-2020-038910
- 11 Salve PS, Naiker SK, Golandaj JA, *et al.* Situational analysis of maternal death review in India: Evidence from health management information system. *Child Youth Serv Rev* 2020;**119**:105723. doi:https://doi.org/10.1016/j.childyouth.2020.105723
- 12 Lim SS, Dandona L, Hoisington JA, *et al.* India's Janani Suraksha Yojana, a conditional cash transfer programme to increase births in health facilities: an impact evaluation. *Lancet* 2010;**375**:2009–23. doi:10.1016/S0140-6736(10)60744-1
- 13 Goli S, Jaleel ACP. What is the cause of the decline in maternal mortality in india? evidence from time series and cross-sectional analyses. *J Biosoc Sci* 2014;**46**:351–65. doi:10.1017/S0021932013000564
- 14 Randive BB, Chaturvedi SD, Diwan V, *et al.* Effective coverage of institutional deliveries under the Janani Suraksha Yojana programme in high maternal mortality provinces of India: analysis of data from an annual health survey. *Lancet* 2013;**381**:S123. doi:10.1016/s0140-6736(13)61377-x
- 15 United Nations. The Sustainable Development Goals Report-2018. New York: 2018.
- 16 Randive B, Diwan V, De Costa A. India's Conditional Cash Transfer Programme (the JSY) to Promote Institutional Birth: Is There an Association between Institutional Birth Proportion and Maternal Mortality? *PLoS One* 2013;**8**. doi:10.1371/journal.pone.0067452
- 17. Krishnan, V. Govt discontinued annual health survey of India, 25 Jul 2013. https://www.livemint.com/Politics/zjD4pm80nNrUgpvbpcBRKK/Govt-discontinuesannual-health-survey.html.
- 18 IIPS, Macro I. National Family Health Survey (NFHS-4). 2017. http://rchiips.org/NFHS/NFHS-4Reports/India.pdf
- 19 Bhatia JC. Levels and Causes of Maternal Mortality in Southern India. *Stud Fam Plann* 1993;**24**:310–8.https://pubmed.ncbi.nlm.nih.gov/8296332/
- 20 Ganatra BR, Coyaji KJ, Rao VN. Too far, too little, too late: A community-based casecontrol study of maternal mortality in rural west Maharashtra, India. *Bull World Health Organ* 1998;**76**:591–8.https://pubmed.ncbi.nlm.nih.gov/10191555/
- 21 Bhattacharyya SK, Majhi AK, Seal SL, *et al.* Maternal mortality in India: A 20-year study from a large referral medical college hospital, West Bengal. *J Obstet Gynaecol Res* 2008;**34**:499–503. doi:10.1111/j.1447-0756.2008.00721.x
- 22 Ministry of Health & Family Welfare (MoHFW), 2020, Health Management Information System (HMIS), 2017-2019, available online at http://nrhm-mis.nic.in.
- 23 Sharma A, Rana SK, Prinja S, *et al.* Quality of health management information system for maternal & child health care in Haryana state, India. *PLoS One* 2016;**11**:1–11. doi:10.1371/journal.pone.0148449

- 24 New Delhi: Office of the Registrar General and Census Commission. Ministry of Home Affairs G of I. Census of India 2011. 2011.www.censusindia.gov.in/2011common/census_2001.html
- Vora DP, Shelke PS. Effects of health education tool on select epidemiological factors associated with adult obese urban slum women. *Indian J Public Health* 2017;61:254–60. doi:10.4103/ijph.IJPH_99_16
- 26 Puri P, Khan J, Shil A, et al. A cross-sectional study on selected child health outcomes in India : Quantifying the spatial variations and identification of the parental risk factors. Sci Rep 2020;:1–15. doi:10.1038/s41598-020-63210-5
- 27 Getis A, Ord JK. The Analysis of Spatial Association by Use of Distance Statistics. 1992;**24**. doi:10.1111/j.1538-4632.1992.tb00261.x
- 28 Anselin L. Local Indicators of Spatial Association (LISA). *Geogr Anal* 1995;**27**:93–115. doi:10.1111/j.1538-4632.1995.tb00338.x
- Kassebaum NJ, Barber RM, Dandona L, *et al.* Global, regional, and national levels of maternal mortality, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. *Lancet* 2016;**388**:1775–812. doi:10.1016/S0140-6736(16)31470-2
- 30 Goldie SJ, Sweet S, Carvalho N, et al. Alternative strategies to reduce maternal mortality in India: A cost-effectiveness analysis. *PLoS Med* 2010;**7**. doi:10.1371/journal.pmed.1000264.
- 31. National Commission on Population (2020). Report on Population Projections for India and States, 2011-36, National Health Mission, Government of INDIA, New Delhi.
- 32. NSSO. National Sample Surveys (2018): Social consumption (Health) 2017-18, MoSPI, Government of India, New Delhi.
- 33. Pandey A, Roy N, Bhawsar R, Mishra RM. Health information system in India: issues of data availability and quality. *Demography India*. 2010 Jan;**39**(1):111-28.

Figures

Figure 1. The geographical pattern of maternal mortality ratio by states/union territories in India, HMIS.

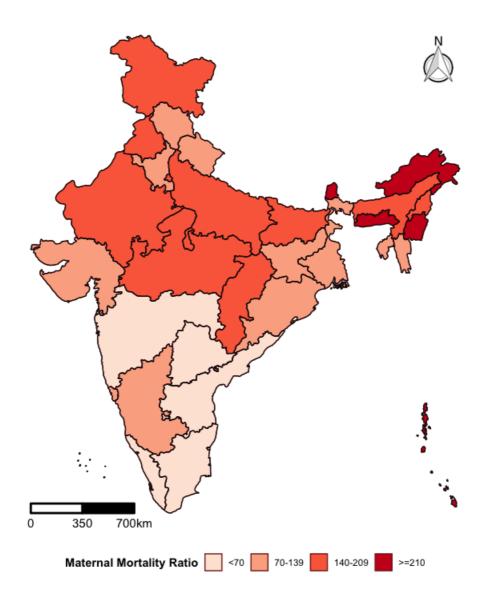
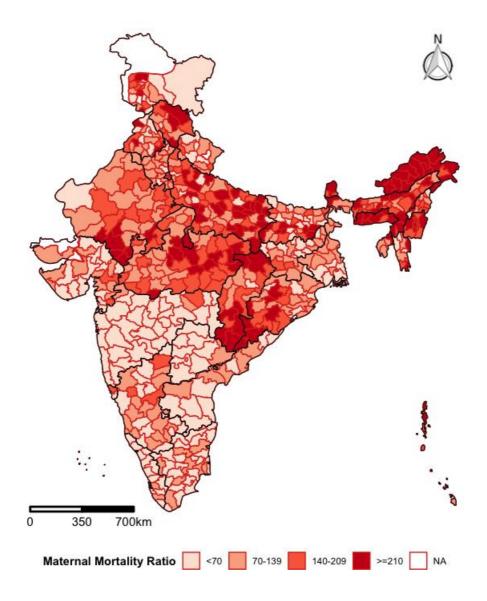



Figure 2. The geographical pattern of maternal mortality ratio by 640 districts in India, HMIS.

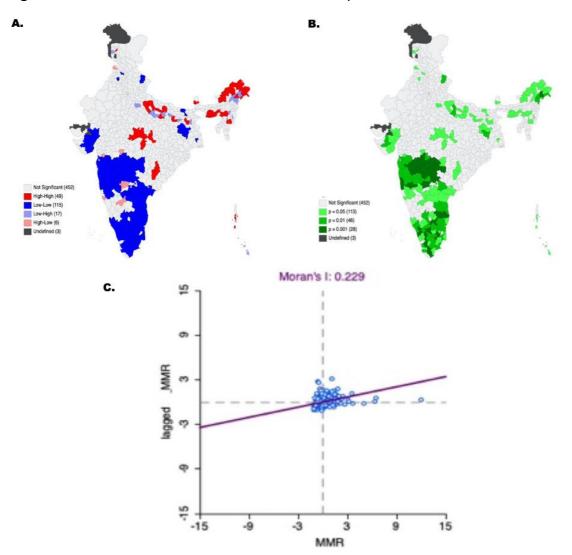
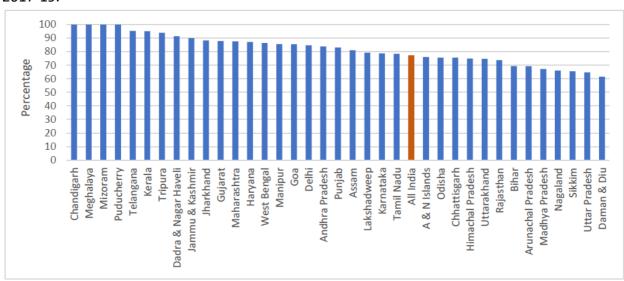
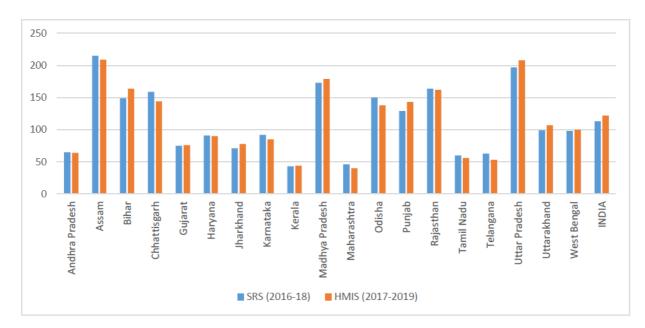




Figure 3. Univariate Moran's I for Maternal Mortality Ration in India.

Figure 4. Percentage of reported live births out of estimated live births by states in HMIS, 2017-19.

Figure 5. Correspondence between MMR estimates from SRS and HMIS.



Figure 6. Correlation between IMR estimates from SRS and MMR estimates from HMIS.

Tables

Table 1. Description of	the study variables	
Variable	Definition	Data source
MMR	Death of women due to pregnancy or within 42 days of termination of pregnancy, irrespective of the duration and site of the pregnancy, from any cause related to or aggravated by the pregnancy or its management but not from accidental or incidental causes. Maternal Mortality Ratio (MMR) is measured as deaths for 100000 live births.	Authors estimation from HMIS
HII	Multidimensional measure calculated using information collected for rural health infrastructures on several items: number of district hospitals, Community Health Centers (CHCs), Primary Health Centers (PHCs), Sub-Centers (SCs), doctors, nurses, auxiliary nurse midwife (ANM), accredited Social Health Activist (ASHA), Anganwadi Worker (AWW) per 1000 population. We used the model of HDI for estimating dimension-free numbers then aggregated them to generate Health Infrastructure Index (HII). The HII is adjusted for the share of the urban population in ordered to give weightage to urban health infrastructure (especially private health infrastructure). Weight is equivalent to the share of the urban population in the district.	Author's estimation from Rural Health Statistics reports of India.
4 or more ANCs	Percentage of women who received four or more antenatal care services.	Authors estimation from NFHS (2015-16)
PNCs	Percentage of women who received postnatal care within 48 hours.	Authors estimation from NFHS (2015-16)
Institutional delivery	Percentage of women delivered a child in hospital settings.	Authors estimation from NFHS (2015-16)
Contraception	Percentage of women currently using any modern method of contraception	Authors estimation from NFHS (2015-16)
BMI	Body Mass Index (BMI) is the height for weight score of adult women in the age group 15-49 years.	Authors estimation from NFHS (2015-16)
Anaemic	Haemoglobin levels below (<12 mg/dl for non-pregnant and <11 mg/dl for pregnant) are considered anaemic.	Authors estimation from NFHS (2015-16)
Mean age at first marriage	Age at first marriage as reported by women in years	Authors estimation from NFHS (2015-16)
Mean age at first birth	Age at first birth as reported by women in years	Authors estimation from NFHS (2015-16)
Sex ratio at birth (SRB)	Number of girls per 1000 boys at the time of birth	Authors estimation from NFHS (2015-16)
Mean children ever born (CEB)	Mean number of children ever born per woman	Authors estimation from NFHS (2015-16)
10 or more years of schooling	Percentage of women who have completed 10 years or more schooling.	Authors estimation from NFHS (2015-16)
Average household size	The average number of persons living in a household	Authors estimation from NFHS (2015-16)
Urban Population	Share of the urban population in a district	Authors estimation from NFHS (2015-16)
Poor household economic status	Share of poor households derived from the wealth index. The wealth index is derived by assigning scores based on the number and kinds of consumer goods they own, ranging from a television to a bicycle or car, and housing characteristics such as the source of drinking water, toilet facilities, and flooring materials. These scores are derived using principal component analysis. National wealth quintiles are compiled by assigning the household score to each usual (de jure) household member, ranking each person in the household population by their score, and then dividing the distribution into five equal categories, each with 20 percent of the population. We have considered the first two quintiles as relatively poor households ¹⁷ .	Authors estimation from NFHS (2015-16)

Variable	Obs	Mean	Std.Dev.	Min	Max
Maternal Mortality Ratio	639	142.21	127.84	0	1671
HII	640	0.540	0.37	0.09	5.55
4 or more ANCs (%)	640	52.46	26.01	0.85	99.14
PNCs within 48 hours of delivery (%)	640	62.71	17.70	0.	100.
Institutional delivery (%)	640	80.34	16.61	10.25	100
Contraception (%)	640	50.84	17.16	2.73	84.81
Body Mass Index	640	17.62	8.76	1.17	45.06
Anaemic (%)	640	51.58	12.09	13.85	82.77
Mean age at Marriage	640	18.62	1.36	15.64	23.38
Mean age at first birth	640	20.60	1.02	18.24	24.99
Mean Children Ever Born	640	2.46	0.44	1.57	3.82
10 or more years of schooling (%)	640	28.13	14.26	5.6	86.47
Sex Ratio at Birth	626	925.11	110.86	600	1537
Average household size	640	5.68	0.76	3.98	8.45
Scheduled Castes/Tribes Population	640	38.16	23.27	0.70	100
(%)					
Urban Population (%)	640	27.33	21.66	0	100
Poor households (%)	640	40.65	25.73	0.12	90.55

Table 2. Descriptive statistics of the study variables

Note: Obs. - observations, Std.Dev.- Standard deviation, Min- Minimum, Max- Maximum, ANC - Antenatal care, PNC

- Postnatal care

Table 3. Log-linear regression es	(1)	(2)	(3)	(4)	(5)	(6)
VARIABLES	Model 1	Model 2	Model 3	Model 4	Model 5	Model 6
VANIADELS	Model 1		WOULD 3	WOUCH 4		Would b
НІІ		-0.551***			-0.494***	-0.535***
		(0.106)			(0.154)	(0.155)
4 or more ANCs	-0.273***	-0.0477			0.181	0.142
	(0.102)	(0.109)			(0.134)	(0.137)
PNCs within 48 hours of	-0.211	-0.279*			-0.379**	-0.370**
delivery	0.211	0.275			0.575	0.370
delivery	(0.162)	(0.159)			(0.157)	(0.158)
Institutional delivery	0.323	0.316			0.386	0.485
institutional delivery	(0.299)	(0.293)			(0.324)	(0.325)
Age at marriage	(0.299)	(0.293)	-1.662		-1.241	0.355
Age at mainage			(2.346)		(2.767)	(2.848)
Ago at first birth			(2.340) 7.905**		(2.707) 8.853**	(2.848) 7.431**
Age at first birth						
Contropostion			(3.094)		(3.537)	(3.591) 0.134
Contraception use			0.219*		0.152	
Children aven harr			(0.120)		(0.132)	(0.132)
Children ever born			1.822***		1.944***	1.589***
			(0.332)		(0.444)	(0.596)
BMI			0.437***		0.406***	0.357***
			(0.113)		(0.134)	(0.138)
Anaemic			0.223		0.303	0.253
			(0.204)		(0.200)	(0.201)
10 or more years of schooling						-0.437***
						(0.155)
Sex ratio at birth				-1.218***	-1.078***	-1.073***
				(0.416)	(0.401)	(0.400)
Average household size						-0.0438
						(0.594)
SC/ST population				-0.0144	0.188**	0.146
				(0.0866)	(0.0933)	(0.0943)
Urban population				0.0412	0.287***	0.326***
				(0.0767)	(0.0930)	(0.0939)
Poor household economic				0.215***	0.0195	-0.0464
status						
				(0.0565)	(0.0810)	(0.0862)
District dummy					Yes	Yes
-						
Constant	4.987***	4.013***	-19.06***	12.03***	-18.74***	-17.08***
	(1.010)	(1.008)	(4.442)	(2.868)	(5.471)	(5.487)
Observations	638	638	640	623	621	621
	0.018	0.058	0.110	0.042	0.176	0.187
R-squared Note: ANC – Antenatal care, PNC – Pos						

errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1

Supporting Information

Supplementary Table 1. STROBE Checklist. STROBE, strengthening the reporting of observational studies or cross-sectional studies in epidemiology

	Item No	Recommendation	Page No
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in	Page no. 1
		the title or the abstract	
		(b) Provide in the abstract an informative and balanced	Page no. 1
		summary of what was done and what was found	
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the	Page no. 3
		investigation being reported	
Objectives	3	State-specific objectives, including any prespecified hypotheses	Page no. 4
Methods			
Study design	4	Present key elements of study design early in the paper	Page no. 4
Setting	5	Describe the setting, locations, and relevant dates, including	Page no. 4
0		periods of recruitment, exposure, follow-up, and data collection	C
Participants	6	(<i>a</i>) Give the eligibility criteria, and the sources and methods of	Page no. 4
1		selection of participants	C
Variables	7	Clearly define all outcomes, exposures, predictors, potential	Page no. 5
		confounders, and effect modifiers. Give diagnostic criteria, if	U U
		applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of	Page no. 4 and 5
measurement		methods of assessment (measurement). Describe comparability	
		of assessment methods if there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	Page no. 4
Study size	10	Explain how the study size was arrived at	Page no. 4
Quantitative	11	Explain how quantitative variables were handled in the	Page no. 5
variables		analyses. If applicable, describe which groupings were chosen	
		and why	
Statistical methods	12	(a) Describe all statistical methods, including those used to	Page no. 5 and 6
		control for confounding	
		(b) Describe any methods used to examine subgroups and	Page no. 5 and 6
		interactions	
		(c) Explain how missing data were addressed	Page no. 5 and 6
		(d) If applicable, describe analytical methods taking account of	Page no. 5 and 6
		sampling strategy	
		(<u>e</u>) Describe any sensitivity analyses	Page no. 8
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg	NA
		numbers potentially eligible, examined for eligibility, confirmed	
		eligible, included in the study, completing follow-up, and	
		analysed	
		(b) Give reasons for non-participation at each stage	NA

All rights reserved. No reuse allowed without permission.

		(c) Consider use of a flow diagram	NA
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic,	Page no. 6, Table 1
		clinical, social) and information on exposures and potential	and Table 2
		confounders	
		(b) Indicate number of participants with missing data for each	Page no. 6, Table 1.
		variable of interest	
Outcome data	15*	Report numbers of outcome events or summary measures	Page no. 6, Table 1.
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-	Page no. 6 to Page
		adjusted estimates and their precision (eg, 95% confidence	no. 9. Table 3 and
		interval). Make clear which confounders were adjusted for and	Figure 1, 2, 3
		why they were included	
		(b) Report category boundaries when continuous variables were	NA
		categorized	
		(c) If relevant, consider translating estimates of relative risk into	NA
		absolute risk for a meaningful time period	
Other analyses	17	Report other analyses done-eg analyses of subgroups and	Page no. 8, Figure 4
		interactions, and sensitivity analyses	and Figure 5.
Discussion			
Key results	18	Summarise key results with reference to study objectives	Page no. 10
Limitations	19	Discuss limitations of the study, taking into account sources of	Page no. 10
		potential bias or imprecision. Discuss both direction and	
		magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering	Page no. 10
		objectives, limitations, multiplicity of analyses, results from	
		similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study	Page no. 10 and 11
		results	
Other information			
Funding	22	Give the source of funding and the role of the funders for the	Page no. 11.
		present study and, if applicable, for the original study on which	
		the present article is based	

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

Sr. No	States	SRS (2014-16)	SRS (2016-18)	HMIS (2017- 2019)
1	A & N Islands			275
2	Andhra Pradesh	74	65	64
3	Arunachal Pradesh			284
4	Assam	237	215	209
5	Bihar	165	149	164
6	Chandigarh			15
7	Chhattisgarh*		159	144
8	Dadra & Nagar Haveli			61
9	Daman & Diu			48
10	Delhi			162
11	Goa			91
12	Gujarat	91	75	76
13	Haryana	101	91	90
14	Himachal Pradesh			127
15	Jammu & Kashmir			151
16	Jharkhand*		71	78
17	Karnataka	108	92	85
18	Kerala	46	43	44
19	Lakshadweep			208
20	Madhya Pradesh	173	173	179
21	Maharashtra	61	46	40
22	Manipur			282
23	Meghalaya			266
24	Mizoram			131
25	Nagaland			143
26	Odisha	180	150	138
27	Puducherry			41
28	Punjab	122	129	143
29	Rajasthan	199	164	162
30	Sikkim			228
31	Tamil Nadu	66	60	56
32	Telangana	81	63	53
33	Tripura			119
34	Uttar Pradesh	201	197	208
35	Uttarakhand*		99	107
36	West Bengal	101	98	100
	INDIA	130	113	122

Supplementary Table 2. State-wise estimates of MMR from SRS and HMIS

*Separate MMR estimates for these states are not available as they were merged with their parent states for SRS bulletin 2014-16

	ementary Table 3. District-wise	Estimates of WINK Ifom HMI	.0
Sr. No.	District	State/Union Territory	MMR
1	Nicobars	Andaman & Nicobar	101
2	North & Middle Andaman	Andaman & Nicobar	605
3	South Andaman	Andaman & Nicobar	159
4	Anantapur	Andhra Pradesh	45
5	Chittoor	Andhra Pradesh	57
6	East Godavari	Andhra Pradesh	79
7	Guntur	Andhra Pradesh	89
8	Krishna	Andhra Pradesh	74
9	Kurnool	Andhra Pradesh	87
10	Prakasam	Andhra Pradesh	38
11	Sri Potti Sriramulu Nellore	Andhra Pradesh	40
12	Srikakulam	Andhra Pradesh	32
13	Visakhapatnam	Andhra Pradesh	129
14	Vizianagaram	Andhra Pradesh	38
15	West Godavari	Andhra Pradesh	29
16	Y.S.R.	Andhra Pradesh	40
17	Anjaw	Arunachal Pradesh	0
18	Dibang Valley	Arunachal Pradesh	0
19	Kurung Kumey	Arunachal Pradesh	0
20	Lohit	Arunachal Pradesh	184
21	Lower Dibang Valley	Arunachal Pradesh	336
22	Changlang	Arunachal Pradesh	0
23	East Kameng	Arunachal Pradesh	284
24	East Siang	Arunachal Pradesh	403
25	Lower Subansiri	Arunachal Pradesh	0
26	Papum Pare	Arunachal Pradesh	298
27	Tawang	Arunachal Pradesh	364
28	Tirap	Arunachal Pradesh	1671
29	Upper Siang	Arunachal Pradesh	0
30	Upper Subansiri	Arunachal Pradesh	247
31	West Kameng	Arunachal Pradesh	256
32	West Siang	Arunachal Pradesh	0
33	Baksa	Assam	107
34	Barpeta	Assam	150
35	Bongaigaon	Assam	139
36	Cachar	Assam	431
37	Chirang	Assam	170
38	Darrang	Assam	120
39	Dhemaji	Assam	109
40	Dhubri	Assam	186
41	Dibrugarh	Assam	379
42	Dima Hasao	Assam	232
43	Goalpara	Assam	179
44	Golaghat	Assam	296
45	Hailakandi	Assam	169
46	Jorhat	Assam	170
47	Kamrup	Assam	409
- + /	ixannup	rissam	1 07

Supplementary Table 3. District-wise Estimates of MMR from HMIS

48	Kamrup Metropolitan	Assam	143
49	Karbi Anglong	Assam	200
50	Karimganj	Assam	310
51	Kokrajhar	Assam	365
52	Lakhimpur	Assam	73
53	Morigaon	Assam	142
54	Nagaon	Assam	134
55	Nalbari	Assam	88
56	Sivasagar	Assam	141
57 58	Sonitpur Tinsukia	Assam	246
58 50		Assam	81
59 60	Udalguri Araria	Assam	225
60 61		Bihar Bihar	103
61 62	Arwal		452
	Aurangabad Banka	Bihar	98 425
63 64		Bihar	425 61
	Begusarai	Bihar Bihar	
65 66	Bhagalpur		787
66 67	Bhojpur	Bihar	175
67 68	Buxar	Bihar	312
68 60	Darbhanga	Bihar	39 162
69 70	Gaya	Bihar	163
70	Gopalganj	Bihar	145
71	Jamui	Bihar	197
72	Jehanabad	Bihar	245
73	Kaimur (Bhabua)	Bihar	221
74 75	Katihar	Bihar	64 26
75 76	Khagaria	Bihar	26
76 77	Kishanganj	Bihar	190
77 79	Lakhisarai	Bihar	87
78 70	Madhepura Madhepura	Bihar	25
79 80	Madhubani Mun aan	Bihar	112
80 81	Munger	Bihar	241
81	Muzaffarpur	Bihar	83
82	Nalanda	Bihar	69 50
83	Nawada	Bihar	50
84	Pashchim Champaran	Bihar	64
85	Patna Parka Chamanan	Bihar	544
86 87	Purba Champaran	Bihar	136
87	Purnia	Bihar	122
88	Rohtas	Bihar	137
89	Saharsa	Bihar	44
90	Samastipur	Bihar	181
91	Saran	Bihar	59
92 02	Sheikhpura	Bihar	103
93 04	Sheohar	Bihar	121
94 05	Sitamarhi	Bihar	42
95	Siwan	Bihar	119
96 07	Supaul	Bihar	140
97	Vaishali	Bihar	47

0.0	Chardizarh	Chandisark	15
98	Chandigarh	Chandigarh Chlattiagach	15
99 100	Bastar	Chhattisgarh	248
100	Bijapur	Chhattisgarh	423
101	Bilaspur	Chhattisgarh	121
102	Dakshin Bastar Dantewada	Chhattisgarh	247
103	Dhamtari	Chhattisgarh	275
104	Durg	Chhattisgarh	98
105	Janjgir - Champa	Chhattisgarh	34
106	Jashpur	Chhattisgarh	176
107	Kabeerdham	Chhattisgarh	89
108	Korba	Chhattisgarh	121
109	Koriya	Chhattisgarh	234
110	Mahasamund	Chhattisgarh	136
111	Narayanpur	Chhattisgarh	184
112	Raigarh	Chhattisgarh	202
113	Raipur	Chhattisgarh	143
114	Rajnandgaon	Chhattisgarh	164
115	Surguja	Chhattisgarh	211
116	Uttar Bastar Kanker	Chhattisgarh	220
117	Dadra and Nagar Haveli	Dadra and Nagar Haveli	61
118	Daman	Daman & Diu	22
119	Diu	Daman & Diu	122
120	Central	Delhi	151
121	East	Delhi	270
122	New	Delhi	347
123	North	Delhi	93
124	North East	Delhi	153
125	North West	Delhi	198
126	South	Delhi	163
127	South West	Delhi	32
128	West	Delhi	181
129	North Goa	Goa	152
130	South Goa	Goa	15
131	Ahmadabad	Gujarat	70
132	Amreli	Gujarat	46
133	Anand	Gujarat	112
134	Banas Kantha	Gujarat	46
135	Bharuch	Gujarat	83
136	Bhavnagar	Gujarat	55
130	Dohad	Gujarat	50
137	Gandhinagar	Gujarat	51
130	Jamnagar	Gujarat	106
140	Junagadh	Gujarat	31
140	Kachchh	Gujarat	95
142	Kheda	Gujarat	49
142	Mahesana	Gujarat	49 62
143	Narmada	Gujarat	80
144	Navsari		80 58
143 146	Panch Mahals	Gujarat Gujarat	
146 147		Gujarat Gujarat	101 80
14/	Patan	Gujarat	00

140	Dorhondon	Cariorat	70
148	Porbandar Doiltet	Gujarat	78 69
149 150	Rajkot Seber Konthe	Gujarat	
150	Sabar Kantha	Gujarat	60 54
151	Surat	Gujarat	54 71
152	Surendranagar	Gujarat	71
153	Tapi The Dance	Gujarat	84 156
154	The Dangs	Gujarat	156
155	Vadodara	Gujarat	195
156	Valsad	Gujarat	62
157	Ambala	Haryana	58
158	Bhiwani Easidahad	Haryana	105
159	Faridabad	Haryana	55
160	Fatehabad	Haryana	121
161	Gurgaon	Haryana	105
162	Hisar	Haryana	86
163	Jhajjar	Haryana	98 02
164	Jind	Haryana	93
165	Kaithal	Haryana	74
166	Karnal	Haryana	125
167	Kurukshetra	Haryana	82
168	Mahendragarh	Haryana	87
169	Mewat	Haryana	111
170	Palwal	Haryana	120
171	Panchkula	Haryana	35
172	Panipat	Haryana	101
173	Rewari	Haryana	59
174	Rohtak	Haryana	117
175	Sirsa	Haryana	88
176	Sonipat	Haryana	67
177	Yamunanagar	Haryana	93
178	Bilaspur	Himachal Pradesh	183
179	Chamba	Himachal Pradesh	150
180	Hamirpur	Himachal Pradesh	64
181	Kangra	Himachal Pradesh	103
182	Kinnaur	Himachal Pradesh	0
183	Kullu	Himachal Pradesh	223
184	Lahul & Spiti	Himachal Pradesh	0
185	Mandi	Himachal Pradesh	92
186	Shimla	Himachal Pradesh	109
187	Sirmaur	Himachal Pradesh	219
188	Solan	Himachal Pradesh	167
189	Una	Himachal Pradesh	102
190	Anantnag	J&K	97
191	Badgam	J&K	194
192	Bandipore	J&K	330
193	Baramula	J&K	182
194	Doda	J&K	15
195	Ganderbal	J&K	53
196	Jammu	J&K	120
197	Kargil	J&K	41

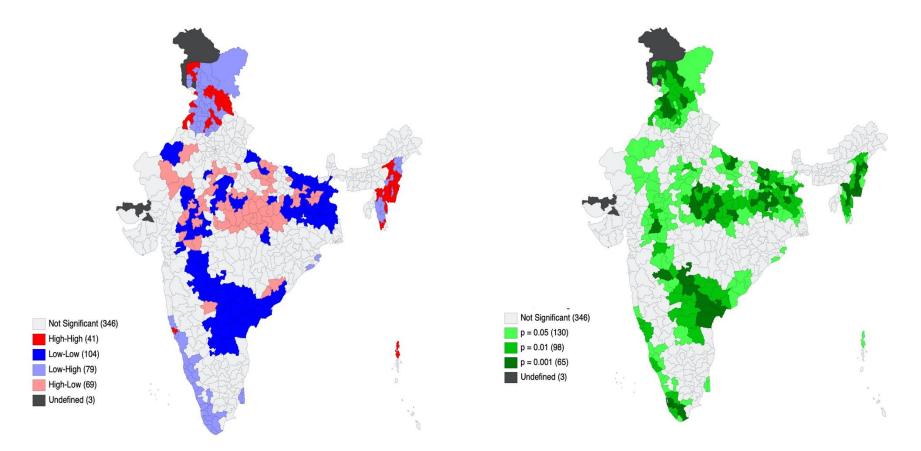
198	Kathua	J&K	57
198 199	Kishtwar	J&K J&K	103
200	Kulgam	J&K J&K	218
200	Kupwara	J&K J&K	181
201	Leh(Ladakh)	J&K J&K	50
202	Pulwama	J&K J&K	145
203 204	Punch	J&K	143
204	Rajouri	J&K	43
205	Ramban	J&K	35
200	Reasi	J&K	0
208	Samba	J&K	341
209	Shupiyan	J&K	962
210	Srinagar	J&K	137
211	Udhampur	J&K	141
212	Bokaro	Jharkhand	30
212	Chatra	Jharkhand	56
214	Deoghar	Jharkhand	56
215	Dhanbad	Jharkhand	29
216	Dumka	Jharkhand	109
217	Garhwa	Jharkhand	51
218	Giridih	Jharkhand	39
219	Godda	Jharkhand	47
220	Gumla	Jharkhand	158
221	Hazaribagh	Jharkhand	73
222	Jamtara	Jharkhand	83
223	Khunti	Jharkhand	144
224	Kodarma	Jharkhand	50
225	Latehar	Jharkhand	115
226	Lohardaga	Jharkhand	118
227	Pakur	Jharkhand	126
228	Palamu	Jharkhand	70
229	Pashchimi Singhbhum	Jharkhand	111
230	Purbi Singhbhum	Jharkhand	59
231	Ramgarh	Jharkhand	65
232	Ranchi	Jharkhand	78
233	Sahibganj	Jharkhand	77
234	Saraikela-Kharsawan	Jharkhand	77
235	Simdega	Jharkhand	108
236	Bagalkot	Karnataka	48
237	Bangalore	Karnataka	59
238	Bangalore Rural	Karnataka	78
239	Belgaum	Karnataka	104
240	Bellary	Karnataka	155
241	Bidar	Karnataka	53
242	Bijapur	Karnataka	55
243	Chamarajanagar	Karnataka	44
244	Chikkaballapura	Karnataka	63
245	Chikmagalur	Karnataka	58
246	Chitradurga	Karnataka	89
247	Dakshina Kannada	Karnataka	89

248	Davanagere	Karnataka	108
249 249	Dharwad	Karnataka	209
250	Gadag	Karnataka	65
250 251	Gulbarga	Karnataka	165
252	Hassan	Karnataka	60
252	Haveri	Karnataka	79
255 254	Kodagu	Karnataka	64
255	Kolar	Karnataka	56
256	Koppal	Karnataka	70
257	Mandya	Karnataka	73
258	Mysore	Karnataka	85
259	Raichur	Karnataka	127
260	Ramanagara	Karnataka	81
261	Shimoga	Karnataka	95
262	Tumkur	Karnataka	86
263	Udupi	Karnataka	83
263	Uttara Kannada	Karnataka	46
265	Yadgir	Karnataka	74
266	Alappuzha	Kerala	13
267	Ernakulam	Kerala	34
268	Idukki	Kerala	45
269	Kannur	Kerala	19
270	Kasargod	Kerala	24
271	Kollam	Kerala	101
272	Kottayam	Kerala	118
273	Kozhikode	Kerala	65
274	Malappuram	Kerala	37
275	Palakkad	Kerala	20
276	Pathanamthitta	Kerala	13
277	Thiruvananthapuram	Kerala	28
278	Thrissur	Kerala	43
279	Wayanad	Kerala	61
280	Lakshdweep	Lakshdweep	208
281	Alirajpur	Madhya Pradesh	191
282	Anuppur	Madhya Pradesh	392
283	Ashoknagar	Madhya Pradesh	243
284	Balaghat	Madhya Pradesh	181
285	Barwani	Madhya Pradesh	187
286	Betul	Madhya Pradesh	169
287	Bhind	Madhya Pradesh	134
288	Bhopal	Madhya Pradesh	359
289	Burhanpur	Madhya Pradesh	252
290	Chhatarpur	Madhya Pradesh	92
291	Chhindwara	Madhya Pradesh	199
292	Damoh	Madhya Pradesh	161
293	Datia	Madhya Pradesh	161
294	Dewas	Madhya Pradesh	105
295	Dhar	Madhya Pradesh	131
296	Dindori	Madhya Pradesh	169
297	Guna	Madhya Pradesh	80
-			

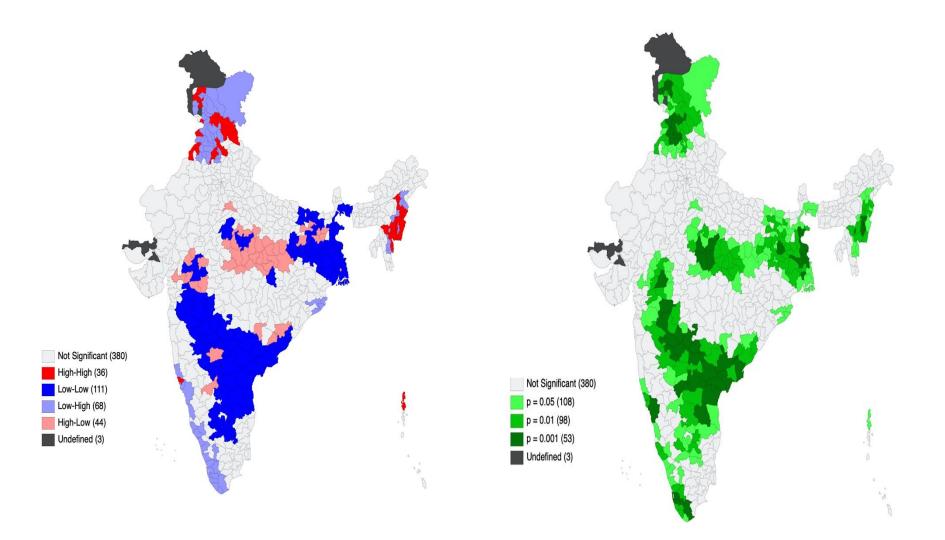
200			124
298	Gwalior	Madhya Pradesh	134
299	Harda	Madhya Pradesh	113
300	Hoshangabad	Madhya Pradesh	102
301	Indore	Madhya Pradesh	106
302	Jabalpur	Madhya Pradesh	435
303	Jhabua Katui	Madhya Pradesh	102
304	Katni Khanduua (Faat Nimar)	Madhya Pradesh	282
305	Khandwa (East Nimar)	Madhya Pradesh	111
306	Khargone (West Nimar)	Madhya Pradesh	148
307	Mandla Mandaaun	Madhya Pradesh	208
308	Mandsaur	Madhya Pradesh	97 122
309	Morena	Madhya Pradesh	123
310	Narsimhapur	Madhya Pradesh	437
311	Neemuch	Madhya Pradesh	157
312	Panna	Madhya Pradesh	206
313	Raisen	Madhya Pradesh	171
314	Rajgarh	Madhya Pradesh	81
315	Ratlam	Madhya Pradesh	89
316	Rewa	Madhya Pradesh	181
317	Sagar	Madhya Pradesh	235
318	Satna	Madhya Pradesh	155
319	Sehore	Madhya Pradesh	79
320	Seoni	Madhya Pradesh	204
321	Shahdol	Madhya Pradesh	302
322	Shajapur	Madhya Pradesh	97
323	Sheopur	Madhya Pradesh	170
324	Shivpuri	Madhya Pradesh	108
325	Sidhi	Madhya Pradesh	219
326	Singrauli	Madhya Pradesh	149
327	Tikamgarh	Madhya Pradesh	97
328	Ujjain	Madhya Pradesh	153
329	Umaria	Madhya Pradesh	171
330	Vidisha	Madhya Pradesh	236
331	Ahmadnagar	Maharashtra	29
332	Akola	Maharashtra	66
333	Amravati	Maharashtra	52
334	Aurangabad	Maharashtra	51
335	Bhandara	Maharashtra	30
336	Bid	Maharashtra	14
337	Buldana	Maharashtra	18
338	Chandrapur	Maharashtra	45
339	Dhule	Maharashtra	40
340	Gadchiroli	Maharashtra	43
341	Gondiya	Maharashtra	37
342	Hingoli	Maharashtra	13
343	Jalgaon	Maharashtra	22
344	Jalna	Maharashtra	13
345	Kolhapur	Maharashtra	38
346	Latur	Maharashtra	19
347	Mumbai	Maharashtra	97
517	1.1uilioui	IVIAIIAI ADIILI A	71

240	M		0
348	Mumbai Suburban	Maharashtra Maharashtra	0
349	Nagpur Nanded		163
350		Maharashtra	23
351	Nandurbar	Maharashtra	76 52
352	Nashik	Maharashtra	52 22
353	Osmanabad	Maharashtra	22
354	Parbhani	Maharashtra	8
355	Pune	Maharashtra	49 26
356	Raigarh	Maharashtra	36
357	Ratnagiri	Maharashtra	22
358	Sangli	Maharashtra	50
359	Satara	Maharashtra	31
360	Sindhudurg	Maharashtra	62 20
361	Solapur	Maharashtra	29 26
362	Thane	Maharashtra	26
363	Wardha	Maharashtra	97
364	Washim	Maharashtra	7
365	Yavatmal	Maharashtra	35
366	Bishnupur	Manipur	255
367	Chandel	Manipur	150
368	Churachandpur	Manipur	147
369	Imphal East	Manipur	80
370	Imphal West	Manipur	317
371	Senapati	Manipur	207
372	Tamenglong	Manipur	529
373	Thoubal	Manipur	97
374	Ukhrul	Manipur	332
375	East Garo Hills	Meghalaya	311
376	East Khasi Hills	Meghalaya	200
377	Jaintia Hills	Meghalaya	212
378	Ribhoi	Meghalaya	227
379	South Garo Hills	Meghalaya	590
380	West Garo Hills	Meghalaya	317
381	West Khasi Hills	Meghalaya	253
382	Aizawl	Mizoram	97
383	Champhai	Mizoram	335
384	Kolasib	Mizoram	40
385	Lawngtlai	Mizoram	195
386	Lunglei	Mizoram	113
387	Mamit	Mizoram	40
388	Saiha	Mizoram	220
389	Serchhip	Mizoram	67
390	Dimapur	Nagaland	217
391	Kiphire	Nagaland	192
392	Kohima	Nagaland	133
393	Longleng	Nagaland	99
394	Mokokchung	Nagaland	132
395	Mon	Nagaland	58
396	Peren	Nagaland	54
397	Phek	Nagaland	194

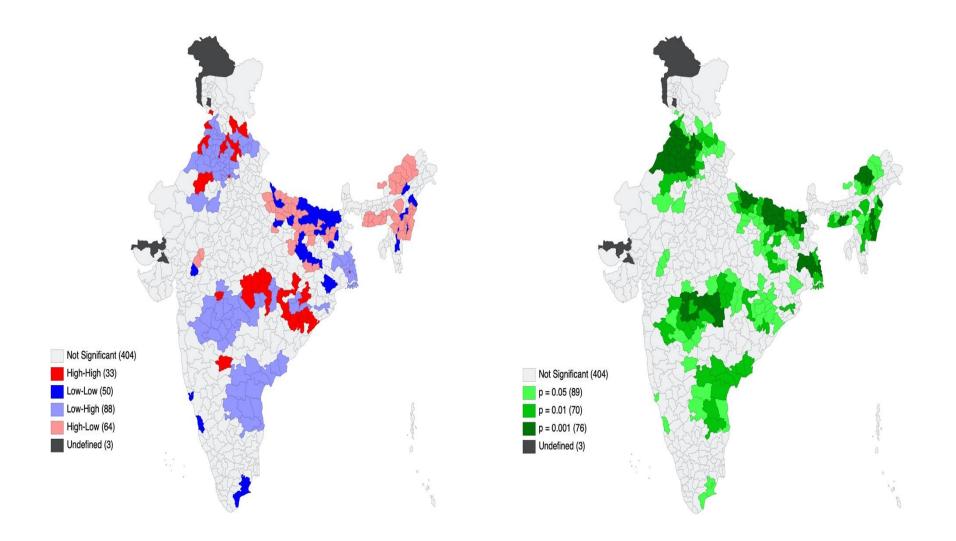
398	Tuensang	Nagaland	88
399	Wokha	Nagaland	156
400	Zunheboto	Nagaland	150
401	Anugul	Odisha	192
402	Balangir	Odisha	122
403	Baleshwar	Odisha	108
404	Bargarh	Odisha	77
405	Baudh	Odisha	81
406	Bhadrak	Odisha	48
407	Cuttack	Odisha	122
408	Debagarh	Odisha	158
409	Dhenkanal	Odisha	78
410	Gajapati	Odisha	168
411	Ganjam	Odisha	186
412	Jagatsinghapur	Odisha	83
413	Jajapur	Odisha	98
414	Jharsuguda	Odisha	65
415	Kalahandi	Odisha	203
416	Kandhamal	Odisha	287
417	Kendrapara	Odisha	97
418	Kendujhar	Odisha	69
419	Khordha	Odisha	45
420	Koraput	Odisha	260
421	Malkangiri	Odisha	286
422	Mayurbhanj	Odisha	139
423	Nabarangapur	Odisha	223
424	Nayagarh	Odisha	122
425	Nuapada	Odisha	301
426	Puri	Odisha	88
427	Rayagada	Odisha	180
428	Sambalpur	Odisha	327
429	Subarnapur	Odisha	255
430	Sundargarh	Odisha	111
431	Karaikal	Puducherry	32
432	Mahe	Puducherry	49
433	Pudducherry	Puducherry	45
434	Yanam	Puducherry	0
435	Amritsar	Punjab	310
436	Barnala	Punjab	89
437	Bathinda	Punjab	104
438	Faridkot	Punjab	429
439	Fatehgarh Sahib	Punjab	159
440	Firozpur	Punjab	195
441	Gurdaspur	Punjab	70
442	Hoshiarpur	Punjab	44
443	Jalandhar	Punjab	63
444	Kapurthala	Punjab	71
445	Ludhiana	Punjab	85
446	Mansa	Punjab	80
447	Moga	Punjab	44

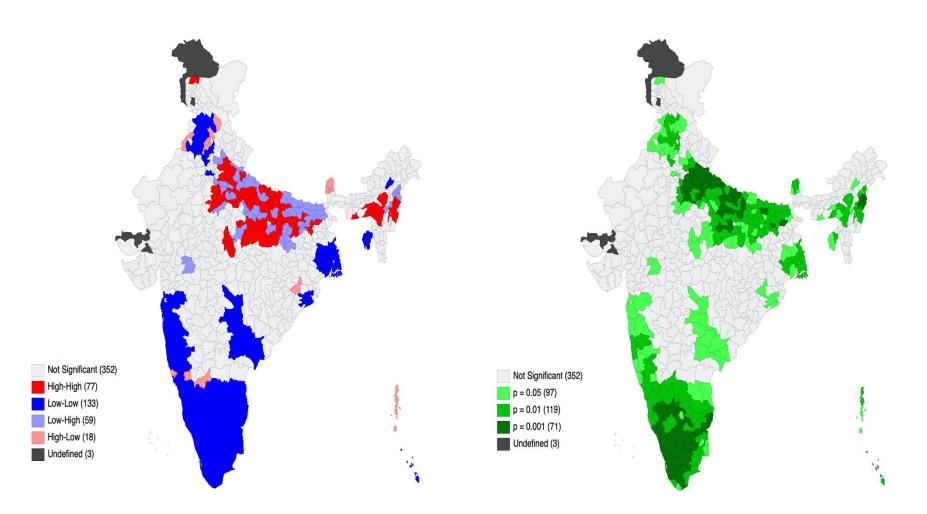

4.4.0		ו' ת	122
448	Muktsar	Punjab	133
449	Patiala	Punjab	212
450	Rupnagar	Punjab	109
451	Sahibzada Ajit Singh Nagar	Punjab	155
452	Sangrur	Punjab	64 105
453	Shahid Bhagat Singh Nagar	Punjab	105
454	Tarn Taran	Punjab	35
455	Ajmer	Rajasthan	179
456	Alwar	Rajasthan	158
457	Banswara	Rajasthan	243
458	Baran	Rajasthan	174
459	Barmer	Rajasthan	123
460	Bharatpur	Rajasthan	160
461	Bhilwara	Rajasthan	96
462	Bikaner	Rajasthan	128
463	Bundi	Rajasthan	133
464	Chittaurgarh	Rajasthan	123
465	Churu	Rajasthan	198
466	Dausa	Rajasthan	110
467	Dhaulpur	Rajasthan	208
468	Dungarpur	Rajasthan	220
469	Ganganagar	Rajasthan	104
470	Hanumangarh	Rajasthan	110
471	Jaipur	Rajasthan	102
472	Jaisalmer	Rajasthan	67
473	Jalor	Rajasthan	131
474	Jhalawar	Rajasthan	209
475	Jhunjhunun	Rajasthan	166
476	Jodhpur	Rajasthan	170
477	Karauli	Rajasthan	158
478	Kota	Rajasthan	275
479	Nagaur	Rajasthan	120
480	Pali	Rajasthan	208
481	Pratapgarh	Rajasthan	244
482	Rajsamand	Rajasthan	327
483	Sawai Madhopur	Rajasthan	136
484	Sikar	Rajasthan	117
485	Sirohi	Rajasthan	273
486	Tonk	Rajasthan	140
487	Udaipur	Rajasthan	298
488	East District	Sikkim	202
489	North District	Sikkim	376
490	South District	Sikkim	309
491	West District	Sikkim	152
492	Ariyalur	Tamil Nadu	28
493	Chennai	Tamil Nadu	76
494	Coimbatore	Tamil Nadu	117
495	Cuddalore	Tamil Nadu	39
496	Dharmapuri	Tamil Nadu	44
497	Dindigul	Tamil Nadu	21

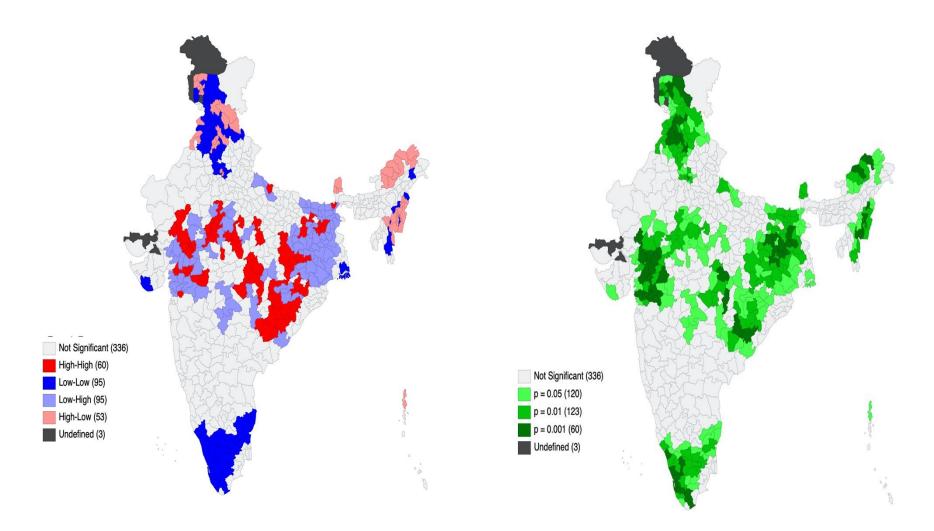
498	Erode	Tamil Nadu	43
499	Kancheepuram	Tamil Nadu	40
500	Kanniyakumari	Tamil Nadu	28
501	Karur	Tamil Nadu	9
502	Krishnagiri	Tamil Nadu	25
503	Madurai	Tamil Nadu	123
504	Nagapattinam	Tamil Nadu	25
505	Namakkal	Tamil Nadu	22
506	Perambalur	Tamil Nadu	59
507	Pudukkottai	Tamil Nadu	43
508	Ramanathapuram	Tamil Nadu	31
509	Salem	Tamil Nadu	91
510	Sivaganga	Tamil Nadu	19
511	Thanjavur	Tamil Nadu	86
512	The Nilgiris	Tamil Nadu	50
513	Theni	Tamil Nadu	49
514	Thiruvallur	Tamil Nadu	39
515	Thiruvarur	Tamil Nadu	80
516	Thoothukkudi	Tamil Nadu	53
517	Tiruchirappalli	Tamil Nadu	92
518	Tirunelveli	Tamil Nadu	72
519	Tiruppur	Tamil Nadu	28
520	Tiruvannamalai	Tamil Nadu	55
521	Vellore	Tamil Nadu	37
522	Viluppuram	Tamil Nadu	82
523	Virudhunagar	Tamil Nadu	38
524	Adilabad	Telangana	60
525	Hyderabad	Telangana	124
526	Karimnagar	Telangana	36
527	Khammam	Telangana	95
528	Mahbubnagar	Telangana	52
529	Medak	Telangana	46
530	Nalgonda	Telangana	43
531	Nizamabad	Telangana	37
532	Rangareddy	Telangana	9
533	Warangal	Telangana	49
534	Dhalai	Tripura	104
535	North Tripura	Tripura	217
536	South Tripura	Tripura	100
537	West Tripura	Tripura	93
538	Agra	Uttar Pradesh	182
539	Aligarh	Uttar Pradesh	128
540	Allahabad	Uttar Pradesh	276
541	Ambedkar Nagar	Uttar Pradesh	344
542	Auraiya	Uttar Pradesh	397
543	Azamgarh	Uttar Pradesh	122
544	Baghpat	Uttar Pradesh	140
545	Bahraich	Uttar Pradesh	140
546	Ballia	Uttar Pradesh	26
547	Balrampur	Uttar Pradesh	153
5.17	Zananpai		100

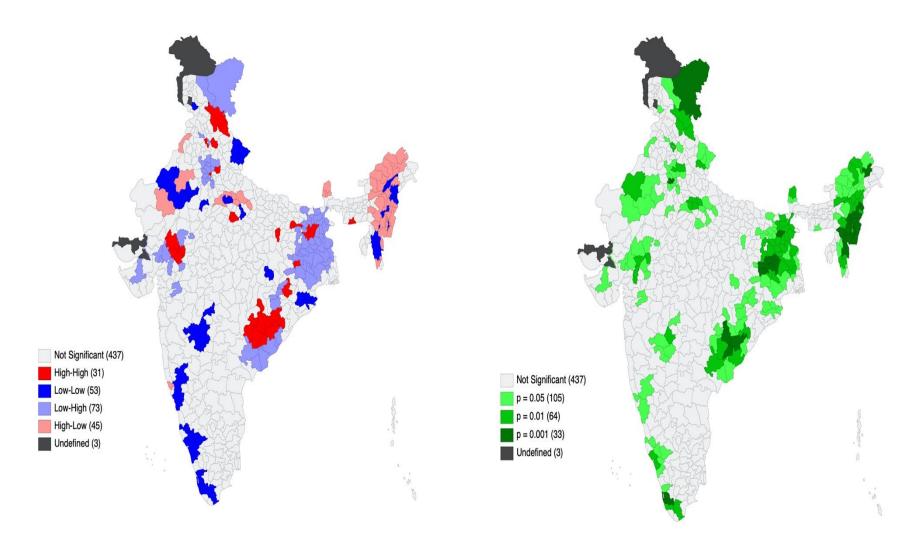

E 10	Dende	Litte a Day de els	170
548	Banda	Uttar Pradesh	179
549	Bara Banki	Uttar Pradesh	202
550	Bareilly	Uttar Pradesh	62
551	Basti	Uttar Pradesh	226
552	Bijnor	Uttar Pradesh	161
553	Budaun	Uttar Pradesh	264
554	Bulandshahr	Uttar Pradesh	149
555	Chandauli	Uttar Pradesh	158
556	Chitrakoot	Uttar Pradesh	147
557	Deoria	Uttar Pradesh	344
558	Etah	Uttar Pradesh	487
559	Etawah	Uttar Pradesh	329
560	Faizabad	Uttar Pradesh	395
561	Farrukhabad	Uttar Pradesh	173
562	Fatehpur	Uttar Pradesh	106
563	Firozabad	Uttar Pradesh	84
564	Gautam Buddha Nagar	Uttar Pradesh	73
565	Ghaziabad	Uttar Pradesh	67
566	Ghazipur	Uttar Pradesh	240
567	Gonda	Uttar Pradesh	41
568	Gorakhpur	Uttar Pradesh	272
569	Hamirpur	Uttar Pradesh	119
570	Hardoi	Uttar Pradesh	154
571	Jalaun	Uttar Pradesh	265
572	Jaunpur	Uttar Pradesh	170
573	Jhansi	Uttar Pradesh	156
574	Jyotiba Phule Nagar	Uttar Pradesh	375
575	Kannauj	Uttar Pradesh	185
576	Kanpur Dehat	Uttar Pradesh	84
577	Kanpur Nagar	Uttar Pradesh	101
578	Kanshiram Nagar	Uttar Pradesh	141
579	Kaushambi	Uttar Pradesh	254
580	Kheri	Uttar Pradesh	126
581	Kushinagar	Uttar Pradesh	83
582	Lalitpur	Uttar Pradesh	261
583	Lucknow	Uttar Pradesh	971
584	Mahamaya Nagar	Uttar Pradesh	18
585	Mahoba	Uttar Pradesh	147
586	Mahrajganj	Uttar Pradesh	219
587	Mainpuri	Uttar Pradesh	44
588	Mathura	Uttar Pradesh	191
589	Mau	Uttar Pradesh	329
590	Meerut	Uttar Pradesh	154
591	Mirzapur	Uttar Pradesh	90
592	Moradabad	Uttar Pradesh	152
593	Muzaffarnagar	Uttar Pradesh	126
594	Pilibhit	Uttar Pradesh	304
595	Pratapgarh	Uttar Pradesh	114
596	Rae Bareli	Uttar Pradesh	107
597	Rampur	Uttar Pradesh	248
-	L		-

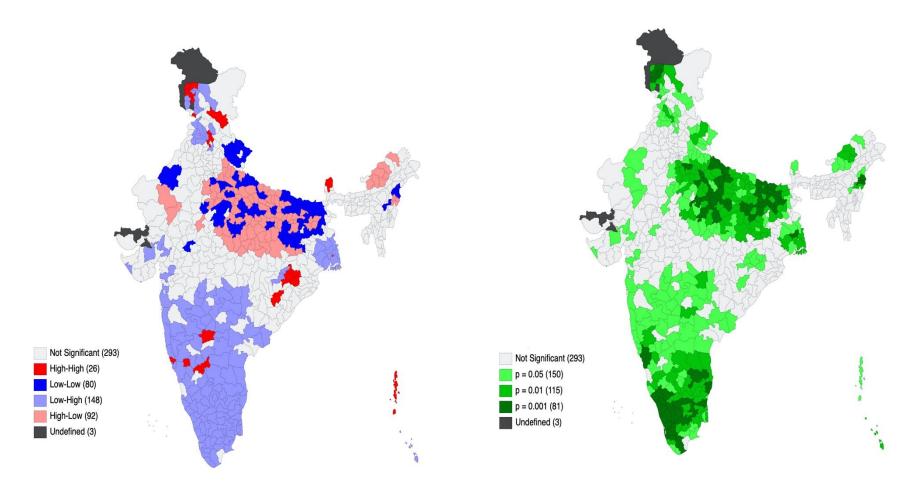
598	Saharanpur	Uttar Pradesh	160
599	Sant Kabir Nagar	Uttar Pradesh	236
600	Sant Ravidas Nagar (Bhadohi)	Uttar Pradesh	224
601	Shahjahanpur	Uttar Pradesh	118
602	Shrawasti	Uttar Pradesh	302
603	Siddharthnagar	Uttar Pradesh	194
604	Sitapur	Uttar Pradesh	278
605	Sonbhadra	Uttar Pradesh	312
606	Sultanpur	Uttar Pradesh	443
607	Unnao	Uttar Pradesh	334
608	Varanasi	Uttar Pradesh	218
609	Almora	Uttarakhand	57
610	Bageshwar	Uttarakhand	0
611	Chamoli	Uttarakhand	113
612	Champawat	Uttarakhand	202
613	Dehradun	Uttarakhand	180
614	Garhwal	Uttarakhand	45
615	Hardwar	Uttarakhand	131
616	Nainital	Uttarakhand	82
617	Pithoragarh	Uttarakhand	94
618	Rudraprayag	Uttarakhand	65
619	Tehri Garhwal	Uttarakhand	110
620	Udham Singh Nagar	Uttarakhand	88
621	Uttarkashi	Uttarakhand	61
622	Bankura	West Bengal	112
623	Barddhaman	West Bengal	104
624	Birbhum	West Bengal	103
625	Dakshin Dinajpur	West Bengal	104
626	Darjiling	West Bengal	253
627	Haora	West Bengal	121
628	Hugli	West Bengal	61
629	Jalpaiguri	West Bengal	125
630	Koch Bihar	West Bengal	114
631	Kolkata	West Bengal	146
632	Maldah	West Bengal	97
633	Murshidabad	West Bengal	137
634	Nadia	West Bengal	104
635	North Twenty Four Parganas	West Bengal	43
636	Paschim Medinipur	West Bengal	70
637	Purba Medinipur	West Bengal	38
638	Puruliya	West Bengal	82
639	South Twenty Four Parganas	West Bengal	68
640	Uttar Dinajpur	West Bengal	77

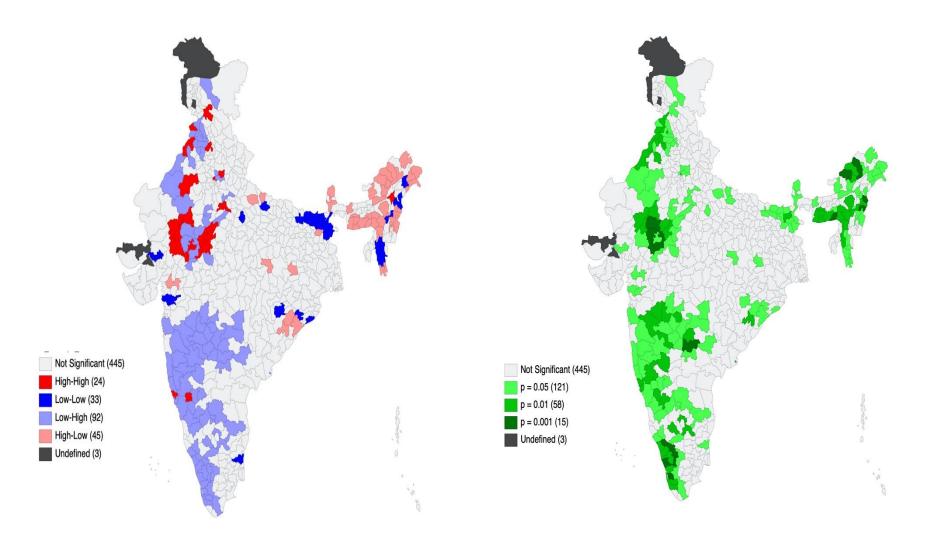

Supplementary Figure 1. Bivariate LISA (Cluster and Significance) maps depicting spatial clustering and spatial outliers of maternal mortality ratio by selected background characteristics in India

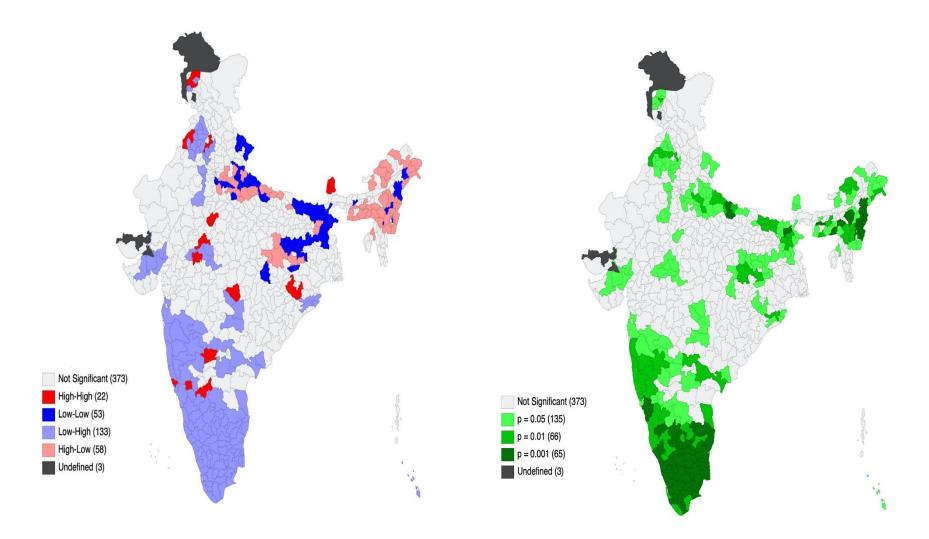

Bivariate LISA (Cluster and Significance) maps depicting spatial clustering and spatial outliers of maternal mortality ratio by mean age at marriage in India (Moran's I=0.000, p-value=0.498)

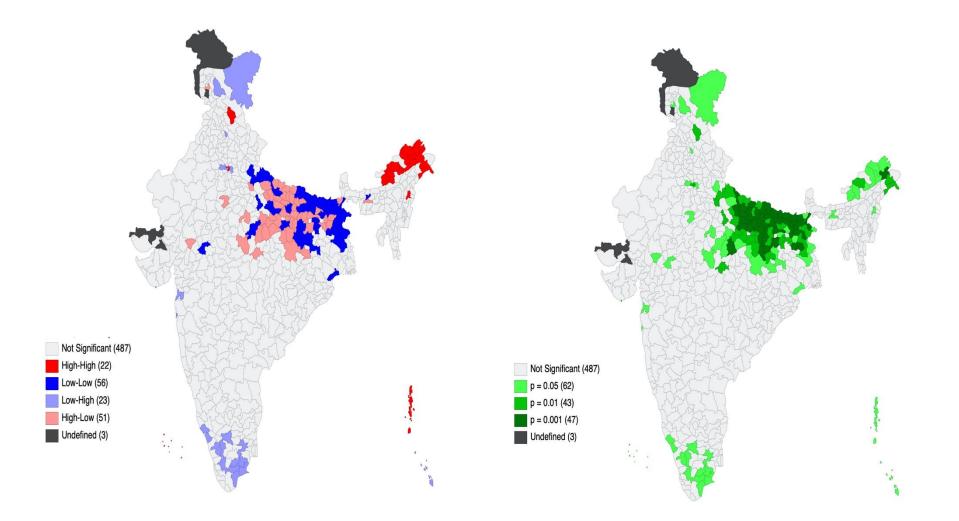

Bivariate LISA (Cluster and Significance) maps depicting spatial clustering and spatial outliers of maternal mortality ratio by mean age at first birth in India (Moran's I=0.035, p-value=0.0350)

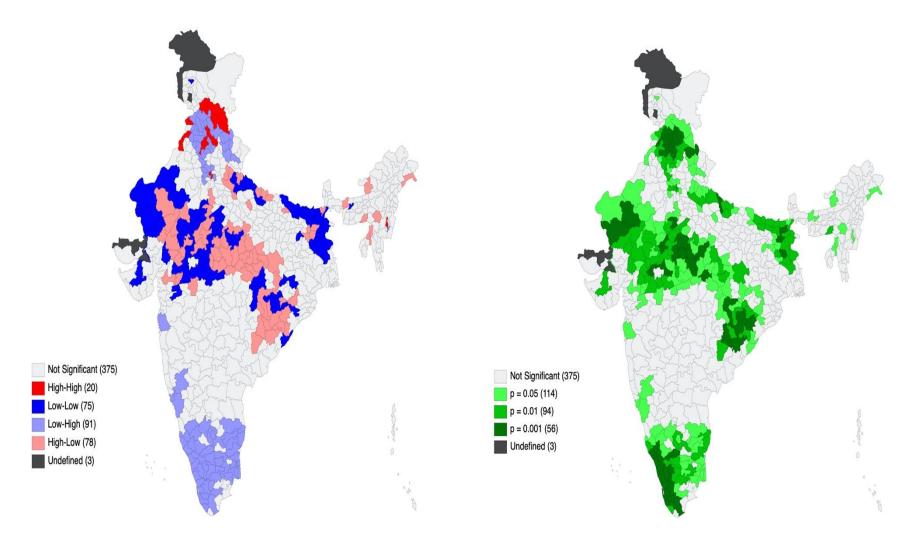

Bivariate LISA (Cluster and Significance) maps depicting spatial clustering and spatial outliers of maternal mortality ratio by contraception use in India (Moran's I=-0.166, p-value=0.001)

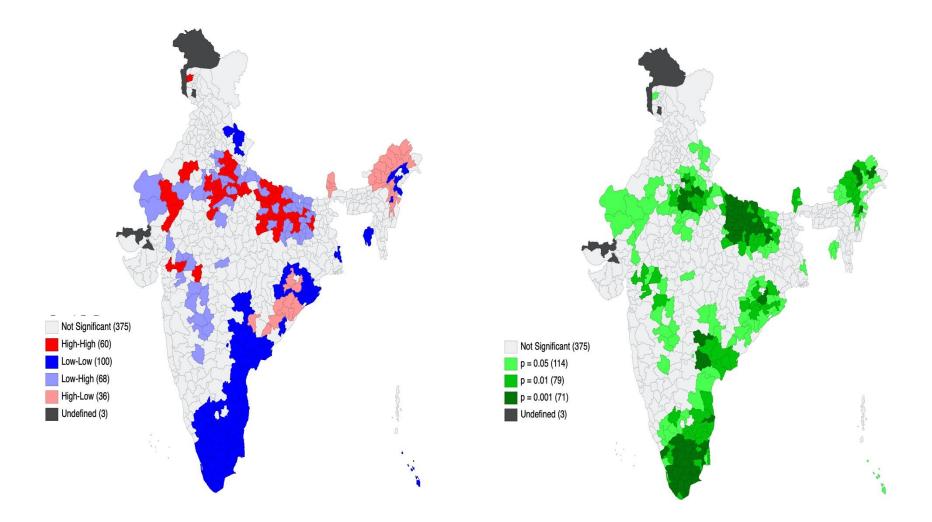

Bivariate LISA (Cluster and Significance) maps depicting spatial clustering and spatial outliers of maternal mortality ratio by mean number of children ever born in India (Moran's I=0.258, p-value=0.001)

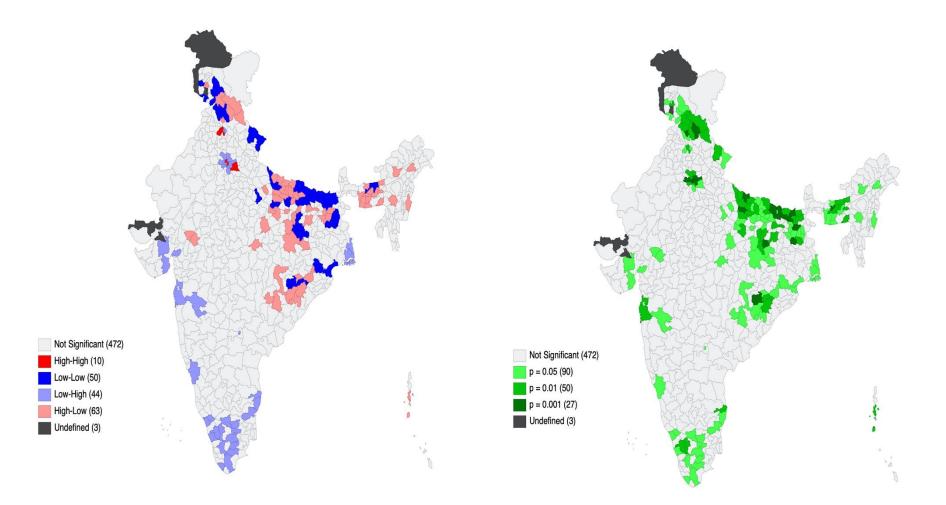

Bivariate LISA (Cluster and Significance) maps depicting spatial clustering and spatial outliers of maternal mortality ratio by percent of women underweight in India (Moran's I=0.024, p-value=0.091)

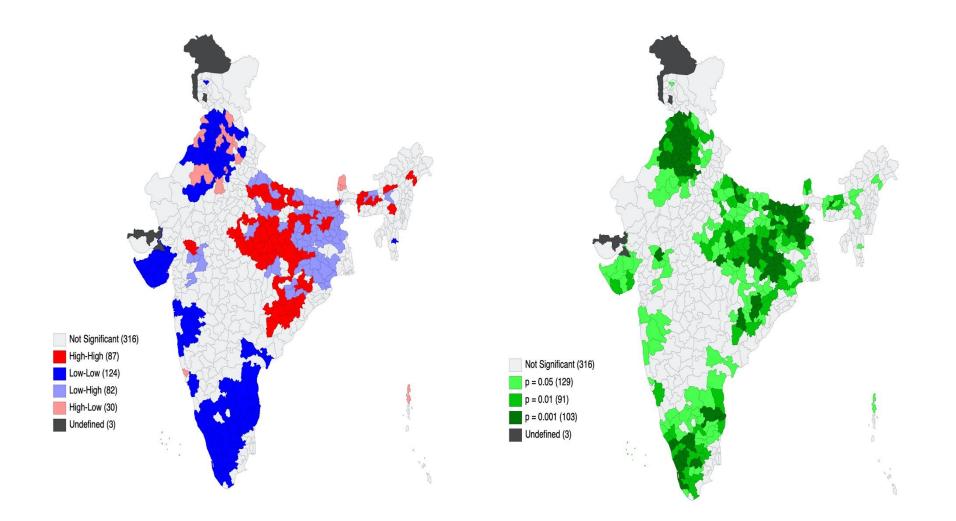

Bivariate LISA (Cluster and Significance) maps depicting spatial clustering and spatial outliers of maternal mortality ratio by percent of anaemic women mean in India (Moran's I=-0.045, p-value=0.019)

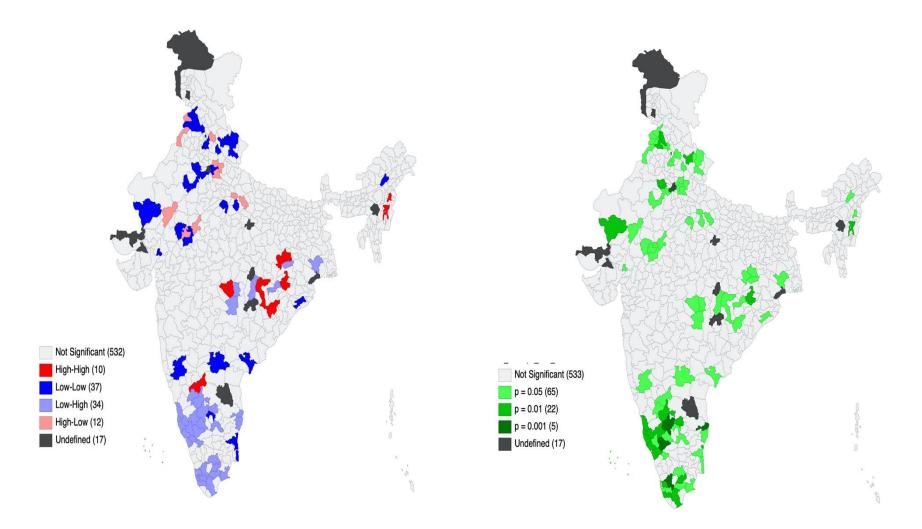

Bivariate LISA (Cluster and Significance) maps depicting spatial clustering and spatial outliers of maternal mortality ratio by percent of women receiving four or more Antenatal care in India (Moran's I=-0.241, p-value=0.001)


Bivariate LISA (Cluster and Significance) maps depicting spatial clustering and spatial outliers of maternal mortality ratio by percent women receiving Postnatal care in India (Moran's I=-0.168, p-value=0.001)


Bivariate LISA (Cluster and Significance) maps depicting spatial clustering and spatial outliers of maternal mortality ratio by percent of institutional delivery in India (Moran's I=-0.233, p-value=0.001)


Bivariate LISA (Cluster and Significance) maps depicting spatial clustering and spatial outliers of maternal mortality ratio by healthcare index in India (Moran's I=-0.042, p-value=0.001)


Bivariate LISA (Cluster and Significance) maps depicting spatial clustering and spatial outliers of maternal mortality ratio by percent women with ten or more years of schooling in India (Moran's I=-0.017, p-value=0.001)


Bivariate LISA (Cluster and Significance) maps depicting spatial clustering and spatial outliers of maternal mortality ratio by average household size in India (Moran's I=0.110, p-value=0.001)

Bivariate LISA (Cluster and Significance) maps depicting spatial clustering and spatial outliers of maternal mortality ratio by percent women residing in urban areas in India (Moran's I=-0.152, p-value=0.001)

Bivariate LISA (Cluster and Significance) maps depicting spatial clustering and spatial outliers of maternal mortality ratio by percent poor in India (Moran's I=0.215, p-value=0.001)

Bivariate LISA (Cluster and Significance) maps depicting spatial clustering and spatial outliers of maternal mortality ratio by sex ratio at birth in India (Moran's I=-0.017, p-value=0.189)

Birth Rate from SRS and	HMIS	
Indicator	SRS (2018)	HMIS (2017-19)
Infant Mortality Rate	32	26.2
Sex Ratio at Birth	111	108
Crude Birth Rate	20.2	24

Supplementary Table 4. Comparison of Infant Mortality Rate, Sex Ratio at Birth and Crude Birth Rate from SRS and HMIS